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Abstract
Code summarization (CS) is becoming a
promising area in recent language understand-
ing, which aims to generate sensible human
language automatically for programming lan-
guage in the format of source code, serving
in the most convenience of programmer de-
veloping. It is well known that program-
ming languages are highly structured. Thus
previous works attempt to apply structure-
based traversal (SBT) or non-sequential mod-
els like Tree-LSTM and graph neural net-
work (GNN) to learn structural program se-
mantics. However, it is surprising that incorpo-
rating SBT into advanced encoder like Trans-
former instead of LSTM has been shown no
performance gain, which lets GNN become
the only rest means modeling such necessary
structural clue in source code. To release
such inconvenience, we propose structure-
induced Transformer, which encodes sequen-
tial code inputs with multi-view structural
clues in terms of a newly-proposed structure-
induced self-attention mechanism. Extensive
experiments show that our proposed structure-
induced Transformer helps achieve new state-
of-the-art results on benchmarks.

1 Introduction

By 2020, software development and maintenance
become an indispensable part of human work and
life. Various assistant technical measures have been
taken to facilitate more enjoyable software devel-
opment, among which it is especially welcomed by
programmers when there is a code summarization
task generating sensible human language annota-
tions automatically.

∗Corresponding author. This paper was partially supported
by National Key Research and Development Program of China
(No. 2017YFB0304100), Key Projects of National Natu-
ral Science Foundation of China (U1836222 and 61733011),
Huawei-SJTU long term AI project, Cutting-edge Machine
Reading Comprehension and Language Model. This work
was supported by Huawei Noah’s Ark Lab.

Code
(Java)

private void attachPlot (SVGPlot newplot) {
this.plot = newplot;
if (newplot == null) {

super.setSVGDocument(null);
return;

}
newplot.synchronizeWith(synchronizer);
super.setSVGDocument(

newplot.getDocument());
super.setDisableInteractions(

newplot.getDisableInteractions());
}

Summ. Attach to a new plot and display.

Code
(Python)

def get change lines in file for tag(tag,
change dict):

cleaned lines = []
data list = change dict.get(’data’, [])
for data dict in data list:

block = data dict.get(’block’, ”)
lines = block.split(’\\n’)

for line in lines:
index = line.find(tag)
if (index >(-1)):

line = line[index:]
cleaned lines.append(line)

return cleaned lines

Summ.

The received change dict is the jsonified version of
the changes to a file in a changeset being pushed to
the Tool Shed from the command line. This method
cleans and returns appropriate lines for inspection.

Table 1: Task samples of code summarization, where
summ. refers to the output summary.

In early days, code summarization was a deriva-
tive problem of information retrieval (Haiduc et al.,
2010; Eddy et al., 2013; Wong et al., 2013, 2015)
by matching the most similar code snippets which
are labeled with summaries. Such method lacks
generalization and performs unsatisfactorily. Thus
in recent years, researchers treated code summa-
rization as a task of language generation (Iyer et al.,
2016; Liang and Zhu, 2018), which usually de-
pends on RNN-based Seq2Seq models (Cho et al.,
2014; Bahdanau et al., 2015).

It is already known that RNN-based models
may encounter bottleneck when modeling long
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Structure-
sensitive

Long-term
dependency

Feat-model
match

LSTM
Tree-LSTM X
Transformer X
LSTM + SBT X X
Transformer + SBT X X
SiT X X X

Table 2: Comparison of the previous models with pro-
posed SiT model. The last column refers to whether
input features match with the corresponding model.

sequences due to its poor long-term dependency.
For instance, a normal snippet of Java as shown
in Table 1 usually has hundreds of tokens. More
recently, Ahmad et al. (2020) used an enhanced
Transformer-based model to capture long-term and
non-sequential information of source code, which
outperformed previous RNN-based models by a
large margin.

On the other hand, in the light of the structural
nature of programming languages, structure clues
are supposed to greatly enhance programming lan-
guage processing task like code summarization
(Fernandes et al., 2019). Indeed, substantial empir-
ical studies showed that Abstract Syntax Tree may
help models better comprehend code snippets and
achieve more sensible generation results. Previous
approaches could be divided into two categories.
The first is to employ non-sequential encoders (e.g.,
TBCNN (Mou et al., 2016), Tree-LSTM (Shido
et al., 2019), Tree-Transformer (Harer et al., 2019),
Graph Neural Network (Allamanis et al., 2018; Liu
et al., 2020; Alex et al., 2020; Wang et al., 2021))
to directly model structural inputs. The other is
to pre-process structural inputs to apply sequential
models on them. Uri et al. (2019) used LSTM to
encode code structure by sampling possible paths
of AST. Another similar work is structure-based
traversal (SBT) (Hu et al., 2018a), which manages
to flatten ASTs into linear sequences.

Though existing studies achieve success on the
concerned code summarization task more or less,
there is still room in improving both of the above
modeling approaches. It is well known RNN en-
coders like LSTM only have limited capabilities
in capturing long-range dependencies in sequence,
and GNN-like models may be too sensitive to local
information, which casts a natural solution, what
if incorporating SBT into the Transformer? How-
ever, it is surprising that SBT only works effec-
tively with LSTM but not the Transformer accord-

ing to Ahmad et al. (2020). We attribute this to the
linear and nonlinear inconsistence between SBT
and encoder forms. SBT enables sequential en-
coders to learn non-sequential relationship (such
as syntax) still in a certain elaborate linear forms.
RNN may be effectively enhanced by SBT right
because of its sequential architecture through at-
tention mechanism. Transformer learns features
through self-attention network (SAN), nevertheless
which acts more like a non-sequential process. Con-
sequently, such sequential features are unsuitable
for a non-sequential architecture to extract implicit
structural information. We boldly call it Feature-
Model Match problem in Table 2. In this paper,
we thus design an improved Transformer variants,
structure-induced Transformer (SiT) to alleviate
such difficulty in terms of a structure-induced self-
attention mechanism, so that the resulted model
may enjoy both merits, capturing long-range de-
pendencies and more global information. The pro-
posed model design has been applied to benchmark
datasets and helps achieve new state-of-the-art per-
formance.

A

B C

D E

A

B C

D E

Figure 1: Use of adjacency matrix to transform original
self-attention, left-hand complete graph, into structure-
induced self-attention, right-hand graph which looks
clear-cut. Note that we omit self-circles for concision.

2 Structure-based Code Summarization

The following sections present our code summa-
rization method with two parts, in which the first is
about structure representation of code, and the sec-
ond is our proposed structure-induced Transformer.

2.1 Structure Representation of Code
Note that programming language like source code
is subtle that certain different formats may result in
different compilations. Thus pre-processing could
be an great impact in code summarization.

We adopt Abstract Syntax Tree (AST) for rep-
resenting the language grammar of source code as
usual. Figure 2 depicts a typical AST, which is com-
posed of terminal nodes and non-terminal nodes. A
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non-terminal node represents certain construction
like If and BinaryOp, while terminal nodes repre-
sent its semantic components, such as identifiers
and numbers.

In model implementation, we adopt adjacency
matrix A to represent the AST instead of struc-
ture based traversal method as in Hu et al. (2018a),
which represents tree structure in a sequential for-
mat. Such choice is well compatible with Trans-
former, which calculates attention weights by per-
forming a dot-product of key-query pairs and re-
sults in an attention matrix of l × l. We let l equal
to number of AST nodes, then code summariza-
tion with Transformer becomes possible through
applying a position-wise multiplication of A and
original attention matrix.

sample()
FunctionDef

[]
Arguments

a = random()
Assign

a
Name

random()
Call

random
Name

if a % 2 == 0
If

a % 2 == 0
Compare

a % 2
BinOp

a
Name

%
Mod

2
Num

0
Num

b = a + 1
Assign

b
Name

a + 1
BinOp

a
Name

+
Add

1
Num

print(b)
Expression

print
Name

b
Name

print(b)
Call

==
Eq

Global attention

Terminal

AST

Flow

Data dependency

def sample():
    a = random()
    if a % 2 == 0:
        b = a + 1
        print(b)

Soure code

Figure 2: A Python code sample of multi-view graph
used in Si-SAN. The code snippet is referred from Liu
et al. (2020), which is original in Java.

Inspired by Code Property Graph (CPG) (Yam-
aguchi et al., 2014; Liu et al., 2020), we further
expand AST into a multi-view network (MVN or
multi-view graph) (Sindhwani et al., 2005; Zhou
and Burges, 2007; Kumar et al., 2011). An MVN is
composed of multiple views, each view correspond-
ing to a type of structural relationships while all
views sharing the same set of vertexes (Shi et al.,
2018). In this paper, we construct a three-view
graph based on different code semantics, which are
abstract syntax, control flow and data dependency.
We show an example in Figure 2, where we use
colorful strokes to describe different compositions
in the graph. Note that we only utilize terminal
nodes which are marked as rounded rectangles.

Specifically, we first generate an AST, on the
basis of which we add additional edges to further
represent the flow of control and data. For con-
trol flow, since Transformer is order-sensitive with
position encoding, we only need to focus on each
statement node. For instance, nodes b, =, a, +, 1
make a complete statement b=a+1. We connect
each of them since they are in the same execution
order. For data dependencies, we connect relevant
data across the whole program, as the variable b in
expression print(b) and assignment b=a+1 respec-
tively, where the former is defined and loaded from
the latter.

Now we may obtain three adjacency matrices of
syntax, flow and dependency respectively, which
are colored in red, yellow and blue in Figure 2. We
combine them together and finally obtain a multi-
view graph. Additionally, we add global attention
on the root, which is allowed to attend to all tokens
in the code, and all tokens in the code can attend to
it. With aggregated structure, our structure-based
code summarization is expected to capture various
semantics of programs.

Note that our multi-view graph is different from
CPG. which is original for C/C++ only and we do
not find an appropriate analysis platform for other
languages.

2.2 Structure-induced Transformer

Followed by appropriate structure representation
and graph construction, we now propose our
structure-induced Transformer (SiT) for code sum-
marization, which is a structure-sensitive trans-
former (Zhang et al., 2020b; Narayan et al., 2020;
Xu et al., 2020) model and is able to compre-
hend code snippets both semantically and syntac-
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Figure 3: Overall architecture of Structure-induced Transformer (SiT).

tically. Meanwhile, we do not introduce extra pa-
rameters in SiT so that guarantee the training ef-
ficiency. In this section, we first review the self-
attention network (SAN) of Transformer in terms
of attention graph. Then we correspondingly pro-
pose structure-induced self-attention to build the
structure-induced Transformer.

Vanilla Self-Attention Transformer is com-
posed of stacks of identical layers for both encoder
and decoder (Vaswani et al., 2017). Each layer
emphasizes on self-attention mechanism, which is
denoted as:

SAN(X) = Softmax

(
QKT

√
dk

)
V (1)

where X = (x1, . . . , xl) denotes the input se-
quence of sub-words, l denotes the sequence length
and dk denotes the hidden size per head. Now we
view each sub-word as a vertex n and inner prod-
uct of each key-value pair as a directed edge e, the
SAN can be described as a directed cyclic graph.
Equation 1 can be rewritten as follow:

SAN(X) = E ·N (2)

The attention scores E = {eij} refers to a weight
matrix of edges where eij represents how signifi-
cant node ni attend to node nj , while value matrix
N = {ni} refers to each node representation. Fig-
ure 1 depicts the process of calculating attention
scores.

Note that SAN actually generates a fully con-
nected cyclic graph without consideration of the
very needed structure-aware representation for our
concerned task.

Structure-induced Self-Attention To represent
the needed structure information, we propose
structure-induced self-attention network (Si-SAN).

Specifically, we introduce multi-view network
into Equation 1, that is, multiply the adjacency
matrix by key-query pairs:

SiSAN(X) = Softmax

(
Amv ·QKT

√
dk

)
V

(3)
where Amv refers to the multi-view representation
of code.

Note that Si-SAN does not change the input code
but appropriately incorporate code structure into
SAN by changing its attention pattern. As shown
in Figure 1, when aij = 0 in Amv, the attention
between ni and nj will be dropped out (Wu et al.,
2021). We consequently obtain a more explicit
attention graph. Different from calculating global
information onto the whole sentence in original
SAN, Si-SAN is expected to calculate structural
information more accurately.

Structure-induced Module To enhance robust-
ness and avoid over-pruning, we introduce
structure-induced module, which is a stack of two
layers, SAN and Si-SAN. In each module, SAN
is followed by Si-SAN and the output is the com-
bination of both layers. Specifically, given input
sequence X = (x1, . . . , xl), where l denotes se-
quence length, we first pass it through an SAN
layer to obtain hidden representation denoted as
H = (h1, . . . , hl):

H = Concat(SAN1(X), . . . , SANh(X)) (4)

where h refers to number of heads of multi-head
attention while SANi refers to self-attention of
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Model Java Python
BLEU ROUGE-L METEOR BLEU ROUGE-L METEOR

CODE-NN (Iyer et al., 2016) 27.60 41.10 12.61 17.36 37.81 09.29
Tree2Seq (Eriguchi et al., 2016) 37.88 51.50 22.55 20.07 35.64 08.96
Hybrid2Seq (Wan et al., 2018) 38.22 51.91 22.75 19.28 39.34 09.75
DeepCom (Hu et al., 2018a) 39.75 52.67 23.06 20.78 37.35 09.98
API + Code (Hu et al., 2018b) 41.31 52.25 23.73 15.36 33.65 08.57
Dual Model (Wei et al., 2019) 42.39 53.61 25.77 21.80 39.45 11.14
Transformer (Ahmad et al., 2020) 44.58 54.76 26.43 32.52 46.73 19.77
Transformer∗ (Ahmad et al., 2020) 44.87 54.95 26.58 32.85 46.93 19.86
SiT 45.76(↑1.18) 55.58(↑0.82) 27.58(↑1.15) 34.11(↑1.59) 48.35(↑1.62) 21.11(↑1.34)
CodeBERT∗† (Feng et al., 2020) 43.33 54.64 26.20 33.47 49.35 21.69
SiT on CodeBERT† 45.19(↑0.61) 55.87(↑1.11) 27.52(↑1.09) 34.31(↑1.79) 49.71(↑2.98) 22.09(↑2.32)

Table 3: BLEU, ROUGE-L and METEOR for our approach compared with other baselines. † refers to pre-trained
models while ∗ refers to models we rerun. The results of upper part are directly reported from Ahmad et al.
(2020). Note that we only rerun Transformer and CodeBERT since they are much stronger than the other baselines.
However, our results are even stronger. We show the ranges compared to the Transformer in Ahmad et al. (2020).
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(b) BLEU score with training steps on Python

Figure 4: Convergence between Transformer and SiT.

head i. Subsequently, we pass H through a Si-
SAN layer to obtain H ′ = (h′1, . . . , h

′
l):

H ′ = Concat(SiSAN1(H), . . . , SiSANh(H))
(5)

Finally, we use an aggregation to fuse H and H ′ to
obtain final representation H̄ = (h̄1, . . . , h̄l):

H̄ = Aggr(H,H ′) (6)

where the aggregation we use is simple position-
wise sum. We explore that the structure-induced
module is more robust and leads to a better per-
formance. In each stack, model begins to learn
global information with SAN, where all connec-
tions are available. Subsequently, through Si-SAN,
model is told which of the connections are useful
and which should be shut down and thus avoid-
ing over-pruning. Note that SiT with 3 stacks of
structure-induced modules still consists of 6 en-
coder layers and 6 decoder layers, but only changes

the architecture between modules of Transformer,
not introducing any extra parameters.

Figure 3 depicts the overall architecture of SiT.
Compared to original Transformer, our SiT with
Si-SAN encodes a more accurate relative represen-
tation of code through pruning redundant connec-
tions.

2.3 SiT-based Code Summarization
Based on our structure-induced Transformer (SiT),
now we specify our code summarization process.

We first transform the input code into adjacency
matrices of multiple views and combine them
through a weighted sum:

Amv = αAast + βAfl + γAdp (7)

where α, β, γ refer to the corresponding weight for
each view. Then we pass code sequences and cor-
responding adjacency matrices into SiT encoder,
which contains 3 Si-SAN layers. For decoder, we
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apply original Transformer decoder with cross at-
tention. Finally, the summarization of the input
code is generated through autoregressive decoding.

3 Experiments

3.1 Datasets and Pre-processing
Datasets Our experiments are conducted on two
benchmarks of Java (Hu et al., 2018a) and Python
(Wan et al., 2018), and for both we follow their
training, test and development divisions.

Graph Construction For Java code, we refer to
the method provided in (Hu et al., 2018a). They
use javalang module of Python to compile Java
and fetch AST in a dictionary form. For Python
code, we generate trees by ourselves based on ast
and asttokens modules. Finally, we write a script to
resolve ASTs into multi-view adjacency matrices1,
where we let α = β = γ = 1 for all experiments2.

Out-Of-Vocabulary Code corpus in program-
ming language may have a much bigger vocab-
ulary than natural language, including vast oper-
ators and identifiers. We have to introduce vast
out-of-vocabulary (OOV) tokens (usually replaced
by 〈UNK〉) (Hu et al., 2018a) to keep it in a regular
size. To avoid OVV problem, we apply CamelCase
and snake case tokenizers (Ahmad et al., 2020) to
reduce code vocabulary and remove all extra nodes
which do not correspond to specific tokens.

3.2 Baselines
We take all three categories of state-of-the-art mod-
els as our baselines for comparison.

Transformer We refer to the enhanced Trans-
former in (Ahmad et al., 2020) which equipped
with copy attention (See et al., 2017) and relative
position encoding (RPE) (Shaw et al., 2018). For
fair enough comparison, we run their model on
our machine under the same environment with SiT.
Note that we also utilize RPE in SiT because of its
better capability in capturing long sequences, while
we do not utilize copy attention.

LSTM This group includes all relevant LSTM
models with sequential and non-sequential inputs
(Iyer et al., 2016; Eriguchi et al., 2016; Wan et al.,
2018; Hu et al., 2018a,b; Wei et al., 2019).

1https://github.com/gingasan/astruc
2We try to adjust the weights of three views, showing

little performance variant, which suggests that self-attention
network itself may balance the relative significance between
the three.

(a) Full (b) Window

(c) Random (d) Structure-induced

Figure 5: Comparison of different types of self-
attention pattern. (b) Window attention with w = 2.
(c) Random attention with r = 2.

Pre-trained Language Model We also compare
our model with CodeBERT (Feng et al., 2020), a
pre-trained language model on both natural and
programming languages. It is pre-trained over six
programming languages with MLM (Devlin et al.,
2019) and RTD (Clark et al., 2020).

3.3 Training Details

We train our model on a single nVidia Titan RTX
with batch size in {32, 64}. The learning rate is
in {3e-5, 5e-5} with warm-up rate of 0.06 and L2
weight decay of 0.01. The maximum number of
epochs is set to 150 for Transformer and 30 for
CodeBERT. For validation, we simply use greedy
search, while for evaluation, we use beam search
with beam size in {4, 5, 8} and choose the best
result3.

3.4 Main Results

Scores Table 3 shows the overall results on Java
and Python benchmarks. The Transformer baseline
is strong enough as it outperforms all the previ-
ous works by a significant margin. However, our
model is more powerful, further boosting Trans-
former with more than 1 BLEU points on Java and
Python respectively and achieves new state-of-the-
art results. Specifically, SiT achieves higher scores

3https://github.com/gingasan/sit3
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on Python, increasing by 1.59, 1.62 and 1.34 points
on BLEU, ROUGE-L and METEOR respectively.
According to dataset statistics, Python contains 5
times more unique code tokens than Java, which
makes it much more challenging. Thus the superi-
ority of SiT on Python tends to be notable. Even
so, SiT still boosts Transformer by 1.18, 0.82 and
1.15 points on BLEU, ROUGE-L and METEOR
respectively on Java.

Convergence Moreover, Figure 4 shows the
trend of BLEU scores on development set over
training steps. SiT achieves a much faster con-
vergence rate than Transformer. For instance on
Python dataset, SiT arrives the best performance of
Transformer in about 100 epochs, while the latter
one still needs 50 more to finally achieve the opti-
mal. Note that the running time of each epoch for
both models is the same. Such high convergence
rate helps showcase the necessity of Si-SAN.

Pre-training On the other hand, we can see
that CodeBERT also achieves competitive results
on both Java and Python. However, SiT is still
more powerful on most metrics, which outper-
forms CoderBERT by 2.15, 0.95 and 1.15 points
on BLEU, ROUGE-L and METEOR respectively
on Java. However, CodeBERT performs much bet-
ter on Python, which outperforms SiT by 1.00 and
0.58 points on ROUGE-L and METEOR. Note that
CodeBERT is much bigger in size than Transformer
and SiT (see Appendix A).

For further verification, we follow CodeBERT
and conduct a RoBERTa-based (Liu et al., 2019)
SiT to further fine-tune on both Java and Python.
As shown in Table 3, pre-trained SiT obtains attrac-
tive results, further improving CodeBERT on all
the metrics, which implies that our elaborate en-
coder design is still effective even under powerful
pre-training assistance.

4 Ablation Study and Analysis

This section reports our ablation studies to valid our
model on the dataset of Python-V24 (Barone and
Sennrich, 2017), in which we conduct standard and
unified pre-processing for strict fair comparison.

4.1 Si-SAN vs. SAN

To valid the effectiveness of Si-SAN, we gradually
replace SAN layers in original Transformer with

4https://github.com/EdinburghNLP/code-docstring-
corpus/tree/master/V2

Model Prop. BLEU ROUGE-L METEOR
Transformer 0 47.42 57.28 29.62
Transformer 50% 49.64 59.39 31.16
Transformer 100% 49.80 59.38 31.30
SiT 50% 50.04 59.56 31.46

Table 4: BLEU, ROUGE-L and METEOR for variant
models with incremental proportions of Si-SAN.

Model Attn. BLEU ROUGE-L METEOR
Transformer Full 47.42 57.28 29.62
Transformer Window 49.28 58.80 30.90
Transformer Random 38.06 57.28 22.76
Transformer Struc. 49.80 59.38 31.30

Table 5: BLEU, ROUGE-L and METEOR for variant
models with different attention patterns.

Si-SAN. Take Transformer model with Si-SAN
proportion of 50% as an instance, we replace the
second, fourth and last three encoder layers with Si-
SAN and do not apply structure-induced module.

The results of variant models with incremental
proportions of Si-SAN layers are shown in Table 4.
Intuitively, all of the Transformers obtain improve-
ments when equipped with Si-SAN layers. We can
also see that SiT outperforms Transformer with
similar proportion of Si-SAN, which proves the ef-
fectiveness of structure-induced module. However,
it is surprising that Transformer with all 6 layers
of Si-SAN still outperforms original Transformer
even if it may be over-pruned.

4.2 Si-SAN vs. Sparse SAN

To further valid our structure-based approach, we
compare the performance of structure-induced at-
tention with other sparse attention patterns, win-
dow attention in Longformer, ETC (Beltagy et al.,
2020; Ainslie et al., 2020) and random attention in
BigBird (Zaheer et al., 2020). We depict different
attention patterns in Figure 5. The default sequence
length in SiT is 400, and then we set both w and r
to 64 in window and random attention respectively.

As shown in Table 5, Transformer with arbitrary
sparse attention can not bring improvement as Si-

Model BLEU RE.-L MTR. SPEED
Transformer 44.87 54.95 26.58 1.0x
Transformer + SBT 43.34 53.97 25.02 1.5x
SiT-AST only 45.43 55.30 27.21 1.0x
SiT 45.76 55.58 27.58 1.0x

Table 6: Comparison of Si-SAN and SBT methods.
Both methods only leverage AST information.
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Model Para. BLEU RE.L MTR.
Transformer-8 140M 47.42 57.28 29.62
SiT-8 139M 50.04 59.56 31.46
Transformer-12 244M 50.11 59.47 31.44
SiT-12 242M 50.53 60.08 31.96
Transformer-16 370M 50.43 59.80 31.75
SiT-16 367M 50.97 60.51 32.35
Transformer-ALBERT enc. 124M 44.83 55.34 27.73
SiT-ALBERT enc. 124M 49.31 58.46 30.83

Table 7: BLEU, ROUGE-L and METEOR for variant
models with different sizes, where RE.L and MTR. re-
fer to ROUGE-L and METEOR respectively. Models
like SiT-12 refers to SiT with 12 heads.

SAN, which refutes that SiT learns better through
denoising. Specifically, random attention seriously
deteriorates Transformer. It is surprising that win-
dow attention achieves a better result than Vanilla
Transformer. Intuitively, tree structures like AST
are highly localized. That is why window atten-
tion may show good performance. Nevertheless,
Transformer with Si-SAN still outperforms window
attention by 0.52 BLEU point.

4.3 Si-SAN vs. SBT

We reproduce SBT method on Java (Hu et al.,
2018a) and apply it on our Transformer. For fair
enough comparison, we let β = γ = 0 and con-
duct single-view SiT which only leverages AST
information. As depicted in Figure 6, flattening
ASTs into linear sequences does not result in im-
provement, which is consistent with Ahmad et al.
(2020). However, we achieve substantial improve-
ment while incorporating AST into Transformer us-
ing Si-SAN, which indicates our improved model
design is indeed effective.

In addition, the average length of the input code
will be much longer with SBT, which may intro-
duce additional training cost. As shown in Figure 6,
SiT is 1.5 times faster than Transformer with SBT.

4.4 Large Model

It is known that for nearly all deep models, increas-
ing model size may cover quite much of model
structure design improvement. Thus, it is possible
that the improvement on base-size model may not
work on large-size one. To valid this, we compare
SiTs with Transformers under larger scale. As we
can see pictorially in Table 7, with increasing pa-
rameter scale, SiTs with 12 heads and 16 heads
both outperform the corresponding Transformers
by 0.42 and 0.54 BLEU point respectively.

4.5 Parameter Sharing

Recently, parameter sharing on BERT (Devlin et al.,
2019) has achieved promising results (Lan et al.,
2020). Similar as ALBERT, we introduce cross-
layer parameter sharing in both Transformer and
SiT, sharing all parameters in all encoder layers.
Note that we train our models from scratch and
keep the decoder fixed.

As shown in Table 7, SiT performs much bet-
ter on parameter sharing than Transformer does.
We believe that code summarization task highly
depends on structural information, and this is why
SiT can still achieve good results with simply one
group of encoder parameters while Transformer
encounters a serious decline. On the other hand, it
makes possible for lite model, which may balance
high efficiency and performance.

5 Related Work

RNN-based Approaches While numbers of
works (Haiduc et al., 2010; Eddy et al., 2013; Wong
et al., 2013, 2015; Zhang et al., 2020a) on code
summarization usually depended on information re-
trieval, most of the recent works tend to treat it as a
machine translation problem. Meanwhile attention
mechanism is broadly used for better performance
on capturing long-range features. Allamanis et al.
(2016) proposed a Convolution Neural Network
(CNN) with copy attention, and more commonly,
Iyer et al. (2016); Liang and Zhu (2018) proposed
to use Recurrent Neural Network (RNN) with atten-
tion mechanism to summarize code snippets into
natural language. Hu et al. (2018b) introduced
API knowledge from related tasks while Cai et al.
(2020) introduced type information to assist train-
ing, which also gained promising results. Addition-
ally, reinforce learning (Wan et al., 2018) and dual
learning (Wei et al., 2019; Ye et al., 2020) are also
shown effective to boost model performance.

Transformer-based Approaches It is known
that RNN-based models may encounter bottleneck
when modeling long code sequences. Ahmad et al.
(2020) proposed an enhanced Transformer with
copy attention and relative position encoding while
Gupta (2020); Dowdell and Zhang (2020) proposed
to use Transformer (Vaswani et al., 2017) and
Transformer-XL (Dai et al., 2019), all of which
outperformed previous RNN-based models by a
large margin.
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Structure-based Approaches Recent works on
code summarization pay more and more attention
on structural information, which usually treats the
source code in form of its Abstract Syntax Tree
(AST). Hu et al. (2018a); LeClair et al. (2019);
Uri et al. (2019) leveraged flattened ASTs as in-
puts and trained with LSTMs. Mou et al. (2016);
Bui et al. (2021a); Shido et al. (2019); Harer et al.
(2019) proposed TBCNN, TreeCaps, Tree-LSTM
and Tree-Transformer to directly encode tree-style
inputs. Differ from modeling code with sequential
models, Allamanis et al. (2018); Liu et al. (2020);
Alex et al. (2020) treated AST as graph and applied
graph neural network, while Wang et al. (2021) ap-
plied heterogeneous graph neural network to model
different types of nodes.

Pre-training Approaches Apart from training
from scratch, CodeBERT (Feng et al., 2020) is
pre-trained on vast bimodal corpora with masked
language model (Devlin et al., 2019) and replaced
token detection (Clark et al., 2020), and achieves
powerful performances on downstream tasks. Nie
et al. (2020) intensified contextualized code rep-
resentation through masked code fragment predic-
tions while Bui et al. (2021b) incorporated struc-
tural information using TBCNN. However, all of
them do not include generation-related objectives.
It is worth further exploration and practice on pre-
training approaches for out concerned tasks.

6 Conclusion

This paper presents a novel structured-induced
Transformer model on code summarization task.
By well-designed architecture, the proposed model
may effectively incorporate multi-view structure
into attention mechanism without tricky imple-
mentation. We further adopt a new module ar-
chitecture to aggregate both global self-attention
and structure-induced self-attention representa-
tions. Experiments on two challenging benchmarks
including Java and Python show that the proposed
model yields new state-of-the-art results.
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A Model Parameters

Model dh dff h l

Transformer 64 2048 8 12
SiT 64 2048 8 12
Transformer-Window 64 2048 8 12
Transformer-Random 64 2048 8 12
Transformer-Struc. 64 2048 8 12
CodeBERT 64 3072 12 12
SiT on CodeBERT 64 3072 12 12
Transformer-ALBERT enc. 64 2048 8 12
SiT-ALBERT enc. 64 2048 8 12

Table 8: Model parameters in our experiments.

B Qualitative Samples

For qualitative analysis, we give some samples of
code summarization with different models. We
can see that SiT performs most precisely, while
CodeBERT performs better than Transformer does.
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Code

private float computeOverscrollPercent () {
if ( mOverScrollOffset >= NUM ) {return mOverScrollOffset / mMaxOverScroll;}
else {return mOverScrollOffset / mMaxUnderScroll;}

}

Summary

Gold: determine the current amount of overscroll . if the value is 0 , there is no overscroll . if the value is < 0 , tabs are
overscrolling towards the top or or left . if the value is > 0 , tabs are overscrolling towards the bottom or right .
SiT: determine the current amount of overscroll . if the value is 0 , there is no overscroll . if the value is < 0 , tabs are
overscrolling towards the top or or left . if the value is > 0 , tabs are overscrolling towards the bottom or right .
Transformer: determine the current amount of overscroll . if the value is 0 , there is no overscroll . if the value is < 0 , tabs
are overscrolling towards the top or or left . if the value is > 0 , tabs are overscrolling towards the top or right .
CodeBERT: determine the current amount of overscroll . if the value is 0 , there is no overscroll . if the value is < 0 , tabs
are overscrolling towards the top or or left . if the value is > 0 , tabs are overscrolling towards the bottom or right .

Code

public String peek () {
String result = null;
if (isEmpty()) {return null;}
else {

int cachedCurrentIndex = currentIndex;
if (isEatingBlocksOfDelimiters) {trimStartingDelimiters();}
int nearestDelimeter = - NUM ;
for (int i = NUM; i <delimiters.length(); i++) {

int delimiter = source.indexOf(delimiters.charAt(i), currentIndex);
if (nearestDelimeter == - NUM || delimiter != - NUM && delimiter <nearestDelimeter) {

nearestDelimeter = delimiter;
}

}
if (nearestDelimeter == - NUM) {result = source.substring(currentIndex);}
else {result = source.substring(currentIndex, nearestDelimeter);}
currentIndex = cachedCurrentIndex;

}
return result;

}

Summary

Gold: returns null if there is nothing left .
SiT: returns null if there is nothing left .
Transformer: finds the next unique identifier .
CodeBERT: returns the index of the first delimited string removing from the current position .

Table 9: Qualitative samples of Java code summarization.

Code

def asFilesystemBytes(path, encoding=None):
if (type(path) == bytes): return path
else:

if (encoding is None):
encoding = sys.getfilesystemencoding()
return path.encode(encoding)

Summ.

Gold: return cpath as a string of lbytes suitable for use on this systems filesystem .
SiT: return cpath as a string of lunicode suitable for use on this systems filesystem .
Transformer: convert a filesystem path of a byte string .
CodeBERT: return a byte string suitable for use in cpath as a byte string .

Code

def absent(name, DomainName, region=None, key=None, keyid=None, profile=None):
ret = {’name’: DomainName, ’result’: True, ’comment’: ”, ’changes’: {}}
r = salt [’boto elasticsearch domain.exists’](DomainName, region=region, key=key, keyid=keyid, profile=profile)
if (’error’ in r):

ret[’result’] = False
ret[’comment’] = ’Failed to delete domain: {0}.’.format(r[’error’][’message’])
return ret

if (r and (not r[’exists’])):
ret[’comment’] = ’Domain {0} does not exist.’.format(DomainName)
return ret

if opts [’test’]:
ret[’comment’] = ’Domain {0} is set to be removed.’.format(DomainName)
ret[’result’] = None
return ret

r = salt [’boto elasticsearch domain.delete’](DomainName, region=region, key=key, keyid=keyid, profile=profile)
if (not r[’deleted’]):

ret[’result’] = False
ret[’comment’] = ’Failed to delete domain: {0}.’.format(r[’error’][’message’])
return ret

ret[’changes’][’old’] = {’domain’: DomainName}
ret[’changes’][’new’] = {’domain’: None}
ret[’comment’] = ’Domain {0} deleted.’.format(DomainName)
return ret

Summ.

Gold: ensure domain with passed properties is absent .
SiT: ensure domain with passed properties is absent .
Transformer: ensure the iam role exists .
CodeBERT: ensure the named domain is absent .

Table 10: Qualitative samples of Python code summarization.


