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Abstract

Transformer is the backbone of modern NLP
models. In this paper, we propose Real-
Former, a simple and generic technique to
create Residual Attention Layer Transformer
networks that significantly outperform the
canonical Transformer and its variants (BERT,
ETC, etc.) on a wide spectrum of tasks
including Masked Language Modeling,
GLUE, SQuAD, Neural Machine Translation,
WikiHop, HotpotQA, Natural Questions, and
OpenKP. We also observe empirically that
RealFormer stabilizes training and leads to
models with sparser attention. Source code
and pre-trained checkpoints for RealFormer
can be found at https://github.com/

google-research/google-research/

tree/master/realformer.

1 Introduction

Transformer (Vaswani et al., 2017) architectures
are the backbone of numerous state-of-the-art NLP
models such as BERT (Devlin et al., 2019),
GPT (Radford et al., 2019), and Meena (Adiwar-
dana et al., 2020), and have seen wide success
across both academia and industry. Typically, a
Transformer network consists of a stack of residual
layers. The original design follows a “Post-LN”
structure which adds Layer Norm (LN) as a “post-
processing” step for each sub-layer, as shown in
Figure 1 (a). It has been adopted by various state-of-
the-art models including BERT, XLNet (Yang et al.,
2019), RoBERTa (Liu et al., 2019), ALBERT (Lan
et al., 2019), Transformer-XL (Dai et al., 2019),
and ETC (Ainslie et al., 2020). Another notable
design is to reorganize the order of modules to
create a “direct”/clean path to propagate embed-
dings of tokens in the input sequence through the
whole network, as shown in Figure 1 (b).1 This

1Note that a final LN module is usually added at the very
top of the whole network.

design adds LN as a “pre-processing” step for
each sub-layer, and is often referred to as “Pre-LN”
and used by some well-known extra large models
such as GPT-2 (Radford et al., 2019) and Mega-
tron (Shoeybi et al., 2019). In some respect, Post-
LN and Pre-LN are analogous to ResNet v1 (He
et al., 2016a) and ResNet v2 (He et al., 2016b)
respectively in the Computer Vision literature. Al-
though ResNet v2 is usually preferable to v1 for
Computer Vision, it does not appear to be the case
for Pre-LN Transformer in the NLP literature. It
is likely that the particularities of self-attention
modules and Transformer architectures potentially
favor (at least slightly) different designs compared
to traditional convolutional neural networks.

In this paper, we propose a simple and generic
technique to show that it is beneficial to create a “di-
rect” path to propagate raw attention scores through
Transformer-based networks. Our technique is
called Residual Attention Layer Transformer, or
RealFormer in short. We also use RealFormer to
denote the resulting Transformer networks when-
ever no confusion may arise. Without losing gener-
ality, taking the standard Transformer encoder as
an example, each RealFormer layer takes the raw
attention scores of all attention heads from the pre-
vious layer and adds “residual scores” (computed
the same way as attention scores in regular Trans-
formers) on top, as shown in Figure 1 (c). The sum
of the two scores is then used to compute attention
probabilities via softmax.

In other words, RealFormer can be seen as
adding simple skip connections to a backbone
Transformer. Since it does not add expensive multi-
plication ops, performance is expected to be compa-
rable.2 Note that our technique can also be applied
straightforwardly for different Transformer varia-

2In certain settings, we find it helpful for RealFormer to
use running mean of attention scores instead of running sum,
though it adds some negligible amount of multiplications.

https://github.com/google-research/google-research/tree/master/realformer
https://github.com/google-research/google-research/tree/master/realformer
https://github.com/google-research/google-research/tree/master/realformer
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Figure 1: Comparison of different styles of Transformer layers: (a) The prevalent Post-LN layer used by (e.g.)
BERT; (b) Pre-LN layer used by (e.g.) GPT-2 that creates a “direct” path to propagate token embeddings; (c) Our
RealFormer layer that creates a “direct” path to propagate attention scores (by adding a simple skip edge on top
of (a)). Note that here we are showing Transformer encoder for demonstration purposes only; RealFormer can be
applied straightforwardly for different Transformer variations (e.g., when decoders are involved).

tions and even when decoders are involved.
Specifically, our main contributions include:

• We present RealFormer, a simple, generic,
and cheap technique to improve Transformer-
based networks. It adds no parameters or
hyper-parameters, and usually takes no more
than a few lines of code changes to implement.

• We show that RealFormer can be used as
a drop-in replacement of Transformer in
BERT, outperforming both Post-LN and Pre-
LN Transformers across a wide spectrum of
model sizes for pre-training. In terms of fine-
tuning, it even achieves competitive down-
stream results when pre-trained with only half
the number of epochs of the baselines.

• We further demonstrate the genericity of Real-
Former by using it as a drop-in replacement of
two recent state-of-the-art Transformer varia-
tion models: ADMIN (Liu et al., 2020) from
the Neural Machine Translation (NMT) do-
main, and ETC (Ainslie et al., 2020) that ex-
tends Transformer to handle long and struc-
tured inputs. We show that RealFormer can
improve these models significantly on various
tasks and lead to new state-of-the-art results.

• Qualitatively, we observe that attention in Re-
alFormer tends to be sparser and more cor-
related across layers compared to baselines,

which we believe may have some regulariza-
tion effects that could stabilize training and
benefit fine-tuning.

2 Related Work

Vaswani et al. (2017) proposed Transformer ini-
tially for NMT and it has profoundly changed the
NLP field ever since.

Radford et al. (2018) demonstrated that genera-
tive pre-training of a Transformer-based language
model (GPT) on a diverse corpus of unlabeled text
can give large gains to downstream NLP tasks
that suffer from scarce labeled data. Following
this thread, Devlin et al. (2019) proposed to pre-
train a bidirectional Transformer encoder (BERT)
with a novel Masked Language Modeling as the
main optimization objective. Since then, advances
on many NLP tasks have been dominated by the
self-supervised general-purpose pre-training, task-
specific fine-tuning paradigm. Following BERT,
there has been a large stream of work that explores
better self-supervision objectives (e.g., Yang et al.
(2019); Clark et al. (2020)), larger pre-training data
and better hyper-parameters (e.g., Liu et al. (2019)),
model parameter sharing (e.g., Lan et al. (2019)),
multi-task pre-training (e.g., Sun et al. (2020); Raf-
fel et al. (2020)). These efforts typically employ a
Post-LN Transformer at their core. In this paper we
adopt BERT to test different Transformer architec-
tures because it is widely used and representative
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of this body of work.

Another notable thread of work focuses on im-
proving the efficiency/scalability of Transformer.
Typically, they try to reduce the quadratic com-
plexity of the self-attention mechanism with re-
spect to sequence length via low-rank methods
(e.g., Wang et al. (2020)), fixed strided attention
patterns (e.g., Child et al. (2019)), learnable atten-
tion patterns (e.g., Kitaev et al. (2020); Roy et al.
(2020)), memory-based global & local attention
(e.g., Ainslie et al. (2020); Beltagy et al. (2020);
Zaheer et al. (2020)), and so on. These methods
are particularly useful when dealing with long doc-
uments that go beyond the capacity of standard
Transformer models. We would refer the reader
to Tay et al. (2020) for a detailed survey. Real-
Former is orthogonal to these methods as it fo-
cuses on improving various Transformer networks
with an universal technique which can apply to
these models as well. In this paper, we will use
RealFormer to improve a state-of-the-art model,
ETC (Ainslie et al., 2020), from this line of work
to demonstrate the universality of RealFormer.

Some recent work (e.g., Wang et al. (2019b);
Xiong et al. (2020); Zhang et al. (2018); Huang
et al. (2020); Zhang et al. (2019)) has studied nor-
malization and parameter initialization schemes
for Transformers, though most evaluations focus
only on NMT to the best of our knowledge. In this
strand, Liu et al. (2020) recently proposed ADMIN,
which achieved state-of-the-art results on multiple
popular NMT benchmarks. In this paper, we will
take ADMIN as an example to (1) evaluate Re-
alFormer in settings involving decoders, and (2)
show that it is possible to apply RealFormer on top
of this line of work.

3 RealFormer

3.1 Standard Transformer

There is an encoder and a decoder in Trans-
former (Vaswani et al., 2017). Since they work
in a similar way, here we only introduce the en-
coder and refer the reader to the original paper for
complete details.

There are two sub-layers inside each layer of a
Transformer encoder. The first sub-layer contains a
Multi-Head Attention module that computes output
embeddings of a set of queries (Q) by aggregating

the embeddings (V ) of a set of keys (K):

MultiHead (Q,K, V ) =

Concat (head1, ..., headh)WO,

where headi = Attention (QWQ
i ,KW

K
i , V W

V
i ).

Q and K are matrices with dimension dk and V
is a matrix with dimension dv. WQ

i , WK
i , and

W V
i are matrices that linearly project queries, keys,

and values into the “attention space” of the i-th
head. WO is a matrix that linearly transforms the
concatenation of the outputs of all heads.

The attention function is typically imple-
mented with a Scaled Dot-Product Attention mod-
ule (Vaswani et al., 2017) which computes a
weighted sum of the values:

Attention (Q′,K ′, V ′) = Softmax (
Q′K ′T√

dk
)V ′,

where matrix Q′K′T√
dk

contains the raw attention
scores for each (query, key) pair. These scores
are normalized via the Softmax function for each
query and then act as weights for the corresponding
vectors in V ′.

The second sub-layer contains a fully-connected
Feed-Forward Network (FFN) module with one
hidden layer:

FFN (x) = σ (xW1 + b1)W2 + b2,

where σ is an activation function usually imple-
mented with ReLU or GELU (e.g., Devlin et al.
(2019)). FFN is applied to each position in the se-
quence separately and identically. Finally, there are
Layer Norm (LN) modules inserted into the above
two sub-layers to stabilize training.

As shown in Figure 1, there are two canonical de-
signs of the Transformer network which only differ
in the ways they organize the modules. Post-LN is
the original architecture proposed by Vaswani et al.
(2017) which normalizes the outputs at the end
of each sub-layer. In contrast, Pre-LN normalizes
sub-layer inputs instead and creates a direct path
(without LN in the way) to propagate embeddings
of the tokens in the sequence.

3.2 Residual Attention Layer Transformer
RealFormer uses a Post-LN style Transformer3

as backbone and adds skip edges to connect
3Potentially we could also use Pre-LN, but Post-LN tends

to outperform Pre-LN, as we will show in Section 4.
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Multi-Head Attention modules in adjacent lay-
ers, as shown in Figure 1 (c). More for-
mally, it adds Prev, the pre-softmax atten-
tion scores from the previous layer with shape
(#heads, from seq len, to seq len),4 as one ad-
ditional input to the Multi-Head Attention module
in the current layer:

ResidualMultiHead (Q,K, V, Prev) =

Concat (head1, ..., headh)WO,

where headi = ResidualAttention (QWQ
i ,

KWK
i , V W

V
i , P revi) and Previ is the slice of

Prev with shape (from seq len, to seq len) cor-
responding to headi. ResidualAttention adds
“residual scores” on top of Previ and then com-
putes the weighted sum as usual:

ResidualAttention (Q′,K ′, V ′, P rev′) =

Softmax (
Q′K ′T√

dk
+ Prev′)V ′.

(1)

Finally, new attention scores Q′K′T√
dk

+ Prev′ are
passed over to the next layer.

Implementing RealFormer takes no more than
adding a few lines of code to the backbone Trans-
former. Note that the RealFormer technique can
be straightforwardly applied for Transformer varia-
tions and even when there are more than one type
of attention modules in the network. For example,
there are encoder self-attention, encoder-decoder
attention, and decoder self-attention modules for
machine translation. In such cases, RealFormer
simply adds skip edges to create multiple direct
paths, one for each type of attention module.

Discussion. Adding skip edges is equivalent to
using a softmax over the running sum of the at-
tention scores (to get attention probabilities). This
might be sub-optimal for very deep networks due
to the linear scaling nature of sum. Empirically, we
find it helpful to use running mean instead in such
cases, which can be viewed as adding a tempera-
ture (i.e., #traversed layers) to the softmax function
in Eq. 1 of each RealFormer layer.

4 Experiments

To demonstrate that RealFormer is general-purpose,
we conduct comprehensive empirical studies on
a variety of tasks including (masked) language

4Batch dimension is omitted for ease of discussion.

modeling, machine translation, and long document
modeling, based on corresponding state-of-the-art
models: BERT, ADMIN, and ETC. To evaluate its
robustness, we only do minimal (if at all) hyper-
parameter tuning for RealFormer and initialize all
parameters the same way as the backbone Trans-
formers. More aggressive hyper-parameter tuning
or better initialization might further improve Real-
Former, though we leave them for future work. De-
tails of our experiments are included in Appendix.

4.1 BERT

BERT (Devlin et al., 2019) has been the standard
way of transferring knowledge from large unla-
beled text corpora by pre-training a bidirectional
Transformer encoder. Numerous downstream NLP
tasks suffering from scarcity of supervised data
have benefited considerably by fine-tuning a pre-
trained BERT model. This drives us to adopt BERT
as the main evaluation setup for RealFormer.

Experiment setup. Our experiments are based
on the official BERT repository5. We follow the
standard pre-training setup (dataset: Wikipedia +
BookCorpus, vocab: uncased 30K, max sequence
length: 5126, dropout: 10%, learning rate: 1e-4,
learning rate schedule: warm up and then linearly
decay to 0, weight decay: 0.01, optimizer: AdamW,
objective: Masked Language Modeling + Next
Sentence Prediction, etc.) to compare three Trans-
former models: Post-LN, Pre-LN, and RealFormer.
We experiment with Transformer architectures with
a wide spectrum of sizes as detailed in Table 1. For
simplicity, all models are pre-trained 1M steps with
a mini-batch size of 512 (except that xLarge uses
256 to avoid TPU OOM). Note that we use a larger
mini-batch size than Devlin et al. (2019), i.e., dou-
bling the amount of pre-training epochs, to show
more complete behavior of different models.

We use exactly the same setup for all three
Transformer architectures except that for the Pre-
LN Transformer we follow the initialization strat-
egy suggested by Radford et al. (2019) and Child
et al. (2019).7 Note that for simplicity RealFormer
reuses all hyper-parameter setups from Post-LN
Transformer unless otherwise specified. We use
running sum of attention scores for all RealFormer

5https://github.com/google-research/
bert

6Unlike BERT which uses a reduced sequence length for
the first 90% of steps, we always use 512 for simplicity.

7We also tried BERT-style initialization in our pilot experi-
ments but without success.

https://github.com/google-research/bert
https://github.com/google-research/bert
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(a) BERT-Small (b) BERT-Base (c) BERT-Large (d) BERT-xLarge

Figure 2: Development set MLM accuracy (best viewed in color). Improvement gap of RealFormer over the best
baseline tends to increase with model size. Note that these are without hyper-parameter tuning for RealFormer. (As
we will show later, RealFormer can benefit from larger learning rates and even double the gap size over Post-LN.)

Model L H A I P
BERT-Small 4 512 8 2,048 30M
BERT-Base 12 768 12 3,072 110M
BERT-Large 24 1,024 16 4,096 340M
BERT-xLarge 36 1,536 24 6,144 1B

Table 1: Model architectures for BERT evaluation. L:
#layers, H: hidden size, A: #heads, I: intermediate size,
P: approximate #parameters.

Model Post-LN Pre-LN RealFormer
BERT-Small 61.57% 61.67% 61.70%
BERT-Base 70.20% 69.74% 70.42%
BERT-Large 73.64% 73.21% 73.94%
BERT-xLarge 73.72% 73.53% 74.76%

Table 2: Development set MLM accuracy after pre-
training 1M steps. RealFormer outperforms baselines
more as model size increases.

models except xLarge (for which we use running
mean for reasons discussed in Section 3.2).

All experiments are performed on 128 or 256
TPU v3 cores depending on model sizes (see Ap-
pendix A.1 for details).

4.1.1 Pre-training Results
To evaluate pre-trained models, we report Masked
Language Modeling (MLM) accuracy8 on a ran-
domly held-out development set. As shown in Ta-
ble 2, RealFormer outperforms the two baseline
Transformers considerably with the gap increasing
with model size. Our hypothesis is that larger mod-
els are inherently harder to train (e.g., we observe
that BERT with Post-LN is unstable and sometimes
even diverges for xLarge) and RealFormer can help
regularize the model and stabilize training.

8All methods achieved similar (and great) results on Next
Sentence Prediction presumably because it is much easier.

We also report the pre-training curves in Fig-
ure 2. One interesting finding is that the Pre-LN
Transformer seems to favor the combination of
extra large models and a small number of steps,
though it is consistently outperformed by the other
two in “regular-sized” settings or given enough
pre-training budget.

4.1.2 Downstream Results
To evaluate downstream performance, we fine-tune
the above pre-trained BERT-Large models on both
sentence-level (i.e., GLUE) and token-level (i.e.,
SQuAD) NLP tasks.

GLUE. General Language Understanding Evalu-
ation (GLUE) is a canonical benchmark proposed
by Wang et al. (2019a) for evaluating models across
a diverse set of NLU tasks. Following the fine-
tuning recipe in Devlin et al. (2019), we use a mini-
batch size of 32 for all models on all tasks. For each
(task, model) pair, we select number of fine-tuning
epochs in {2, 3, 4} and learning rate in {6e-6, 8e-
6, 1e-5, 2e-5, 3e-5, 4e-5, 5e-5}.9 For each setup,
we run the experiment five times and report the
best median performance and the corresponding
standard deviation on the development set.

Results are tabulated in Table 3. We exclude
the problematic WNLI task following Devlin et al.
(2019). For each task, we report metric(s) sug-
gested by Wang et al. (2019a). RealFormer
achieves the best overall performance and outper-
forms both baselines on most tasks, testifying its
strength at tackling sentence-level tasks.

SQuAD. The Stanford Question Answering
Dataset (SQuAD v1.1) is a reading comprehension
dataset consisting of 100K crowd-sourced question-
answer pairs, where the answer to each question is

9We use a slightly wider range than Devlin et al. (2019) to
better accommodate all three models.
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Task Post-LN Pre-LN RealFormer
MNLI-m 85.96±0.11 85.03±0.12 86.28±0.14

MNLI-nm 85.98±0.14 85.05±0.19 86.34±0.30

QQP 91.29±0.10 91.29±0.16 91.34±0.03

QQP (F1) 88.34±0.15 88.33±0.26 88.28±0.08

QNLI 92.26±0.15 92.35±0.26 91.89±0.17

SST-2 92.89±0.17 93.81±0.13 94.04±0.24

CoLA (MC) 58.85±1.31 58.04±1.50 59.83±1.06

STS-B (PC) 90.08±0.27 90.06±0.33 90.11±0.56

STS-B (SC) 89.77±0.26 89.62±0.28 89.88±0.54

MRPC 87.50±0.67 86.76±5.64 87.01±0.91

MRPC (F1) 91.16±0.45 90.69±3.16 90.91±0.65

RTE 71.12±2.52 68.59±1.52 73.65±0.90

Overall 84.01 83.47 84.53

Table 3: GLUE development set results of fine-tuning
BERT-Large models in Table 2. Default metric: ac-
curacy, MC: Matthews correlation, PC: Pearson corre-
lation, SC: Spearman correlation. Overall: first aver-
age metrics within each task (if there are 1+) and then
across tasks. Numbers in smaller font are standard de-
viations. All numbers are scaled by 100.

SQuAD Public Post-LN Pre-LN RealFormer
v1.1 (F1) 90.9 91.68±0.12 91.06±0.09 91.93±0.12

v1.1 (EM) 84.1 85.15±0.13 83.98±0.24 85.58±0.15

v2.0 (F1) 81.9 82.51±0.12 80.30±0.12 82.93±0.05

v2.0 (EM) 78.7 79.57±0.12 77.35±0.16 79.95±0.08

Table 4: SQuAD development set results of fine-tuning
BERT-Large models in Table 2. EM: exact match. Pub-
lic: Post-LN results from Devlin et al. (2019). Numbers
in smaller font are standard deviations. All numbers are
scaled by 100.

a segment of text from the corresponding reading
passage (Rajpurkar et al., 2016). SQuAD v2.0, a
later version, further extends with over 50K unan-
swerable questions written adversarially by crowd-
workers to look similar to answerable ones.

We follow the fine-tuning recipe in Devlin et al.
(2019) for all three Transformer models on these
two datasets without using any additional data such
as TriviaQA (Joshi et al., 2017). For both v1.1 and
v2.0, we select mini-batch size in {32, 48}, number
of fine-tuning epochs in {2, 3, 4}, and learning
rate in {2e-5, 3e-5, 4e-5, 5e-5}. For each setup,
we run the experiment five times and report the
best median performance and the corresponding
standard deviation on the development set. As we
can see from Table 4, RealFormer outperforms the
two baselines considerably, attesting its strength at
tackling token-level tasks.

Task Post-LN
(500K)

Post-LN
(1M)

RealFormer
(500K)

GLUE 83.84 84.01 84.34
v1.1 (F1) 91.46±0.18 91.68±0.12 91.56±0.09

v1.1 (EM) 84.87±0.24 85.15±0.13 85.06±0.12

v2.0 (F1) 81.44±0.50 82.51±0.12 82.52±0.55

v2.0 (EM) 78.64±0.48 79.57±0.12 79.54±0.54

Overall 83.97 84.37 84.51

Table 5: Downstream development set results of fine-
tuning BERT-Large with Post-LN and RealFormer pre-
trained with different number of steps. v*: SQuAD ver-
sion, EM: exact match. Overall: First average across
SQuAD and then GLUE. Numbers in smaller font are
standard deviations. All numbers are scaled by 100.

4.1.3 Research Questions

How well does RealFormer perform with half
the pre-training budget? Although RealFormer
has outperformed both Post-LN and Pre-LN con-
siderably when pre-training 1M steps, we are also
interested in investigating its potential when the
pre-training budget is more limited. For this pur-
pose, we experiment with BERT-Large models. In
particular, we take the 500K step checkpoint of the
pre-trained RealFormer in Table 2 and fine-tune
it on GLUE and SQuAD datasets using exactly
the same procedure as described above. Compari-
son results against the strongest baseline, Post-LN
Transformer pre-trained 500K (checkpoint) and 1M
steps respectively, are collected in Table 5. We can
see that RealFormer with merely half the amount
of pre-training epochs can beat Post-LN (1M) on
GLUE with a significant margin, and almost match
its performance on SQuAD.

Does a larger learning rate help? As suggested
by some recent work (e.g., Xiong et al. (2020)),
Pre-LN Transformer may benefit from using larger
learning rates. To this end, we follow the pre-
training procedure detailed earlier and switch to a
larger learning rate, 2e-4, to pre-train BERT-Large
with the three Transformer models. Development
set MLM accuracy with training steps can be found
in Figure 3. We find that both Pre-LN and Re-
alFormer can reap some benefits of using larger
learning rates with RealFormer seeming to bene-
fit slightly more in this case (73.94%→ 74.31%)
compared to Pre-LN (73.21% → 73.46%). Post-
LN diverges with the learning rate of 2e-4. Note
that it also means that RealFormer can outperform
Post-LN, the strongest baseline, actually with a
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Figure 3: Development set MLM accuracy of BERT-
Large with different learning rates (best viewed in
color). RealFormer seems to benefit slightly more from
using a larger, non-default learning rate compared to
Pre-LN, while Post-LN diverges with 2e-4.

prominent gap, 0.67% (i.e., 74.31% - 73.64%), for
pre-training, though with only minimal learning
rate tuning.

Is attention sparser in RealFormer? We con-
duct one empirical study to observe the qualitative
differences between RealFormer and Post-/Pre-LN
Transformers. We randomly sample 8,192 exam-
ples from the held-out development set and visual-
ize the distribution of attention probabilities of each
token in these examples across heads in all layers.
In particular, for each (token, layer, head) triplet,
we compute the entropy of the attention probabil-
ities as the “sparsity measure” of attention. Intu-
itively, as entropy gets lower, the attention weight
distribution becomes more skewed and therefore
attention is sparser.

In a similar fashion to Ramsauer et al. (2020), we
use violin plots to show the entropy distributions of
the pre-trained BERT-Base model with RealFormer
from Table 2 (see Figure 4). Plots for the two
baseline Transformers in Table 2 are included in
Appendix A.4. Each row is a layer in BERT-Base
and each column is an attention head.

We find that attention tends to get sparser for
later (upper) layers for all three Transformers.
However, RealFormer differs from the two base-
lines in the following ways:

• RealFormer has significantly sparser attention
for top layers (layer 9-11);

• RealFormer tends to have lower variance
across all layers, which means that attention
density is less input-dependent.

We hypothesize that the above two properties might
be a sign of stableness and benefit fine-tuning.

Dropout Post-LN Pre-LN RealFormer
0%10 71.16% 69.80% 71.30%
10% 73.64% 73.21% 73.94%
20% 73.21% 72.97% 73.66%

Table 6: Development set MLM accuracy of BERT-
Large with different dropout rates.

Do attention heads in layer L resemble those in
layer L − 1? Since RealFormer uses a residual
attention scheme, it is interesting to show to what
extent an attention head is “relying on” the cor-
responding head in the previous layer. To this
end, we take each of the three pre-trained BERT-
Base models in Table 2 and compute the Jensen-
Shannon Divergence (JSD) between attention prob-
abilities in each pair of vertically adjacent heads,
i.e., JSD (headLi , headL−1i ), for 1 ≤ L < 12 and
0 ≤ i < 12.

Appendix A.5 demonstrates detailed JSD distri-
butions of Post-LN and RealFormer respectively
based on 8,192 held-out examples. We observe
that RealFormer tends to have significantly lower
JSD values (i.e., indicating more “similar” attention
across layers), especially for heads in middle layers.
This might mean that RealFormer has some regular-
ization advantages and provides one hypothesis for
why it tends to outperform Post-LN more for larger
models. Note that headLi can still be useful even if
it has exactly the same attention probabilities with
headL−1i because of the existence of the FFN sub-
layer and the potential differences in value matrices
(i.e., V ′ in Eq. 1).

Is residual attention really necessary? One
may wonder whether increasing dropout rate can al-
ready regularize large models well so that residual
attention is redundant. To this end, we experiment
with different dropout rates for pre-training BERT-
Large with different Transformers (following the
procedures in Section 4.1.1). Results are collected
in Table 6, from which we can see that (1) Real-
Former outperforms the two baselines across all
dropout settings, and (2) simply increasing dropout
rate can not regularize Transformer models as well
as what residual attention appears to be doing.

4.2 ADMIN

To evaluate the genericity of RealFormer, here we
try it on top of ADMIN (Liu et al., 2020), a state-of-

10When dropout rate is 0%, we use early stopping for all
models due to overfitting.
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Figure 4: Distribution of entropies of the attention probabilities of the tokens of 8,192 held-out examples using the
pre-trained BERT-Base with RealFormer (see Section 4.1.1). For better legibility, (1) attention heads in each layer
are ordered by their medians of entropies, and (2) distributions are color-coded based on the median of entropies:
RED (median > 4.5), YELLOW (1.5 ≤ median ≤ 4.5), BLUE (median < 1.5), i.e., colder colors mean sparser
attention. There is a clear trend that higher layers tend to have sparser attention.

the-art NMT model without using either additional
data or data augmentation. ADMIN adopts Post-
LN as the backbone, which we simply replace with
RealFormer. In particular, we add three types of
skip edges for encoder-encoder, encoder-decoder,
and decoder-decoder attention respectively to the
Post-LN Transformer. Empirically, RealFormer
with running mean of attention scores tends to out-
perform running sum for our experiments, therefore
here we use the former exclusively for brevity.

We use two popular NMT benchmarks,
WMT’14 En-De and WMT’14 En-Fr, and follow
Liu et al. (2020) for all training setups on both
benchmarks except that in all cases (1) we select
the peak learning rate from {5e-4, 1e-3, 1.2e-3}
and use a linear learning rate decay schedule (in-
stead of inverse sqrt);11 (2) we train RealFormer
only 50 epochs (in contrast, ADMIN trains 100
epochs on En-De and 50 epochs on En-Fr); and (3)
we average across the last 25 checkpoints (while
ADMIN uses the last 10). More checkpoints are
helpful for us (especially for large models) presum-

11With inverse sqrt decay, we find that RealFormer tends
to favor larger peak learning rates than what Liu et al. (2020)
uses, and we have also seen improvements in most cases.

ably because the last few are not “diverse” enough
as learning rate decays to 0.

Our experiments are performed on NVIDIA
A100 GPUs, based on the official ADMIN reposi-
tory12. We follow Liu et al. (2020) to configure the
amount of GPUs to use for different setups.

BLEU scores on test sets are collected in Table 7.
For fair comparisons, we also run ADMIN using
our above setups and report results in the same
table. Following Liu et al. (2020), all networks
(including both encoders and decoders) share the
same width setup (hidden size 512, intermediate
size 2048, 8 heads) and only vary in depth. Real-
Former outperforms all baselines across all depths
considerably with a new state-of-the-art BLEU
score (43.97) on En-Fr for models not using addi-
tional data or data augmentation to the best of our
knowledge. One interesting observation here is that
RealFormer does not always lead to larger improve-
ment gaps for larger models, which might be due
to the checkpoint averaging mechanism (which po-
tentially regularizes large models reasonably well).

12https://github.com/LiyuanLucasLiu/
Transformer-Clinic

https://github.com/LiyuanLucasLiu/Transformer-Clinic
https://github.com/LiyuanLucasLiu/Transformer-Clinic
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Model En-De En-Fr
6L-6L 12L-12L 18L-18L 6L-6L 60L-12L

Post-LN 27.80 failed failed 41.29 failed
Pre-LN 27.27 28.26 28.38 40.74 43.10
ADMIN 27.90 28.58 29.03 41.47 43.80
ADMIN† 28.06 28.85 29.11 41.65 43.72
Ours 28.17 29.06 29.35 41.92 43.97

Table 7: Test set BLEU scores on two WMT’14 bench-
marks using different sizes of models. xL-yL: #En-
coder layers-#Decoder layers. First three rows are
from Liu et al. (2020). Ours is switching the backbone
of ADMIN from Post-LN to RealFormer. †Our run of
ADMIN using the same setups as RealFormer.

4.3 ETC

Extended Transformer Construction (ETC) is
a recent sparse attention mechanism proposed
by Ainslie et al. (2020) and Zaheer et al. (2020)
to handle long context. It has achieved state-of-
the-art results on four natural language bench-
marks requiring long and/or structured inputs. Here
we evaluate RealFormer on top of ETC models
on these benchmarks including WikiHop (Welbl
et al., 2018), HotpotQA (Yang et al., 2018), Nat-
ural Questions (Kwiatkowski et al., 2019), and
OpenKP (Xiong et al., 2019). They vary signif-
icantly in terms of dataset size, context length, and
structure in text inputs. Please refer to Ainslie et al.
(2020) for more details.

Our experiments are based on the official ETC
repository13. We take the ETC-Large model (24
layers, 1024 hidden size, 16 heads), add residual at-
tention edges (i.e., using running sum), and follow
all the pre-training and fine-tuning recipes as well
as hardware setups detailed in Ainslie et al. (2020).
For each fine-tuning setup, we run the experiment
five times and report the best median performance
and the corresponding standard deviation on the de-
velopment set in Table 8. RealFormer can improve
ETC consistently across all four benchmarks.

As of June 2021, we are ranked the first on
the WikiHop leaderboard14 with a test accuracy
of 84.4% (2.1% absolute improvement over the
previous best result).

13https://github.com/google-research/
google-research/tree/master/etcmodel

14http://qangaroo.cs.ucl.ac.uk/
leaderboard.html

Task Metric ETC Ours
WikiHop Accuracy 78.92±0.14 79.21±0.38

HotpotQA
Ans. F1 80.38±0.13 80.86±0.16

Sup. F1 89.07±0.06 89.21±0.12

Joint F1 73.12±0.19 73.57±0.19

Natural
Questions

Long Ans. F1 77.70±0.15 77.93±0.31

Short Ans. F1 58.54±0.41 59.10±0.81

Average F1 68.07±0.17 68.51±0.56

OpenKP F1@3 44.06±0.08 44.27±0.08

Table 8: Development set results of ETC-Large. Ours
is adding residual attention edges to ETC. Numbers in
smaller font are standard deviations. All numbers are
scaled by 100.

5 Conclusions

We propose RealFormer, a simple, generic, and
cheap technique based on the novel idea of residual
attention to improve Transformer-based networks.
Quantitatively, we show that RealFormer can im-
prove a diverse set of state-of-the-art Transformer-
based models considerably for tasks like Masked
Language Modeling, Neural Machine Translation,
and long document modeling. Qualitatively, we
show that RealFormer tends to have comparatively
sparser attention, both within heads and across
heads in adjacent layers.
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Model Post-LN Pre-LN RealFormer
BERT-Small 5.4 hrs 5.3 hrs 5.9 hrs
BERT-Base 20 hrs 20 hrs 23 hrs
BERT-Large 58 hrs 58 hrs 66 hrs
BERT-xLarge 136 hrs 137 hrs 137 hrs

Table 9: Pre-training time of different BERT models
in Table 2. We use 128 TPU v3 cores and mini-batch
size 512 for BERT-Small/Base/Large, and 256 TPU v3
cores and mini-batch size 256 for BERT-xLarge.

A Appendices

A.1 Training Details: BERT
All our experiments are conducted on TPUs based
on https://github.com/google-research/

bert, the official BERT repository in Tensor-
Flow (Abadi et al., 2016).

Pre-training. We use 128 TPU v3 cores (i.e., 64
chips) for BERT-Small/Base/Large and 256 TPU
v3 cores (i.e., 128 chips) for BERT-xLarge. Ta-
ble 9 demonstrates the time used to pre-train each
model 1M steps. We can see that there is 10%-15%
performance drop when adding residual attention
edges for all sizes except xLarge. Our suspicion
is that additions are not as optimized as other ops
like matrix multiplications on TPU v3 cores. There
is a much smaller performance drop for xLarge
though, which might indicate that addition scales
nicely compared to other ops on TPU v3 cores. As
we will show later in Appendix A.2, performance
drop on GPUs is almost negligible across different
Transformer sizes, suggesting that it is hardware-
dependent.

Fine-tuning. We use 8 TPU v2 cores (i.e., 4
chips) to fine-tune each model. Best hyper-
parameter configurations for BERT-Large with Re-
alFormer on GLUE and SQuAD are collected in
Table 10. We include RealFormer pre-trained both
1M and 500K steps, corresponding to the results in
Table 3, 4, and 5.

A.2 Training Details: ADMIN
All our NMT experiments are conducted on
NVIDIA A100 GPUs based on https://github.

com/LiyuanLucasLiu/Transformer-Clinic, the
official ADMIN repository implemented via
fairseq (Ott et al., 2019). We use the same scripts
to collect and process data and evaluate all models.

Following Liu et al. (2020), we use different
number of GPUs for different setups, as detailed in

Task 500K-step 1M-step
BS LR EP BS LR EP

MNLI 32 2e-5 2 32 1e-5 4
QQP 32 3e-5 4 32 2e-5 4
QNLI 32 3e-5 4 32 2e-5 2
SST-2 32 3e-5 2 32 1e-5 4
CoLA 32 2e-5 4 32 1e-5 3
STS-B 32 2e-5 3 32 2e-5 4
MRPC 32 2e-5 4 32 1e-5 4
RTE 32 1e-5 4 32 1e-5 4
SQuAD v1.1 48 3e-5 2 48 3e-5 2
SQuAD v2.0 32 5e-5 2 48 5e-5 2

Table 10: Hyper-parameter configurations on GLUE
and SQuAD for best-performing BERT-Large with Re-
alFormer (pre-trained 500K steps and 1M steps respec-
tively). BS: mini-batch size, LR: learning rate, EP:
#fine-tuning epochs.

Model En-De En-Fr
6L-6L 12L-12L 18L-18L 6L-6L 60L-12L

ADMIN 9.3 hrs 16 hrs 23 hrs 28 hrs 70 hrs
Ours 9.4 hrs 16 hrs 23 hrs 28 hrs 72 hrs
#GPUs 4 4 4 8 16

Table 11: Number of GPUs and training time used
for each model. Ours is switching the backbone of
ADMIN from Post-LN to RealFormer (using running
mean of attention scores).

Table 11. For our runs of ADMIN and RealFormer
(i.e., the last two rows in Table 7), learning rate
is set to 5e-4 on WMT’14 En-De and 1.2e-3 on
WMT’14 En-Fr across different model sizes. We
train all models 50 epochs across the two bench-
marks and average across the last 25 checkpoints
(corresponding to the last 25 epochs).

Training time comparison of ADMIN and our
model using the same setups is shown in Table 11.
Adding residual attention edges and using running
mean of attention scores do not incur significant
performance drop on GPUs across different model
sizes.

A.3 Training Details: ETC

All our experiments are conducted on TPU v3 cores
based on the official ETC repository in Tensor-
Flow: https://github.com/google-research/

google-research/tree/master/etcmodel.

Pre-training. As is the case with ETC-Large
(Ainslie et al., 2020), we find that pre-training
ETC-Large with RealFormer can also benefit sig-

https://github.com/google-research/bert
https://github.com/google-research/bert
https://github.com/LiyuanLucasLiu/Transformer-Clinic
https://github.com/LiyuanLucasLiu/Transformer-Clinic
https://github.com/google-research/google-research/tree/master/etcmodel
https://github.com/google-research/google-research/tree/master/etcmodel
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Task Instance Statistics Hyper-parameter
#Training Median Length 95%tile Length Max Length BS LR EP

WikiHop 43,738 1,541 3,994 20,337 32 4e-5 15
HotpotQA 90,447 1,227 1,810 3,560 32 4e-5 5
Natural Questions 307,373 4,004 17,137 156,551 64 3e-5 2
OpenKP 133,724 761 4,546 89,183 64 3e-5 2

Table 12: Statistics of benchmarks and the hyper-parameter configurations for best-performing ETC-Large with
RealFormer. BS: mini-batch size, LR: learning rate, EP: #fine-tuning epochs.

nificantly from lifting weights from RoBERTa (Liu
et al., 2019). Note however that we lift from the
same RoBERTa checkpoint as our ETC-Large base-
line, which could be disadvantageous to our model
since RoBERTa is pre-trained without residual at-
tention.

Fine-tuning. Statistics of the four benchmarks
and the corresponding best hyper-parameter con-
figurations for ETC-Large with RealFormer are
collected in Table 12. On Natural Questions and
OpenKP, we simply reuse the best configurations
for our ETC-Large baselines as reported in Ainslie
et al. (2020). On WikiHop and HotpotQA, we
follow the hyper-parameters search space speci-
fied in Ainslie et al. (2020) for ETC-Large.15 In
addition, on WikiHop we found it to be slightly bet-
ter (development set accuracy 79.21 vs 78.96) to
turn off RealFormer during fine-tuning (i.e., adding
no residual attention but still loading from our
pre-trained RealFormer checkpoint); therefore we
adopted this setup for WikiHop in Table 8 and our
leaderboard submission.

A.4 Entropy Distribution of Pre-trained
Baseline Transformer Models

Violin plots demonstrating the entropy distributions
of the pre-trained BERT-Base models with Post-
LN and Pre-LN Transformers from Table 2 are
included in Figure 5.

A.5 Jensen-Shannon Divergence of Different
Pre-trained Transformers

We use violin plots to show the Jensen-Shannon
Divergence distributions of the pre-trained BERT-
Base models with Post-LN and RealFormer from
Table 2 respectively (see Figure 6). Each row is a
pair of adjacent layers in BERT-Base and each col-
umn is an attention head. Instead of computing one

15On WikiHop, number of fine-tuning epochs is selected
from {5, 10, 15} instead of {5, 10} for both ETC-Large and
our model. We added 15 here following the official ETC
repository.

scalar value for each head pair, we show the full
distribution based on the tokens in 8,192 held-out
examples, i.e., each data point is the JSD between
the attention probabilities of a token at these two
heads. For better legibility, we color code these
plots to help distinguish head pairs with relatively
“similar” attention (BLUE: median < 0.25) and rel-
atively “distinct” attention (RED: median > 0.75)
from the rest (YELLOW: 0.25 ≤ median ≤ 0.75).

Note that JSD results from Post-LN are used
only as a reference; we expect them to be “ran-
dom” because there is no correspondence between
heads in adjacent layers for Post-/Pre-LN. Proof:
An equivalent Post-/Pre-LN can be constructed by
permuting the order of attention heads in a layer
(and the corresponding variables).
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(a) Post-LN

(b) Pre-LN

Figure 5: Distribution of entropies of the attention probabilities of the tokens of 8,192 held-out examples using
the pre-trained BERT-Base with Post-LN and Pre-LN Transformer respectively (see Section 4.1.1). For better
legibility, (1) attention heads in each layer are ordered by their medians of entropies, and (2) distributions are
color-coded based on the median of entropies: RED (median > 4.5), YELLOW (1.5 ≤ median ≤ 4.5), BLUE
(median < 1.5), i.e., colder colors mean sparser attention. Note that here top layers (layer 9-11) tend to have larger
entropies compared to RealFormer, which means that attention is relatively denser.
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(a) RealFormer

(b) Post-LN

Figure 6: Distribution of Jensen-Shannon Divergence (JSD) of attention probabilities in (vertically) adjacent atten-
tion heads, i.e., JSD(headL

i , headL−1
i ). Based on 8,192 held-out examples using the pre-trained BERT-Base with

RealFormer and Post-LN Transformer respectively (see Section 4.1.1). Distributions are color-coded based on
the median of JSDs: RED (median > 0.75), YELLOW (0.25 ≤ median ≤ 0.75), BLUE (median < 0.25). I.e.,
colder color means more “similar” attention heads across adjacent layers.


