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Abstract

In reinforcement learning (RL) based task-
oriented dialogue systems, users act as the en-
vironment and the agent learns the policy by
interacting with users. However, due to the
subjectivity of different users, the complexity
of user-generated training conversations varies
greatly, which leads to different difficulties for
the agent to learn. Therefore, it is necessary
for modeling dialogue complexity and make
a reasonable learning schedule for efficiently
training the agent. Towards that, we propose
Scheduled Dialog Policy Learning, an auto-
matic curriculum learning framework for joint-
ing curriculum learning and policy optimiza-
tion in the task-oriented dialog system. To
our best knowledge, it is the first RL frame-
work that improves dialogue policy learning
by scheduling its learning process. Specifi-
cally, we introduce an automatic measurement
to evaluate the dialogue complexity, and based
on this automatic measurement, we train the
dialog agent from easy dialogues to complex
ones. Experiments demonstrate that our ap-
proach can be applied to the task-oriented dia-
logue policy learning and outperforms the pre-
vious state-of-the-art model, which increases
9.6% and 10.0% in the accuracy on the dialog
success rate, respectively on the MultiWoz and
Movie-Ticket Booking datasets.

1 Introduction

Dialog policy learning is an important component
of the task-oriented dialogue system, and it deter-
mines the agent dialog action responding to the
user. This learning process is often formulated as
a reinforcement learning problem (Young et al.,
2013; Levin et al., 1997; Dhingra et al., 2017; Li
etal., 2017; Liu and Lane, 2017; Peng et al., 2018b;
Su et al., 2018; Gao et al., 2019; Takanobu et al.,

*This work was done when Sihong Liu was interning at

Pattern Recognition Center, WeChat Al, Tencent Inc, China.
t Corresponding author

Easy Conversation Complex Conversation

U: Hi, I'd like to take a train from A |U: Hi, I'd like to take a train from Ato B on
to B on Thursday, Thursday.
leave at about 19:45. : When do you want to leave?

S: You may consider TR4, : | want to leave at about 19:45.

» |C v

which leaves at 21:40. : You may consider TR4,

: Please book tickets for 3 people. which leaves at 21:40.

U;
S

: I've booked your train tickets. : Please book tickets for 3 people.

» |C

The price is 10 pounds and. : | 've booked your train tickets.

Anything else | can help you? The price is 10 pounds.

U: When will the train arrive? Is there anything else | can help you?
S: The travel time is 105 minutes. |U: | also want to book a restaurant on Tuesday.
U: Thank you. S: City Stop Restaurant is good.

U: Can you help me with a reservation for 5
people at 19:30 this Tuesday?
S: Booking was successful. Anything else?
U: What's the address of the restaurant?
S: The restaurant is located at C.

Anything else | can help you with?
U: What is the travel time of the train | just
booked?
S: The travel time is 105 minutes.
U: Thank you.

Figure 1: The comparison of the easy conversation
(left) and the complex conversation (right) which are
task-oriented dialogs between the user (U) and the sys-
tem (S) sampling from MultiWoz. Comparing to the
left conversation, the right one has more turns, intents,
slots, and also switches between two domains: train
(marked as blue) and restaurant (marked as dark). The
right instance is apparently more complex.

2020), where users act as the environment and the
agent learns the policy by interacting with users.
Thus, the learning performance of the dialogue pol-
icy depends much on users’ behaviors.

However, due to the subjectivity and open-ended
nature of human conversations, the complexity
of training dialogues with different users varies
greatly (Lison and Bibauw, 2017). Figure 1 shows
dialogues with different complexities from Mul-
tiWoz (Budzianowski et al., 2018) dataset. Com-
paring to the left instance, the conversation in the
right column has more turns, intents, slots, and
also has the switch between two domains: train
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(marked as blue) and restaurant (marked as dark).
The right instance is apparently more complex. As
different complexity conversations lead to different
difficulties for the agent to learn, in this paper, we
introduce an automatic curriculum learning frame-
work to improve dialog policy learning by schedul-
ing its learning process where the agent first learns
from easy conversations and then gradually man-
ages more complicated ones. There is some related
work that examines the curriculum learning in nat-
ural language processing (Kocmi and Bojar, 2017;
Platanios et al., 2019; Sachan and Xing, 2016; Guo
etal., 2019; Cai et al., 2020). Evaluation of training
samples complexity is a challenging obstacle when
organizing a curriculum. Previous work evaluates
training samples mainly applying empirical and
heuristic attributes, such as Platanios et al. (2019)
defines the difficulty for training sentences concern-
ing the sentence length and word rarity in the neural
machine translation. Cai et al. (2020) evaluates the
dialogue difficulty by five heuristic conversational
attributes.

As the subjectivity and diversity of the conver-
sation task, modeling its complexity by empirical
and heuristic attributes is insufficient and relies on
prior knowledge on the specific domain or dataset.
Inspired by curiosity rewards (Schmidhuber, 1991;
Stadie et al., 2015; Sorg et al., 2010; Pathak et al.,
2017a), which applied state prediction error to pre-
dict uncertainty (Houthooft et al., 2016; Still and
Precup, 2012; Wesselmann et al., 2019; Tegho et al.,
2018) and improvement (Lopes et al., 2012) in
RL tasks, in this paper, we further introduce an
automatic measurement to evaluate dialogue com-
plexity by estimating the dialog state differential
space without applying any prior knowledge on
the domain or dataset. Then we schedule the pol-
icy learning curriculum for the dialog agent based
on the evaluation. To evaluate the effectiveness of
our model for dialogue policy learning, we con-
duct our experiments on two public task-oriented
dialog datasets: MultiWoz (Budzianowski et al.,
2018) and Movie-Ticket Booking (Li et al., 2018).
Experimental results show that our model reaches
83.3% and 57.0% in the accuracy for dialog suc-
cessful rate on these two datasets, outperforming
the previous state-of-the-art dialog model by 9.6%
and 10.0% , respectively. Our main contributions
in this work are three-fold:

* We design an automatic measurement to eval-
uate training dialogues complexity without

any prior knowledge on the domain or dataset,
which gets rid of empirical and heuristic at-
tributes to model the dialogue complexity.

* Based on the automatic complexity measure-
ment, we propose an automatic curriculum
learning framework SDPL to improve the
performance and learning efficiency of task-
oriented dialogue policy learning.

* We conduct experiments on two task-oriented
dialog corpus and results show the superiority
of our model to the state-of-the-art baselines.
Especially, it increases 9.6% and 10.0% in ac-
curacy on dialog successful rate, respectively.

2 Related work

2.1 RL-based Task-oriented Dialog Policy
Learning

Learning policies for the task-completion dialogue
is often formulated as a reinforcement learning
(RL) problem (Levin et al., 1997; Young et al.,
2013; Li et al., 2017; Peng et al., 2018a,b; Su et al.,
2018; Gao et al., 2019; Li et al., 2017; Peng et al.,
2018b; Su et al., 2018; Takanobu et al., 2020; Li
et al., 2020) and this learning process can be regard
as a Markov Decision Process (MDP), where the
agent interacts with a user through a sequence of
actions to accomplish a pre-defined user goal.

Since reinforcement learning requires much in-
teraction for training, a user simulator is often ap-
plied to interact with the agent providing the sim-
ulated user response in each dialogue turn based
on a user goal (Li et al., 2017; Liu and Lane, 2017;
Peng et al., 2018a; Su et al., 2018). Specifically,
given a user goal G, at each time step ¢, the agent
observes the current dialogue state s;, and chooses
an action a to execute, using the policy 7(a|st).
Then the user responds the user action a,, which
is sampled from the user goal GG. Next, the agent
receives reward 7, observes the response a,, and
updates to next state s;41. And the agent learns and
updates the policy aiming to maximize its total dis-
counted rewards. As the entire dialogue is around
a user goal and a user goal corresponds to several
user-generated dialogues, thus in this paper, we
make the complexity evaluation of user goals for
curriculum learning feeding different complexity
dialogues generated by different complexity user
goals to schedule the dialog agent training '.

'Refer to the appendix for details on the user simulator
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Figure 2: Illustration of proposed curriculum learning framework SDPL. It is defined by two stages. At dia-
logue complexity evaluation stage, an automatic scoring function f..-.(G;) defines the instances G; complexity
(darker/lighter blue indicate easy/hard complexity) from easy to hard. Then at the policy learning curriculum
stage, a pacing function fpqc.(t) schedules the percentage of training instances available for feeding to the policy
learning according to the training step ¢. The dialog agent interacts with the user to learn the dialog policy on the
scheduled instances and updates its learning capacity to execute a new dialog complexity evaluation.

2.2 Curriculum Learning

Curriculum learning (Bengio et al., 2009) is a learn-
ing strategy in machine learning, which learns from
easy instances and then gradually handles harder
ones. Curriculum learning has been used to natural
language generation (Cai et al., 2020; Liu et al.,
2018) and question answering task (Sachan and
Xing, 2016). Cai et al. (2020) utilizes heuristic dia-
logue attributes to represent the dialogue complex-
ity and propose several curricula, which achieve
high performance. And Sachan and Xing (2016)
proposes several heuristic strategies to model dif-
ferent complexity QA pairs. As the conversation
task is more complex and analytic, in this paper,
we propose an automatic curriculum framework to
measure dialogue complexity automatically which
can get rid of empirical and heuristic attributes and
schedule different complexity training dialogues to
improve the policy learning.

2.3 Curiosity Rewards

For many RL applications, state error prediction is
used for curiosity rewards (Schmidhuber, 1991;
Stadie et al., 2015; Sorg et al., 2010; Pathak
et al., 2017a) [8, 9, 10, 5] to predict uncer-
tainty (Houthooft et al., 2016; Still and Precup,
2012; Wesselmann et al., 2019; Tegho et al., 2018)
and improvement (Lopes et al., 2012), improving
the state exploration efficiency. And curiosity re-
wards are applied to tackle reward sparseness prob-

and the user goal.

lem and state exploration in many tasks. Especially,
Wesselmann et al. (2019) applied the curiosity re-
wards to the dialog policy to replace random explo-
ration and stabilize training. While in this paper,
we applied the curiosity reward as the measurement
to evaluate the dialogue complexity.

3 Scheduled Dialog Policy Learning

We propose Scheduled Dialog Policy Learning
(SDPL), a flexible and practical framework on joint
curriculum learning and policy optimization for
task-oriented dialog systems.

3.1 Overview

The overview of the full model is depicted in Fig-
ure 2, it schedules and designs the curriculum for
dialogue policy learning in mainly two stages:

1) Dialog Complexity Evaluation. For the in-
put training instances, we firstly measure original
dialog instances complexity by an automatic scor-
ing function, and arrange to sort these instances by
their complexity scores, obtaining the ordered train-
ing instances. 2) Policy Learning Curriculum.
After obtaining the ordered training instances, we
apply a pacing function to schedule the percentage
of instances available for training at each training
step. Then these scheduled percentage of instances
are fed to the dialogue agent to learn the dialog
policy from easy to complex. As the training pro-
gressing, the agent updates its learning capacity
and executes a new dialog complexity evaluation.
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In the subsequent subsection, we systematically
describe how to utilize the SDPL for dialogue pol-
icy learning. In Section 3.2, we propose an au-
tomatic dialogue complexity evaluation approach.
Then, we show in Section 3.3 how the automatic
curriculum learning framework can contribute to
the dialogue policy learning by automatically mod-
eling dialogue complexity and making a reasonable
learning schedule for training the dialog agent.

3.2 Dialogue Complexity Evaluation

The complexity of different training dialogues
varies greatly which leads to different difficulties
for the agent to learn. Therefore, it is necessary
for modeling dialogue complexity and scheduling
different complexity dialogues for efficiently train-
ing. In this paper, we propose a novel measurement
to evaluate the dialogue complexity automatically.
Inspired by Pathak et al. (2017b), for the agent in-
stant learning capacity, we estimate the dialog state
differential space that the agent can explore for cur-
rent training samples as their training complexity.
Less differential space means less error between
the real state and predicted state which indicates
current agent masters these samples where they are
easy to learn for the current learning capacity.

Specifically, during the RL-based dialog policy
learning process, in each step ¢, the agent observes
current dialogue state s, then it executes the dialog
action a; estimating from current policy learning
network. The agent then receives reward r; > and
updates to the next state s;11. Finally, the agent
aims to maximize the expected sum of rewards
which can be formulated as:

’n,éngﬂ'(st,at;@Q)[Z Tt]a (1)
t

where 7 (s, at; 6) is the policy learning network
parameterized by 0. To estimate the state differen-
tial space between the real state and predicted state,
we first encode the current state and real next state
into state feature vectors. Next, we apply a feature
predicting neural network to obtain the predicted
next state feature encoding which is formulated as:

d(St41) = 9(¢(8t), ag; 9m>7 ()

?In the RL based dialogue system, reward measures the
degree of whether the dialogue is successful. In our experi-
ment, the agent obtains a reward of 80 when it success, and
obtained a reward of —40 when failed, and the agent receives
the reward of —1 at each turn to encourage shorter dialogues.

where ¢(+) is a state encoding network which trans-
forms the one-hot state variables into a feature
space suitable for learning. And $(5t+1) is the
predicted next state feature of the real next state
feature ¢(s¢4+1). We optimize parameters 6, by
minimizing the mean square error between them:

m(@se1), Blste1)) = nlldlseer) = dlsen)|?
3)
where 1 > 0 is a scaling factor. The function
m(t) calculates feature encoding differentials of
states between the real next state feature and esti-
mated next state feature in the latent feature space,
which represents the state differential space that
agent needs explore. Less state differential space
means less error between the real and predicted
state feature which indicates that current agent mas-
ters these states are easy to learn for the current
agent learning capacity. Therefore, we apply the
m(t) as the complexity evaluation for the current
agent towards current training samples.
We jointly optimize the reinforcement learning
process and complexity evaluation as:

n’éngﬂ(shat;gQﬂm) [Z re + Z m(t)]. (4)
t t

We further formulate the complexity evaluation
into the task-oriented dialogue system to measure
the dialogue complexity (lines 3-8 in Algorithm 1).
In the dialogue system, the user and system interact
with each other in a dialog session to fulfill the user
goal G;, where G; € Diypqr and Dygyq is a user
goal set, ¢ is the user goal index. Each user goal
G corresponds to its K generated dialog sessions
{71, ..., & }. And during the reinforcement learning
process, each dialog session 73 can be seen as a tra-
jectory of state-action tuples {(s¢, at, ¢, St41), -+ }s
t €{0,1,...., N — 1}, where N stands for the num-
ber of turns in each dialogue session. Therefore,
based on the Eq. 3, for each dialog 71, we obtain its
complexity score by an automatic scoring function
which can be formulated as:

N
fscore (mTk) = Z mr, (t) . (5)
t=1

During the RL-based dialog policy learning, as
training dialogues are user-generated based on the
user goal, we also evaluate the complexity of user
goals for later policy curriculum learning. For a
given user goal (5;, we obtain its complexity score
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Algorithm 1 Scheduled Dialogue Policy Learning

Require: Dialog user goal set Dyotqr With each user goal
{G;}, N
Ensure: Dialog policy 7 (s, a;0¢,0m)
1: initialize (s, a; 00, Om)
2: for n=1:N do

3: # Dialogue Complexity Evaluation starts

4: user starts dialogues 71 ...7; based on G;

5:  update the dialogue process by 7 (s, a; 0q, 0m)

6: store training tuples {(st, a¢, 7+, St4+1), ...} for each
dialog 7%

7:  compute complexity score for 7, and G; by fscore in
Sec.3.2

8: sort Dyotqr With the complexity score to obtain Doy ger

9: # Policy Learning Curriculum starts

10: sample batches from Dorger bY fpace in Eq. 7.

11:  user starts dialogues 71 ...7 based on G,:-

12:  agent updates 7 (s, a; 0q, 0m) by interacting with the
user

13: end for

by calculating its generated dialog sessions average
complexity evaluation which is formulated as:

1 K
fscore (Gz> = ? Z fscore (mrk ) . ©6)
k=1

We sort the user goal set Dyt by complexity
scores, obtaining the forward complexity ordered
user goal set D,,;.4,-. Based on the ordered training
set, we further propose the policy learning curricu-
Ium to schedule the training of the agent.

3.3 Automatic Curriculum Learning
Framework for Dialog Policy Learning

Our proposed automatic curriculum learning frame-
work is shown as Algorithm 1. During the di-
alogue policy learning process, we first initial-
ize the RL-based dialog policy as 7 (s, a; 0, 0,,).
For each training step n, we start from the Dia-
logue Complexity Evaluation process. The user
starts dialogues 7i...7; based on a user goal
G;. Then, we update the dialogue process based
on the current policy, and store training tuples
{(s¢, at, ¢, St41), ...} for each dialog 7. After
that, we arrange to sort each user goal in the origi-
nal training set from easy to complex according to
the automatic scoring function fg.ore in Sec. 3.2,
obtaining the ordered training set D, q¢; -

After obtaining the ordered training set, we start
the policy learning curriculum process based on a
pacing function fpqce(t) aiming to schedule train-
ing instances that feeding to the policy learning
network. A batch of training instances is sampled
from the top fpace(t) percentage of the ordered
training set. Following Platanios et al. (2019), we

Movie-Ticket Booking | MultiWoz
Dialogues 2,890 8,438
Intents 11 13
Slots 29 25
Avg. turns per dialogue 7.5 13.68
Domains 1 7

Table 1: The statistics of two public datasets, Movie-
Ticket Booking and MultiWoz.

define the pacing function fpqce(t) as:

1—03
N

where ¢y > 01is set to 0.01 and N is the duration of
curriculum learning. At the early stage of the train-
ing process, the dialogue policy learning model
learns from the instances drawing from the front
(easy) part of the curriculum. With the advance of
the curriculum, the complexity gradually increases,
more complex training instances appear.

Based on sampled training instances by Eq. 7,
the user starts dialogues from ordered sampling
user goal G;, while the agent interacts with the
user to update and learn the dialogue policy
7(s,a;0q,0y,) from easy to complex, then con-
ducts new dialogue complexity evaluation itera-
tively. Note that, although we describe the frame-
work in two components for ease of understanding,
in fact, the whole framework can be trained in an
end-to-end manner. Thus, the proposed automatic
curriculum learning framework is capable of not
only scheduling the training samples to optimize
the dialogue policy learning model, but also can be
applied to other RL based training scenarios.

frace(t) & min(1,4/t +a) (D)

4 Experiments

4.1 Datasets

We conduct the experiments on two public datasets,
Movie-Ticket Booking (Li et al., 2018) and Mul-
tiWoz (Budzianowski et al., 2018). Movie is a
single domain dataset, and its goal is to build a
dialogue system to help users find information
about movies and book movie tickets. MultiWoz
is a multi-domain, multi-intent task-oriented dia-
log corpus that contains seven domains, includ-
ing Attraction, Hospital, Police, Hotel, Restaurant,
Taxi, Train. A user may change his goal during
the session, hence MultiWoz provides more com-
plicated dialogs closer to real-world conversations.
We show the full statistics in Table 1 3.

3Refer to the appendix for details on datasets.
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4.2 Evaluation Metrics

We adopt three metrics to evaluate the quality of
policy learning: success rate, average turns, aver-
age reward. Success rate is the task completion rate
— the fraction of dialogues that ended successfully.
The dialog is successfully when all the requested
information has been filled in, and the booked enti-
ties match all the indicated constraints given by the
user goal. Average turns is the average length of
the dialogue. Average reward is the average reward
that agent received during the conversation.

4.3 Baselines

To verify the effectiveness of our proposed curricu-
lum learning framework, we compare with differ-
ent RL policy learning agents in task-completion
dialogue as baselines:

DQN: A reinforcement learning based task-
oriented dialogue model that the agent learned the
dialogue policy by standard DQN (Li et al., 2017).

DDQ: The state-of-the-art task-oriented dia-
logue policy learning approach, Deep Dyna-Q
(DDQ) (Peng et al., 2018b). DDQ integrates plan-
ning for dialogue policy learning to make the best
use of limited real user experiences.

DDQ-CR: A DDQ agent only applied the cu-
riosity reward into the dialogue policy learning but
without curriculum learning (Wesselmann et al.,
2019).

DDQ-CL-rule: A DDQ agent incorporating the
curriculum learning (CL) and the dialogue com-
plexity evaluation is rule-based, where empirically
evaluating the dialogue by its slots number.

DDQ-SDPL: A DDQ agent that incorporating
our proposed framework.

WDQN: A warm-DQN agent pre-trained by su-
pervised learning (Lee et al., 2019).

WDQN-CR: A warm-DQN agent that only in-
corporating the curiosity rewards into dialogue pol-
icy learning without curriculum learning (Wessel-
mann et al., 2019).

WDOQN-CL-rule: A warm-DQN agent that in-
corporating the rule-based curriculum learning
(CL), similar to DDQ-CL-rule.

WDQN-SDPL: A warm-DQN agent that incor-
porating our proposed framework.

4.4 Settings

The policy learning of the agent is trained by DQN
and DDQ algorithm with the same set of hyper-
parameters on Movie-Ticket Booking (Li et al.,

2018). The batch size is 64, and the learning rate is
0.001. The state encoding network is an MLP layer
with 80 node. The optimizer for neural networks
is RMSProp. And we employ the WDQN with
the same set of hyper-parameters (Lee et al., 2019).
The batch size is 16, and the learning rate is 0.001.
The state feature encoder is an MLP layer with 300
node. We use Adam as the optimization algorithm.
Besides, dialogues are ordered by our complexity
evaluation in the training process while during the
testing process, dialogues are used as baselines
with no order. The training epoch is 100, 200, 300
and each number is averaged over 5 runs, each run
tested on 2000 dialogues.

5 Automatic Evaluation

In this section, we first show the experiment results
of our proposed method on Movie-Ticket Booking
and MultiWoz datasets to verify the effectiveness
of our proposed framework. Then we make a com-
prehensive qualitative analysis to show the merits
of automatic evaluation for dialogue complexity.

5.1 Main Results

Table 2 presents the main results at the training
epoch on the Movie-Ticket Booking dataset. For
each agent, we report its results in terms of success
rate, average reward, and average turns. Compared
to the original DDQ agent, DDQ-CR, DDQ-CL-
rule and DDQ-SDPL respectively achieve 8%, 7%
and 10% improvements in terms of success rate,
which confirms curriculum learning can facilitate
and stable the training process of RL agents.
Further, our proposed automatic evaluation
method for dialogue complexity outperforms the
empirical method by 3%. The result represents
applying the heuristic attribute to model the di-
alogue complexity is insufficient and it is hard
to make effective handcrafted rules, due to sub-
jectivity and diversity of dialogues and the limit
of user-generated training. Our proposed method
models the dialogue complexity in an automatic
method evaluating dialog state differential space
of RL agents. For other metrics, average reward
and average turns, our method also achieves bet-
ter performance. Apart from overall performance
gain, we observe our method converges fast to sim-
ilar accuracy 76% at epoch 100, compared to 73%
of DDQ agent at epoch 300. It proves a better
evaluation method for dialogue complexity can
bootstrap training steps of RL agents. Besides,

1096



Agent Epoch =100 Epoch =200 Epoch =300
Success Reward Turns | Success Reward Turns | Success Reward Turns
DQN (Li et al., 2017) 0.42 -3.84 31.93 0.53 10.78 22.72 0.64 27.66 22.21
DDQ (Peng et al., 2018b) 0.60 20.35 26.65 0.71 36.76 19.55 0.73 39.97 18.99
DDQ-CR 0.62 24.82 23.78 0.78 46.52 14.05 0.81 50.16 13.27
DDQ-CL-rule 0.71 32.48 19.01 0.76 45.36 14.56 0.80 48.15 13.59
DDQ-SDPL 0.76 44.75 14.90 0.80 51.15 13.29 0.83 54.63 12.73

Table 2: Results of different task-completion dialogue agents including the DQN,DDQ on Movie-Ticket Book-
ing (Li et al., 2018) and ablation experiments of applying different curriculum learning strategies. The training

epoch = {100, 200, 300}. (Success: success rate)

Agent Epoch =100 Epoch =200 Epoch =300
Success Reward Turns | Success Reward Turns | Success Reward Turns
WDQN (Lee et al., 2019) 0.37 -8.93 15.33 0.46 3.26 13.94 0.47 5.33 13.07
WDQN-CR 0.36 -5.16 15.10 0.45 3.21 14.02 0.51 10.68 13.79
WDQN-CL-rule 0.40 -4.79 14.79 0.48 6.41 13.19 0.49 9.35 13.85
WDQN-SDPL 0.45 2.51 13.49 0.52 11.04 13.36 0.57 12.22 13.81

Table 3: Results of WDQN agent on MultiWOZ (Budzianowski et al., 2018) and ablation experiments of applying
different curriculum learning strategies. The training epoch = {100, 200, 300}. (Success: success rate)

DDQ-CR only applied curiosity-driven exploration
with no curriculum learning and it can improve the
agent’s performance. While based on the curiosity
reward’s improvement, there is another promotion
after applying the curriculum learning. And this
ablation study demonstrates the effectiveness of the
curriculum learning.

Table 3 shows main results at the training epoch
on the MultiWOZ dataset. We aim to verify the ef-
fectiveness of our method on the more complicated
dataset since MultiWOZ contains multi-domains
and more dialog turns. Here we choose another
RL agent, WDQN, as the baseline to show our pro-
posed framework can be applied to other RL based
models. Results show our method WDQN-SDPL
outperforms the empirical rule WDQN-CL-rule by
6%, higher than the improvement of 3% on Movie
dataset. The possible reason is that MultiWOZ is
significantly complicated than Movie dataset and
only the simple attribute of slot numbers evaluates
dialog complexity insufficiently. For the Turns met-
ric, our method achieves similar performance with
the baselines. We assume the domain switching
on MultiWwOZ leads to increasing dialog turns to
achieve a higher success rate. The comparison ex-
hibits the effectiveness of our automatic evaluation
method. Besides, the ablation study in WDQN-CR
and WDQN-SDPL also demonstrates the effective-
ness of the curriculum learning.

In summary, our proposed curriculum learning
framework facilitates the training process of RL

agents. Moreover, our automatic evaluation method
for dialogue complexity consistently outperforms
the rule-based empirical method.

5.2 Analysis

Comparison with Heuristic Complexity We
analyze three empirical attributes to show the cor-
relation between heuristics and proposed automatic
dialogue complexity evaluation: slot number, di-
alog length, reward, and domain switching times.
We show the correlation statistics results in Fig 3.
Fig 3(a) and Fig 3(b) shows the statistics of slots
number, dialogue length and reward in complexity
ordered instances evaluating by our proposed dia-
log complexity evaluation on Movie-Ticket Book-
ing dataset. And we perform the qualitative analy-
sis on the correlation between dialogue complexity
and the number of domain switching on the Multi-
Woz dataset in Fig 3(c). Our evaluation method for
dialogue complexity reflects positive connections
to heuristic methods in these dimensions, which
to some extent explains the effectiveness of our
method. On the other hand, our method considers
multiple empirical dialog attributes which is more
flexible than heuristics. We show more comparison
analysis details in the Appendix.

Learning Efficiency Fig 4 shows the learning
curves comparing different agents, DDQ, DDQ-
CL-rule and DDQ-SDPL, to investigate the rela-
tive contribution of the automatic complexity eval-
uation and the curriculum learning strategy. The
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Figure 3: The correlation statistics between heuristics and our proposed automatic dialogue complexity evaluation.
We count three heuristic attributes: slot numbers(request slot, inform, all), dialog turns and reward, domain switch-
ing times based on ordered training samples evaluating by our proposed automatic complexity evaluation. And we
divide obtained dialog complexity scores into different complexity intervals(easy, medium, hard) for statistics.
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Figure 4: Learning curves of the DDQ, DDQ-CL-rule,
DDQ-SDPL. The DDQ-SDPL outperforms baselines
and converges fast to achieve higher accuracy.

DDQ-SDPL outperforms the baseline DDQ and
DDQ-CL-rule and at each training step and con-
verges fast to higher accuracy.

6 Human Evaluation

For human evaluation, we hire human experts to
compare pairwise between DDQ-SDPL and base-
lines. Given a certain user goal, each expert is
asked to read two simulated dialog sessions around
this user goal, one from DDQ-SDPL and another
from the other baseline. We randomly sample 100
goals for each baseline. For each goal, 3 experts are
asked to judge which dialog is better (win, draw or
lose) according to different subjective assessments:
quality and task success. The quality metric eval-
uates whether the agent policy provides the user
with the required information efficiently.

Table 4 shows the results of the human prefer-
ence by majority voting. DDQ-SDPL outperforms

Quality Success
VS.

W D L W D L
DDQ 46 24 30 58 25 17

DDQ-CL-rule 41 28 31 49 26 25

Table 4: Human preference on dialog session pairs that
DDQ-SDPL wins (W), draws with (D) or loses to (L)
baselines on quality and success by majority voting.

other baselines significantly in all aspects (sign test,
p-value < 0.01). Note that the difference between
DDQ-CL-rule and DDQ-SDPL is only in the dialog
complexity evaluation. This demonstrates again the
advantage of the automatic complexity evaluation
in DDQ-SDPL over the heuristic method. The hu-
man preferences agree well with the results of the
automatic evaluation, which also indicates these
experimental metrics are reliable to reflect user sat-
isfaction to some extent. Besides, we show some
sampled cases in the Appendix to demonstrate the
effectiveness of our proposed learning framework.

7 Conclusion

In this paper, we propose a novel curriculum learn-
ing framework to improve dialog policy learning
by scheduling its learning process from easy to
complex. We further propose an automatic dialog
complexity evaluation for curriculum scheduling.
The effectiveness validation of SDPL is conducted
on two dialogue datasets and the state-of-the-art
dialog model demonstrates that our proposed learn-
ing framework is able to boost the performance
of existing dialogue policy learning. Furthermore,
we believe that this automatic curriculum learning
framework can be applied to improve other types
of reinforcement learning based NLP tasks.
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A Dataset

Table 5 shows the full statistics of Movie-Ticket
Booking dataset. And the statistics of MultiwOZ
dataset are shown in Table 6. And Table 7 demon-
strates the full statistics of comparison that between
the Movie-Ticket Booking and MultiWOZ dataset.

\ Annotations \
request, inform, deny, confirm_question,

Intent | confirm_answer, greeting, closing, not_sure,
multiple_choice, thanks, welcome
city, closing, date, distanceconstraints,
Slot greeting, moviename, numberofpeople,

price, starttime, state, taskcomplete, theater,
theater_chain, ticket, video_format, zip

Table 5: The data annotation schema of Movie-Ticket
Booking dataset.

Hotel Train Attraction | Restaurant Taxi
price,
type, .
yp. - food,
parking, | destination, .
price, A
stay, departure, destination,
area, area,
. day, day, departure,
Slots . name, name, .
people, | arrive by, . arrive by,
type time,
area, leave at, da leave by
stars, people eoy ie
internet, peop
name

Table 6: The dataset information of MultiwOZ.

B User goal

In the task-completion dialogue setting, the entire
conversation is around a user goal G = (C, R) im-
plicitly, where C denotes the constraint and R is
the requests. And the agent knows nothing about
the user goal explicitly and its objective is to help
the user to accomplish this goal. Every time a dia-
log is launched, the user goal is initialized by the
user simulator at the beginning of a dialog session,
by randomly sampling the inform slots and requests
slots from the user goal. Generally, the definition
of user goal contains two parts: inform_slots con-
tain a number of slot-value pairs which serve as
constraints from the user. request_slots contain a
set of slots that user has no information about the
values, but wants to get the values by interact with
the agent.

A set of 1,000 user goals in MultiWOZ are used
for automatic evaluation as shown in Table 8.

C Case study

To further analyze the effectiveness of our auto-
matic complexity measurement qualitatively, we

Movie-Ticket Booking | MultiWoz
Dialogues 2,890 8,438
Intents 11 13
Slots 29 25
Avg. turns per dialogue 7.5 13.68
Domains 1 7

Table 7: The statistics of two public datasets, Movie-
Ticket Booking and MultiWoz.

Class  Attraction Hospital Hotel
Count 320 22 389
Police = Restaurant Taxi Train
22 457 164 421
Num. Single Two Three
Count 328 549 123

Table 8: Domain distribution of user goals used in the
automatic evaluation. A user goal with multiple do-
mains is counted repeatedly for each domain.

randomly choose three examples of dialogues with
different normalized complexity scores. As shown
in Table 9, it is clear to see that, the instance with
more slots and domains obtains a higher complex-
ity score in our automatic measurement, which
is consistent with heuristics. Besides, Table 11
shows two dialog sessions with the same user goal
in WDQN and WDQN-SDPL, respectively. The
user goal consists of train and restaurant domains.
The system is required to answer all the informa-
tion in Request based on the constraints in Inform.
When the user asks for some information about the
restaurant, WDQN-SDPL manages to provide all
the requested information, while original WDQN
only answers part of the information(red line). Ad-
ditionally, WDQN-SDPL answers the postcode of
the restaurant (blue line) and the dialog proceeds
successfully, however, WDQN fails.

1101



Easy case with complexity score: 0.2 H Medium case with complexity score: 0.6 H Hard case with complexity score: 0.9
Restaurant Train Attraction
Inform Request Inform Request Inform Request
destination=peterborough
food=european phone . entrance fee
. . day=thursday duration type=museum
pricerange=expensive  postcode . . address
. - departure=cambridge arriveBy area=centre
time=19:30 address postcode
leaveAt=19:45
Restaurant Hotel
Inform Request Inform Request
price range=expensive
food=european phgne stars=4 address
. . postcode
pricerange=expensive ; . people=8 area
address
day=saturday
Taxi
Inform Request
arrive by=19:45 car type
phone

Table 9: The case study of different training instances (Easy, Medium, Hard) with their different complexity scores.
The instance with more slots and domains obtains a higher complexity score in our automatic measurement, which
is consistent with heuristics.

Train Restaurant
Inform Request Inform Request
destination=peterborough | duration food=british postcode
day=sunday people=7 | price range=expensive | address
departure=cambridge area=centre
leaveAt=20:45

Table 10: User goal used in the case study.

WDQN

WDQN-SDPL

U: I need to book a train to peterborough. I will departing
from cambridge. Yes, I need to leave sometimes after
20:45. I would like to leave on sunday.

: What day would you like your booking for?

|72]

cwrcwuc

S: Reference number is : 00000068.

U: I want to find a expensive priced restaurant. I’m vis-
iting Cambridge and would like some suggestions for
an restaurant which serves british. What restaurants are

located in the centre?

2]

options for you.

wocwcwanc

: Sunday is fine, what is the travel time on that?
: What time would you like the reservation for?
: That should work, what is the travel time on that?
: What time would you like the reservation for?
: can you book that for 7?

: Do you have a preference for the price range? I have 3

: I am looking for a expensive restaurant.
All set. Your reference number is 00000045.

: What is the address? What is the postal code?
The address is 51 Trumpington Street City Centre.

: Thanks. I will need the postcode though.

: Your reference number is 00000045.

: I am all set. Have a nice day. Bye.

: You are very welcome. Goodbye.

|72]

cwruacwnc

|72]

nwcwucwrc

: I need to book a train to peterborough. I will departing

from cambridge. I need to leave sometimes after 20:45.
I would like to leave on sunday.

: What day would you like your booking for? What time

would you like the reservation for?

: That should work, what is the travel time on that?

The travel time is 51 minutes.

: Yes, can you book that for 7.

Reference number is : 00000068.

: I want to find a expensive priced restaurant. I’'m vis-

iting Cambridge and would like some suggestions for
an restaurant which serves british. What restaurants are
located in the centre?

: Do you have a preference for the price range? I have 3

options for you.

: I am looking for a expensive restaurant.

. All set . Your reference number is 00000045.

: May I have the address? What is the postal code?

The address is 51 Trumpington Street City Centre.

: I will need the postcode though.

The post code is cb21rg.

: Tam all set. Have a nice day. Bye.

You are very welcome. Goodbye.

Failure: User does not request the arrive time of the train, and
the system does not book the restaurant for the user.

Success

Table 11: A sample dialog session comparison between WDQN and WDQN-SDPL in natural language.
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