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Abstract

BERT has been used for solving common-
sense tasks such as CommonsenseQA. While
prior research has found that BERT does con-
tain commonsense information to some extent,
there has been work showing that pre-trained
models can rely on spurious associations (e.g.,
data bias) rather than key cues in solving sen-
timent classification and other problems. We
quantitatively investigate the presence of struc-
tural commonsense cues in BERT when solv-
ing commonsense tasks, and the importance of
such cues for the model prediction. Using two
different measures, we find that BERT does
use relevant knowledge for solving the task,
and the presence of commonsense knowledge
is positively correlated to the model accuracy.

1 Introduction

Pre-trained language models (Peters et al., 2018;
Radford et al., 2019; Devlin et al., 2019; Liu et al.,
2019b) give competitive results on a variety of NLP
tasks (Zhou and Zhao, 2019; Joshi et al., 2019; Liu
and Lapata, 2019; Cui et al., 2020). It has been
shown that they can effectively capture syntactic
features (Goldberg, 2019), semantic information
(Liu et al., 2019a) and factual knowledge (Petroni
et al., 2019), which provides support for the success
in downstream tasks.

Recently, there has been some debate about
whether commonsense knowledge can be learned
by a language model trained on large corpora.
While Davison et al. (2019), Bosselut et al. (2019)
and Rajani et al. (2019) argue that pre-trained lan-
guage models can directly identify commonsense
facts, Lin et al. (2019) and Klein and Nabi (2019)
believe that structured commonsense knowledge is
not captured well.

Pre-trained language models have achieved em-
pirical success when fine-tuned on specific com-
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Figure 1: Two methods used to study struc-
tured commonsense knowledge in pre-trained
Transformer. Commonsense link is drawn from
the Target Concept (Answer Concept) to the
Source Concept (Question Concept).

monsense tasks such as COSMOS QA (Huang et al.,
2019), SWAG (Zellers et al., 2018), and Common-
senseQA (Talmor et al., 2019). One possible reason
of the high performance is that there exist super-
ficial cues or spurious associations in the dataset,
which enables models to answer questions with-
out understanding the task (Niven and Kao, 2019;
Yu et al., 2020; Kaushik et al., 2020). For exam-
ple, a model can choose the spurious cue word
“meadow” as a feature for positive reviews sim-
ply because “meadow” occurs frequently in posi-
tive documents. It remains an interesting research
question whether commonsense knowledge plays
a central role among statistical cues that BERT
has when solving commonsense tasks. In other
words, we are interested in investigating whether
BERT solves commonsense tasks using common-
sense knowledge.

We try to provide quantitative answers by mainly
using the CommonsenseQA dataset, which asks
a model to solve a multiple-choice problem. As
shown in Figure 1, given a question and five candi-
date answers, a model should select one candidate
answer as the output. The current state-of-the-art
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pre-trained language models solve the problem by
representing the question jointly with each candi-
date answer (we call such a question-answer pair
a sentence thereafter), and using pre-trained lan-
guage models as the main encoder. Scoring of each
sentence is based on a sentence-level hidden vector,
and the candidate answer that corresponds to the
highest-scored sentence is taken as the output.

We investigate the presence of commonsense
cues in the BERT representation of a sentence
by examining commonsense links from the an-
swer concepts to its related contextualized ques-
tion concepts. Figure 2 shows one example, where
the question concept is “bird”, and the correct an-
swer is the answer concept connected through an
ATLOCATION link in the CONCEPTNET knowl-
edge graph. Such related concepts are not explicitly
used in a BERT model for making prediction, and
therefore its strength in the BERT representation is
not necessarily optimized in task fine-tuning. We
call such cues structured commonsense, which is
a source of knowledge that we can explicitly mea-
sure. We take two methods for measuring struc-
tured commonsense in BERT, including directly
measuring the attention weights (Clark et al., 2019)
and measuring attribution scores by considering
gradients (Mudrakarta et al., 2018).

We conduct two sets of experiments to quanti-
tatively measure commonsense links in different
situation. In the first set, we examine the pres-
ence of commonsense links directly in the BERT
representation both before and after fine-tuning
(Section 5). In the second set of experiments, we
investigate the correlation between commonsense
links with model predictions (Section 6). While the
former can serve as a probing task for understand-
ing commonsense learned by pre-training, the latter
can serve as a means for understanding whether a
model learns to make better use of commonsense
knowledge through supervised fine-tuning.

Results suggest that BERT does have common-
sense knowledge from pre-training, just as syn-
tactic and word sense information. In addition,
through fine-tuning, BERT relies more on com-
monsense cues in making prediction. The evidence
is quantitatively demonstrated by stronger com-
monsense links in the representation, and a salient
correlation between model predictions and com-
monsense link strengths, despite the fact that nei-
ther the answer concept nor the related question
concept in a commonsense link is directly con-

Where    does    a    wild   bird usually    live    ?

cage windowsill countryside        sky         desert√× × × ×

Figure 2: From CONCEPTNET to CommonsenseQA.

nected to the output layer. Interestingly, results also
indicate that the stronger the structured common-
sense knowledge is, the more accurate the model
is. In addition to CommonsenseQA dataset, we
observe similar phenomenon on Wikipedia and
OMCS, demonstrating the generalization of our
findings. To our knowledge, we are the first to in-
vestigate key statistical cues when BERT solves
the CommonsenseQA task, providing several ev-
idences that commonsense knowledge is indeed
made use of. We release our code at https:
//github.com/Nealcly/commonsense.

2 Related Work

There has been much recent work exploiting the un-
derlying knowledge embedded in BERT representa-
tions. Peters et al. (2018) find that lower layers and
higher layers in ELMo contain more syntactic and
semantic information, respectively. Tenney et al.
(2019), Liu et al. (2019a) and Jawahar et al. (2019)
use probing models on hidden states to analyze
linguistic information within pre-trained language
models. Goldberg (2019) assess BERT’s syntactic
abilities by masking the verb, and comparing the
prediction probability of the original verb with in-
correct verbs. Our method is similar to Clark et al.
(2019) and Htut et al. (2019), who focus on atten-
tion heads. The difference lies in that our primary
goal is to investigate what information is learned
and made use of when solving commonsense tasks.
Therefore, our investigation is task-centered.

There has also been work investigating data
bias and spurious associations. Gururangan et al.
(2018) and Poliak et al. (2018) show that classifiers
achieve accuracies around 69% on SNLI (Bowman
et al., 2015) by using partial input. Kaushik et al.
(2020) demonstrate BERT solve sentiment analysis
and NLI by heavily relying on spurious associa-
tions. Our work is in line in investigating statistical
cues. Different from the above investigations, we
use probing methods to verify the presence and im-
portance of the key feature, namely commonsense
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knowledge, in solving commonsense QA, rather
than focusing on adversarial cases.

Commonsense reasoning is a challenging task in
natural language processing. Traditional methods
rely heavily on hand-crafted features (Rahman and
Ng, 2012; Bailey et al., 2015) and external knowl-
edge bases (Schüller, 2014). With recent advances
in deep learning, pre-trained language models have
been used as a powerful method for such tasks.
Trinh and Le (2018) use a pre-trained language
model to score candidate sentences for the Pronoun
Disambiguation and Winograd Schema Challenge
(Levesque et al., 2012). Klein and Nabi (2020)
use a sentence-level loss to enhance commonsense
knowledge in BERT. Mao et al. (2019) demon-
strate that pre-trained language models fine-tuned
on SWAG (Zellers et al., 2018) are able to pro-
vide commonsense grounding for story generation.
For commonsense question answering, pre-trained
language models with fine-tuning give the state-of-
the-art performance (Zellers et al., 2018; Huang
et al., 2019; Talmor et al., 2019). Though the above
work show usefulness of BERT on comonsense
tasks, little work has been done investigating the
mechansim for BERT solving the tasks. Our work
thus complements existing research in this aspect.

There is also a line of work leveraging CON-
CEPTNET to enhance model’s commonsense rea-
soning ability. Lin et al. (2019) inject path infor-
mation from question concepts to answer concepts
to a model. Ye et al. (2019) use CONCEPTNET to
construct pre-training dataset for BERT. Lv et al.
(2019) extract evidence from CONCEPTNET and
Wikipedia to build a relational graph for Common-
senseQA. We use CONCEPTNET for measuring
commonsense knowledge in BERT.

3 Task and Model

We review the main experimental dataset Common-
senseQA (Section 3.1), before showing the struc-
ture of a state-of-the-art model (Section 3.2).

3.1 Dataset

CommonsenseQA (Talmor et al., 2019) is a
multiple-choice question answering dataset con-
structed based on the knowledge graph CONCEPT-
NET (Speer et al., 2017), which is composed of a
large set of triples taking the form 〈source concept,
relation, target concept〉, such as 〈BIRD, ATLOCA-
TION, COUNTRYSIDES〉. Given a source concept
BIRD and the relation type ATLOCATION, there are

three related target concepts CAGE, WINDOWSILL

and COUNTRYSIDE in CONCEPTNET.
As shown in Figure 2, in the development of the

CommonsenseQA dataset, crowd-workers are re-
quested to generate question and candidate answers
based on the source concept and three related target
concepts in CONCEPTNET, respectively. Follow-
ing Talmor et al. (2019), we call the source concept
in the question as question concept, and the target
concept in the answer as answer concept. Each
question corresponds to only one correct answer
concept among the three related CONCEPTNET

target concepts. In addition, two more incorrect
answer concepts are added, which do not correlate
with the question concept in CONCEPTNET, result-
ing in 5 candidate answers for each question. We
define commonsene link as the link from the answer
concept to the question concept.

The CommonsenseQA dataset is designed to
avoid salient bias in surface patterns. First, the
lexical overlap between the correct answer and the
question is similar to that between the question
and incorrect candidates. Second, commonsense
links are not superficial patterns that can be learned
from training data. In particular, the percentage of
answer-question-concept pairs in test examples that
also exist in the gold training examples is 15.78%,
which suggests that the main source of strong com-
monsense links, if observed, comes mainly from
the pre-trained BERT model itself.

In order to analyze implicit structured common-
sense knowledge, which is based on the link from
the answer concept to the question concept, we
filter out questions which do not contain explicit
mentions to the question concept in its CONCEPT-
NET form (e.g. paraphrase). The resulting dataset
CommonsenseQA* contains 74 fewer instances.

3.2 Model

We adopt the method of Talmor et al. (2019), using
BERT (Devlin et al., 2019). In particular, given a
question q and 5 candidate answers a1, ..., a5, we
concatenate the question with each answer to obtain
5 question-answer pair sequences (i.e. sentences)
s1, . . . , s5, respectively. In each sentence, we use a
special symbol [CLS] in the beginning, a symbol
[SEP] between the question and the candidate
answer, a symbol [SEP] in the end.

BERT uses L stacked Transformer layers
(Vaswani et al., 2017) to encode each sentence.
The last layer hidden state of the [CLS] token is
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used for linear scoring with softmax normalization.
The candidate among s1, . . . , s5 with the highest
score is chosen as the prediction. More details of
our implementation are shown in Appendix C.

4 Analysis Methods

As mentioned earlier, we analyze commonsense
links using the attention weight (Clark et al., 2019)
and the corresponding attribution score (Sundarara-
jan et al., 2017; Mudrakarta et al., 2018). We report
results in one random execution for each experi-
ment. We additionally tried five runs for each ex-
periments, and found that the result variation is
small (Appendix B).

4.1 Attention Weights

Given a sentence, attention weights in Transformer
can be viewed as the relative importance weight be-
tween each token and the other tokens when produc-
ing the next layer representation (Kovaleva et al.,
2019; Vashishth et al., 2020). In particular, given a
sequence of input vectors H = [h1,h2, . . . ,h|H|],
its self-attention representation uses each vector as
a query to retrieve all context vectors in H, yielding
a matrix of attention weights α ∈ R|H|×|H|.

The value of α is computed using the scaled
dot-product of the query vector of representation
Q = WQH and the key vector of representation
K = WKH, followed by softmax normalization

α = softmax(
QKT

√
dk

), (1)

where dk is the dimension size of the key vector K.
αi,j represents the attention strength from hi to hj .
For multi-head attention, H is linearly projected
T times to find T sets of queries, keys, and values,
where T is the number of heads. The attention op-
eration of each head is performed in parallel, with
the results being concatenated. We use αm,n to de-
note the n-th attention head in the m-th layer. The
attention weights αm,n are used as a first measure
of commonsense link strengths.

4.2 Attribution Scores

Kobayashi et al. (2020) point out that analyzing
only attention weights can be insufficient for in-
vestigating the behavior of attention heads. As
a supplement, gradient-based feature attribution
methods have been studied to interpret the contri-
bution of each input feature to the model prediction

in back-propagation (Baehrens et al., 2010; Mu-
drakarta et al., 2018; Hao et al., 2020). Analysis of
both attention weights and the corresponding attri-
bution scores allows us to more comprehensively
understand commonsense links in BERT.

We employ an attribution technique called Inte-
grated Gradients (Sundararajan et al., 2017). In-
tuitively, integrated gradients works by simulating
the process of pruning the specific attention head
(from the original attention weight α to a zero vec-
tor α′), and calculating the integrated gradients in
back-propagation. The attribution score directly
reflects how much a change of attention weights
affects model outputs. A higher attribution score
represents more importance of the corresponding
individual attention weight. Suppose that F (x)
represents the BERT model output for Common-
senseQA given an input x. The attribution of at-
tention head αtt ∈ [1, . . . , T ] in a Transformer
layer can be computed by comparing with a set of
baseline weights α′:

Atr(αt) = (αt−α′t)⊗
∫ 1

x=0

∂F (α′ + x(α− α′))
∂αt

dx

(2)
where ⊗ denotes element-wise multiplication, α =
[α1, . . . , αT ]. Intuitively, F (α′ + x(α − α′))
is closer to F (α′) when x is closer to 0, and
closer to α when x is closer to 1. Therefore,∫ 1
x=0

∂F (α′+x(α−α′))
∂αt dx gives the amortized gradi-

ent with all different x. Atr(αt) ∈ Rn×n denotes
the attribution score which corresponding to the
attention weight αt. Atr(αti,j) is represented for
the interaction from token hi to hj . We set the
uninformative baseline α′ as zero vector. Follow-
ing Sundararajan et al. (2017), we approximate
Atr(αt) via a gradient summation function,

Atr(αt) ::= (αt−α′t)⊗
s∑
i=1

∂F (α′ + i/s(α− α′))
∂α′t

×1

s
,

(3)
where s is the number of approximation steps for
computing integrated gradients. We set s to 20
based on the empirical results.

5 The Presence of Knowledge

We first conduct a set of experiments to investigate
commonsense link strengths in BERT representa-
tions of question-answer pairs (i.e. sentences). In-
tuitively, if the link weight from the answer concept
to the question concept is higher than those from
the answer concept to other question words, then
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Statistics MAW Accuracy
RandomMax Avg

Dataset # Instances # Avg Length BERT BERT-FT BERT BERT-FT
CommonsenseQA∗ 1,147 13.18 46.82 49.22 12.38 17.35 10.53

OMCS 37,895 7.63 88.48 89.14 37.82 39.52 24.11
Wikipedia 176,449 16.40 40.24 43.53 13.19 13.48 6.22

Table 1: Average and maximum MAW accuracies across three datasets. BERT-FT model denotes the BERT model
with fine-tuning on CommonsenseQA training set.

Relation Type Max Avg L-H # Ins
Random 10.53 10.53 - -

OVERALL 49.22 17.35 8-7 -
ATLOCATION 55.85 18.42 8-7 574

CAUSES 55.93 18.91 8-7 162
CAPABLEOF 47.88 14.71 8-1 104
ANTONYM 52.53 10.97 4-3 83

HASPREREQUISITE 54.15 18.93 9-8 41
HASSUBEVENT 55.29 18.74 9-0 34

DESIRES 40.00 7.92 8-1 27
CAUSESDESIRE 48.89 14.28 4-0 27

PARTOF 59.09 18.56 9-0 22
HASPROPERTY 54.00 15.12 9-1 20

MOTIVATEDBYGOAL 75.56 24.31 9-7 18
HASA 68.89 22.10 8-1 9

RELATEDTO 62.22 18.44 9-0 9

Table 2: The average and maximum MAW accuracies
of BERT-FT for different commonsense relations. We
exclude the relation types with frequencies of occur-
rence less than 9. L-H represents the best performing
attention head for each relation.

we have evidence of BERT using commonsense
cues according to CONCEPTNET. As mentioned
earlier, rather than the question concept, the repre-
sentation of the [CLS] token is directly connected
to the output layer for candidate scoring. Hence
there is no direct supervision signal from the output
layer to the link weight during fine-tuning, and bet-
ter prediction does not necessarily indicate strong
commonsense links.

5.1 Probing Task
Without losing generality, we call both attention
weights in Section 4.1 and attribution weights in
Section 4.2 link weight. We evaluate link weights
by calculating the most associated word (MAW),
namely the question concept word that receives
the maximum link weight from the answer concept
among all question words. MAW is measured for
each individual attention head in each layer.

Denote the hidden states of the whole ques-
tion, question concept and answer concept as
[h1, . . . ,h|q|], [hbs , . . . ,hes ] and [hbt , . . . ,het ], re-
spectively. If the answer concept is composed
of multiple tokens, we consider the link weight
from the answer concept to the question token hi

(i ∈ [1, |q|]) as the mean of the link weights over
all answer tokens αi = 1

et−bt
∑et

j=bt
αj,i. For the

n-th attention head in them-th layer, if the question
concept receives the maximum link weight from
the answer concept (i.e., µm,n = argmaxi α

m,n
i ,

µm,n ∈ [bs, es]), we consider that this attention
head gives the correct MAW.

We take two different measures of MAW ac-
curacies, calculating the average accuracy among
all attention heads, and the accuracy of the most-
accurate head, respectively. Previous work prob-
ing syntactic information from attention head takes
the second method (Clark et al., 2019; Htut et al.,
2019). We additionally measure the average in or-
der to comprehensively evaluate the prevalence of
commonsense cues in BERT.

The average MAW accuracy is measured by:

accavg =

∑12
m=1

∑12
n=1

∑D
d=1 1(µ

m,n ∈ [bs, es])

12× 12×D
.

The maximum MAW accuracy is measured by:

accmax =
12

max
m=1

12
max
n=1

∑D
d=1 1(µ

m,n ∈ [bs, es])

D
,

where D represents the number of instances for
evaluation.

In theory, if link weights for each attention head
are randomly distributed, the average and maxi-
mum MAW accuracies should be both

accbaseline =

∑D
d=1

es−bs
|q|

D
,

which reflects the fact that the representation does
not contain explicit correlation between the answer
concept and its related question concept. In con-
trast, MAW accuracies significantly better than this
baseline indicates that commonsense knowledge is
contained in the representation.

5.2 Results

The results for off-the-shelf BERT (BERT) and
a BERT model fine-tuned on CommonsenseQA
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(BERT-FT) are shown in the first row of Table 1.
First, looking at the original non-fine-tuned BERT,
the maximum MAW accuracy of each layer signif-
icantly outperforms1 the random baseline. This
shows that commonsense links are a part of BERT
representation of a sentence in general, just as syn-
tactic (Goldberg, 2019) and semantic (Liu et al.,
2019a) knowledge. Second, BERT-FT outperforms
BERT in terms of both the average MAW accuracy
and the maximum MAW accuracy, with a relatively
large boost on the average MAW accuracy, which
shows that structured commonsense features are
enhanced by supervised training on commonsense
tasks.

We explore the best performing attentions head
for each relation type in Table 2, finding that certain
attention heads capture specific commonsense re-
lations. There is no single attention head that does
well for all relation types, both with fine-tuning
and without fine-tuning, which is similar to the pre-
viously finding for syntactic heads (Raganato and
Tiedemann, 2018; Clark et al., 2019).

To further differentiate commonsense cues
from superficial association, we measure the co-
occurrence between each word in the question and
answer concept in 1 million English Wikipedia
documents. There is only 1.85% question con-
cept word among the highest co-occurring words
of each answer concepts, which partly shows that
the strong commonsense links do not heavily rely
on superficial pattern.

5.3 Additional Datasets.

Since this set of experiments concerns the represen-
tation only, we take additional two unlabeled cor-
pora in addition to CommonsenseQA. In particular,
we extract sentences from Open Mind Common
Sense (OMCS) 2 and Wikipedia, if there existing
one and only one source-target concept pair in this
sentence, yielding two large-scale datasets. The
detailed statistics are shown in Table 1. The results
are consistent with the CommonsenseQA dataset,
which shows the generation ability of our methods.

6 Co-relating Knowledge with Task

We further conduct a set of experiments to draw the
correlation between commonsense links and model
prediction. The goal is to investigate how BERT

1p ≤ 0.01 using t-test; similar for subsequent mentions.
2Open Mind Common Sense (OMCS) corpus is the source

corpus of ConceptNet.

Attention Attribution
BERT-FT BERT-Probing BERT-FT

Head MAT MAS MAT MAS MAT MAS
1 49.00 18.92 29.21 4.01 51.61 23.54
2 49.17 19.62 20.75 10.99 27.46 24.85
3 32.00 56.23 16.04 43.85 49.17 33.83
4 41.33 16.74 32.17 9.68 22.93 47.08
5 49.96 24.32 33.91 6.28 31.04 44.29
6 45.42 13.25 34.87 4.62 34.26 20.14
7 48.39 13.33 25.72 7.41 33.83 22.67
8 54.14 13.39 28.07 3.66 25.98 49.61
9 39.67 16.74 28.86 9.50 36.97 22.84
10 38.71 13.95 24.50 18.66 52.14 21.01
11 49.17 8.89 36.88 7.15 36.79 21.19
12 53.53 11.07 30.08 3.31 25.81 26.94

Avg 45.87 18.85 28.42 10.76 35.67 29.83

Table 3: MAToverlap and MASoverlap in the top layer.

makes use of commonsense knowledge for mak-
ing a prediction in the CommonsenseQA task. In
particular, we compare the link weights across the
five answer candidates for the same question, and
find out the candidate that is the most associated
with the relevant question concept. This candidate
is called the most associated target (MAT). Cor-
relations are drawn between MATs and the model
prediction for each question. Intuitively, the more
the MATs are correlated with the model predictions,
the more evidence we have that the model makes
use of commonsense cues in making prediction.

Both attention weights and the corresponding
attribution scores are used, because now we are
considering model prediction, for which gradients
play a role and can be measured. For all exper-
iments, the trend of attribute scores is consistent
with that measured using attention weights.

6.1 Probing Tasks
Formally, given a question q and 5 candidate an-
swers a1, . . . , a5, we make comparisons across five
candidate sentences s1, . . . , s5. In each candidate
sentence, we calculate the link weight from the
answer concept to the question concept accord-
ing to CONCEPTNET. Denote the hidden states
of the question concept and the answer concept
as [hbs , . . . ,hes ] and [hbt , . . . ,het ], respectively.
The link weight of the answer-question-concept
pair (αa2q) is the average between each answer
concept token and each question concept token

αa2q =

∑es
i=bs

∑et
j=bt

αj,i

(es − bs)(et − bt)

Among the five candidates in each instance, we
take the one with the highest αa2q as the most as-
sociated target MAT, denoted as sMAT ∈ [1, 5].
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(a) Measured by attention weights.

#H #Ins Model Acc. #H #Ins Model Acc.

0 158 20.89 7 69 78.26
1 135 28.15 8 63 82.54
2 119 52.10 9 57 92.98
3 132 53.79 10 47 89.36
4 93 62.37 11 44 97.73
5 106 66.04 12 36 100.00
6 88 68.18 - - -

(b) Measured by attribution.

#H #Ins Model Acc. #H #Ins Model Acc.

0 89 10.11 5 171 72.51
1 114 22.81 6 119 81.51
2 148 51.35 7 85 82.35
3 156 56.41 8 43 74.72
4 207 66.67 9 13 84.62

Table 4: The relationship between the MAT head count
and the model prediction accuracy. #H denotes how
many heads yield the correct MAT prediction. #Ins de-
notes the instance number.

As a baseline for MAT, we further define most
associated sentence (MAS) as the candidate an-
swer that has the maximum link weight from the
answer concept to the [CLS] token among the five
candidates. The reason is that gradients are back-
propagated from the [CLS] token rather than the
question concept or the answer concept. By com-
paring MAT and MAS, we can have useful informa-
tion on whether MAT is an influencing factor for
the model decision.

We measure the correlation between MAT

(sMAT ∈ [1, 5]), the model prediction (smodel ∈
[1, 5]) and the gold-standard answer (sgolden ∈
[1, 5]) by using two metrics, including the over-
lapping rate between MATs and model predictions,
and the accuracy of MATs.

The overlapping rate of MATs is defined as:

MAToverlap =

∑D
d=1 1(s

MAT
d = smodeld )

D

The accuracy of MATs is defined as the percent-
age of Mats that equals the gold answer:

MATacc =

∑D
d=1 1(s

MAT
d = sgoldend )

D

Similar to MAW, MAT and MAS can be measured
for each attention head, and we calculate the aver-
age and maximum values across different heads.

6.2 Commonsense Link and Model Output
We measure the MAT performance of BERT-FT,
and a BERT model that is fine-tuned for the output

layer only (BERT-probing). The latter is a linear
probing model (Liu et al., 2019a). Intuitively, if
the probing model can solve the commonsense task
accurately, then the original non-fine-tuned BERT
likely encodes the rich commonsense knowledge.

Table 3 shows the relative strengths of MATs and
MASs according to the 12 attention heads in the top
Transformer layer. First, for both models, the over-
lapping rates of MATs are significantly (p ≤ 0.01)
larger than that with MASs. This suggests that the
link weight from the answer concept to the question
concept is more closely-related to the model predic-
tion as compared to the link weight from the answer
concept to the [CLS] token, despite that model
output scores are calculated on the [CLS] token.
The results give strong evidence that commonsense
cues from BERT are relied on for model decision.
Second, when fine-tuned with training data, the
model gives an even stronger correlation between
MAT and the model prediction. This suggests that
the model can learn to make use of commonsense
cues for making prediction, which partly shows
how a BERT model solves CommonsenseQA.

Figure 3 shows the overlapping rate between
MAT and model prediction at each Transformer
layer. Both the maximum and the average over-
lapping rates across the 12 layers are shown. The
random overlapping rate of 20% is drawn as a ref-
erence. It can be seen from the figure that the
maximum overlapping rate of BERT-probing is sig-
nificantly larger than the random baseline, which
shows that the model prediction is associated with
the relevant structured commonsense cues. In addi-
tion, after fine-tuning, the BERT-FT model shows
a tendency of weakened maximum MAT overlap-
ping rate on lower Transformer layers and much
strengthened MAT overlapping rate on higher lay-
ers, and in particular the top layer. The trend of
MAT measured by attribution score is consistent
with attention weights. This suggests that fine-
tuned model relies more on the commonsense struc-
ture in the top layer for making prediction.

We compare the co-occurrence between ques-
tion concepts and candidate answer concepts in 1
million English Wikipedia documents, and find
that only 18.2% gold answers has the most co-
occurrence with the question concept among 5
answer candidates, which is even lower than the
random baseline (20%), showing that Common-
senseQA cannot be solved by solely relying on
superficial patterns.
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Figure 3: MAToverlap across different layers.

Figure 4: MATacc of each attention head in the top layer
with correct and incorrect model predictions. “Red”
and “Blue” indicate the model performance if attention
head-n gives correct and incorrect prediction, respec-
tively.

6.3 Commonsense Link and Model Accuracy

Table 4 shows the correlation between MAT accu-
racies and model prediction accuracies. Each row
shows a different number of heads in the top layer
for which the MAT corresponds to the correct an-
swer candidate, together with the number of test
instances for such cases, and the model prediction
accuracy on the instances. There is an obvious
trend where increased MAT accuracies correspond
to increased model prediction accuracies, which
shows that making use of structured commonsense
cues leads to better model prediction.

Figure 4 shows the MAT accuracies of each at-
tention head in the top layer for the test instances
with correct and incorrect model predictions, re-
spectively. The MAT accuracies of correctly pre-
dicted instances are larger than those of incorrectly
predicted instances by a large margin. The finding
is consistent with Table 4, which shows that struc-
tured commonsense cues are a key factor in BERT
making the correct decision.

Figure 5: Model performance on the CommonsenseQA
development set when different heads are pruned.

BERT-FT BERT-probing
MAToverlap Model MAToverlap Model

L Max Avg Acc Max Avg Acc
12 54.14 45.87 58.59 36.88 28.42 39.23
11 46.56 26.65 56.50 37.66 27.11 35.48
10 37.40 27.86 53.36 39.84 28.50 33.74
9 34.61 24.01 51.53 30.08 24.76 32.52
8 31.82 21.39 49.35 25.81 21.53 33.57
7 31.73 24.40 48.74 37.05 24.04 32.96
6 31.56 23.64 45.95 31.21 24.02 32.00
5 34.44 25.01 44.99 33.39 24.03 32.43
4 44.73 34.13 40.28 41.06 27.67 33.83
3 44.20 32.48 37.58 25.81 21.02 21.88
2 23.71 19.47 26.68 23.63 20.74 20.40
1 23.45 19.50 23.02 20.58 18.81 19.27

Table 5: Performance of MAToverlap across different
layers. L-n represents adding the output classifier on
the hidden state of layer-n. Our BERT-FT model (layer-
11) gives 58.15% accuraies, which is slightly higher
than the reported results of 55.57% on Lin et al. (2019).
It achieves 58.59% on our dataset CommonsenseQA*.

We further evaluate the model performance after
pruning specific heads. We sort all the attention
heads in each layer according to their MAT perfor-
mance by attribution scores, and then prune these
heads in order. Following Michel et al. (2019), we
replace the pruned head with zero vectors. Figure 5
shows the model performance on the development
set. As the number of pruned heads increases, the
model performance decreases, which conforms to
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intuition. In addition, the model performance drops
much more rapidly when the attention heads with
higher MAT performances are pruned first, which
demonstrates that capturing commonsense features
is crucial to strong model prediction.

6.4 Commonsense Link and BERT Layer

We further investigate two specific questions on the
commonsense knowledge usage. First, which layer
does BERT rely on the most for making its deci-
sion. Second, does the commonsense knowledge
that BERT uses come more from pre-training or
fine-tuning. We compare 12 model variations by
connecting the output layer on each of the Trans-
former layer, respectively. Table 5 shows the model
accuracies and the MAT overlapping rates. First,
BERT-probing gives the best performance when
prediction is made on the top layer, and the ac-
curacy generally decreases as the layer moves to
the bottom. This indicates that relevant common-
sense knowledge is more heavily distributed to-
wards higher layers during pre-training. Our exper-
imental settings here are the same as the probing
task for syntactic information by Liu et al. (2019a),
who find that syntactic information is distributed
more heavily towards lower BERT layers.

With fine-tuning, we observe stronger improve-
ments of both model accuracies and MAT overlaps
on higher layers when comparing BERT-FT and
BERT-probing. This demonstrates that common-
sense knowledge on higher layers is more useful
to the CommonsenseQA task. Interestingly, com-
paring layer 11 and layer 10, the model accuracy
after fine-tuning is similar, but the MAT overlap of
layer 11 is significantly larger. This can suggest
that the structured commonsense knowledge that
we probe attributes only partly to the overall useful
knowledge for CommonsenseQA.

7 Conclusion

We conducted quantitative analysis to investigate
how BERT solves the CommonsenseQA task, aim-
ing to gain evidence on the key source of informa-
tion involved in the disambiguation process. Em-
pirical results demonstrated that BERT encodes
structured commonsense knowledge, and is able to
leverage such cues on the downstream Common-
senseQA task. Our analysis has further revealed
that with fine-tuning, BERT learns to make bet-
ter use of commonsense features on higher layers.
These suggest that BERT can learn to make use

of truly relevant commonsense cues rather than
superficial patterns for CommonsenseQA.
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