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Abstract
Qualitative relationships illustrate how chang-
ing one property (e.g., moving velocity) af-
fects another (e.g., kinetic energy) and consti-
tutes a considerable portion of textual knowl-
edge. Current approaches use either seman-
tic parsers to transform natural language in-
puts into logical expressions or a “black-box”
model to solve them in one step. The for-
mer has a limited application range, while the
latter lacks interpretability. In this work, we
categorize qualitative reasoning tasks into two
types: prediction and comparison. In particu-
lar, we adopt neural network modules trained
in an end-to-end manner to simulate the two
reasoning processes. Experiments on two qual-
itative reasoning question answering datasets,
QuaRTz and QuaRel, show our methods’ ef-
fectiveness and generalization capability, and
the intermediate outputs provided by the mod-
ules make the reasoning process interpretable.

1 Introduction

Qualitative relationships abound in our world, espe-
cially in science, economics, and medicine. Since
Question Answering (QA) has been significantly
developed in recent years, various challenging
datasets have been proposed (Lai et al., 2017; Ra-
jpurkar et al., 2018; Yang et al., 2018; Choi et al.,
2018; Dua et al., 2019), and one often encoun-
ters the context and questions about qualitative re-
lationships. Figure 1 shows an example that re-
quires reasoning about the qualitative relationship
between the mass and the gravitational pull, where
the knowledge sentence states that the mass is posi-
tively correlated with the gravitational pull, and the
questions describe different scenarios that test the
flexible application of the knowledge.

Therefore, understanding the qualitative relation-
ships behind the context and applying the qualita-
tive textual knowledge for reasoning is essential.

∗Corresponding author

Figure 1: Examples from QuaRTz dataset.

However, the most current datasets on qualitative
reasoning are much smaller than standard Ques-
tion Answering datasets, making the task challeng-
ing and receiving limited attention. At present, in
the two mainstream qualitative relationship ques-
tion datasets, QuaRel (Tafjord et al., 2019a) and
QuaRTz (Tafjord et al., 2019b), the existing meth-
ods can be divided into two categories, symbolic
reasoning based on a semantic parser (Krishna-
murthy et al., 2017; Tafjord et al., 2019a) and a
“black-box” model based on representations (Mitra
et al., 2019; Tafjord et al., 2019b; Asai and Ha-
jishirzi, 2020; Mitra et al., 2020).

The two types of methods have their advantages
and disadvantages. On one hand, symbolic reason-
ing provides solid explanations for the problem-
solving process, but existing semantic parsers are
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trained to translate natural-language sentences into
a task-specific logical representation that naturally
increases the demand for additional annotated data
and has limited generalization capability. On the
other, approaches based on pre-trained language
models that solve the task in one step achieve stun-
ning results at the expense of limited interpretabil-
ity.

To tackle the issues mentioned above, in this pa-
per, we propose a neural network module-based
approach that provides good interpretability while
achieving better results. Specifically, inspired by
human cognitive processes, we group the qualita-
tive reasoning questions into two categories: Pre-
diction and Comparison. As the example in Fig-
ure 1 shows, each category requires different rea-
soning chains. In Prediction, the question asks to
directly predict the effect on an occurrence of the
cause on an entity in the situation. In Comparison,
the question asks to compare the effects on the two
entities. Then we adopt neural modules to model
each step in these two reasoning chains, and all
modules are trained in an end-to-end manner.

The practice of first summarizing the questions
and then modeling the different reasoning chains
step by step has three advantages: First, it has
good generalization ability. The two reasoning
chains summarized cover the vast majority of qual-
itative reasoning problems, so there is no need to
design logical expressions for specific tasks. Sec-
ond, it achieves better performance, because com-
plex qualitative reasoning tasks are broken down
into simple sub-tasks, with the modules required
to complete only simple sub-tasks. Third, it pro-
vides better interpretability, because each module
can provide a transparent intermediate output.

Experimental results on the QuaRel (Tafjord
et al., 2019a) and QuaRTz (Tafjord et al., 2019b)
datasets demonstrate the effectiveness and general-
ization capability of our proposed approach. It sur-
passes the state-of-the-art model by a large margin
(absolute difference ranging from 1.8% to 4.4%).
Furthermore, analyses of the intermediate outputs
and a human evaluation show that each module in
our approach performs well on its corresponding
sub-task and clarifies interpretability.

2 Related Work

Qualitative Reasoning: This type of reason-
ing is an indispensable part of artificial intelli-
gence. Forbus (1984) and Weld and De Kleer

(2013) propose formal models for qualitative rea-
soning when the research filed is emerging. How-
ever, there has been little work on reasoning
with textual qualitative knowledge. Tafjord et al.
(2019a) solves such tasks using semantic parsing
and a symbolic solver; this type of method natu-
rally falls short on performance when compared
to neural systems. Meanwhile, some works tackle
tasks using a data-driven “black-box” model based
on representations computed by language mod-
els, which achieves superior performance (Tafjord
et al., 2019b; Mitra et al., 2019; Asai and Hajishirzi,
2020; Mitra et al., 2020). Our work enjoys the
performance improvement that a neural network
brings but also provides interpretability.

Neural Network Modules: These modules were
first adopted in the Visual Question Answering
(VQA) domain (Johnson et al., 2017; Andreas
et al., 2016; Hu et al., 2017). Due to the inter-
pretable, modular, and inherently compositional
nature of neural network modules, they were fur-
ther extended to natural language (Gupta and
Lewis, 2018; Jiang and Bansal, 2019; Jiang et al.,
2019). Gupta et al. (2019) extend neural module
networks to answer compositional questions. Ren
et al. (2020) and Liu and Gardner (2020) further
introduce neural network modules on one complex
reasoning task ROPES (Lin et al., 2019). In this
work, we explore the effectiveness of neural net-
work modules on a qualitative reasoning task.

3 Method

Our work solves the question through a three-step
process illustrated in Figure 2a:

1. The Contextual Encoding component encodes
the concatenation of knowledge, the question,
and options into contextual representations.

2. The Reasoning component arranges different
reasoning chains according to the type of prob-
lem, where Prediction and Comparison con-
tain multiple neural modules. A synthetic text
is generated by the decision function based
on the evidence collected from the reasoning
chains.

3. The Answer Prediction component takes the
concatenation of the question, options, and
the generated synthetic text instead of given
knowledge as the input and returns the answer
option with the highest salience scores.
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Figure 2: The overall diagram of our proposed model. Given background knowledgeB and statement S formed by
the question and options, we first generate the contextual representations. Then we synthesize a text by collecting
the evidence provided by the Prediction or Comparison module, where the detailed structure is shown in b). Last,
we predict the answer with the aid of the synthetic text.

3.1 Contextual Encoding

We selected RoBERTa (Devlin et al., 2019; Liu
et al., 2019) as the encoder to encode the back-
ground knowledge, the question, and two an-
swer options together and output contextualized
embeddings. In particular, we concatenated the
question with two answer options as statement
S = {si}mi=1, similar to the examples shown in
Figure 1. Furthermore, we joined given back-
ground knowledge B = {bj}nj=1 and the statement
with the special tokens used in language models
as 〈s〉 b1, . . . , bn 〈/s〉 〈/s〉 s1, . . . , sm 〈/s〉, which
was further fed into RoBERTa containing a series
of successive transformer blocks,

Hb,Hs = Transformers(B,S), (1)

where Hb ∈ Rn×d, Hs ∈ Rm×d are contextual
representations of the knowledge and the statement,
respectively, and d is the dimension for the hidden
states. The representations Hb,Hs are padded
into fixed length and served as the global variables
in the Reasoning part.

3.2 Reasoning

The architecture of the reasoning component is
shown in Figure 2b. In particular, we designed

the different reasoning chains depending on the
question type. Specifically, both reasoning chains
were constructed by several end-to-end modules,
and some modules were shared. Then the evidence
collected from each module is summarized for the
final deduction.

3.2.1 Prediction
Find Cause and Effect: To answer the
Prediction-type question like the first example
shown in Figure 1, we first need to understand
what the knowledge describes, i.e., figure out
the cause and effect properties (e.g., mass and
gravitational pull). To achieve this, we applied
a multilayer perceptron (MLP) over background
knowledge representations Hb and then used a
softmax function to normalize the projected logits
and get attention scores over all knowledge tokens
for the cause property and the effect property
respectively,

pb
c = softmax(MLP(Hb; θc)) ∈ Rn, (2)

pb
e = softmax(MLP(Hb; θe)) ∈ Rn, (3)

where pb
c and pb

e are the attention vectors over
knowledge in terms of the cause and effect proper-
ties, and θ’s are trainable parameters in the MLP.
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Take Figure 1 as an example: pb
c is the atten-

tion over background tokens, whose value is much
larger for mass than the other tokens.

Polarity Check: We further need to judge the
polarity of the qualitative relationship between the
cause and effect properties (e.g., mass and gravita-
tional pull are positively related). To achieve that,
we first applied cause and effect property attention
vectors on the knowledge representation Hb to ob-
tain the weighted ones. Then we took the average
of the weighted representations and concatenated
them together. After that, another MLP followed
by a softmax function computed the probabilities
based on the representations,

ppol = softmax(MLP((HbTpb
c;H

bTpb
e); θpol)),

(4)

where ppol = [ppol+, ppol−] denotes the probabil-
ity of positive and negative correlations, θpol is a
learnable parameter of the MLP. In the example
shown in Figure 1, ppol+ is supposed to be larger
than ppol−.

Find World: Furthermore, we should return to
the statement and find out the world that happened
in the statement (e.g., increasing their mass). To
achieve that, we used the same setting as theFind
Cause and Effect Property module,

ps
w = softmax(MLP(Hs; θw)) ∈ Rm, (5)

where ps
w is the attention vectors over the statement

for the world, and θ is the learnable parameters of
the MLP.

Value Prediction: Moreover, we need to decide
whether the attribute value in World is an increment
(pval↑) or decrement(pval↓; e.g., increase their
mass is an increment). To achieve that, we derive
representations of the world by averaging statement
representation Hb weighted by the world attention
vector, ps

w. Then, another MLP was stacked with
softmax to get the probabilities,

pval = softmax(MLP((HsTps
w); θval)), (6)

where pval = [pval↑, pval↓] denotes the probability
that the attribute value is incremented or decre-
mented, and θval is a learnable parameter of the
MLP. In the example shown in Figure 1, pval↑ is
supposed to be larger than pval↓.

3.2.2 Comparison
The Comparison reasoning chain contains two mod-
ules that are shared with the Prediction reasoning
chain, Find Cause and Effect, and Polarity Check.
However, the Comparison chain differs from the
Prediction chain in two modules.

Find Worlds: In the Comparison-type question
like the second example shown in Figure 1, the
statement asks to compare the effects on the two
entities. Thus, two worlds appeared in the state-
ment instead of one (e.g., large masses and small
masses). To achieve that, we took the same straight-
forward method as the Find World module,

ps
w1 = softmax(MLP(Hs; θw1)) ∈ Rm, (7)

ps
w2 = softmax(MLP(Hs; θw2)) ∈ Rm, (8)

where ps
w1,p

s
w2 are the attention vectors over the

statement for worlds 1 and 2, and θ’s are learnable
parameters of the MLP.

Worlds Comparison: This module aims to com-
pare the worlds in terms of the cause property. For
example, world 1 (larger masses) is more rele-
vant to the greater the mass than world 2 (smaller
masses) in Figure 1. To achieve that, we adopted a
bilinear function to evaluate the relevance between
each world’s cause property and the cause prop-
erty in background knowledge, which is further
normalized into a probability with softmax,

pcom = softmax((HbTpb
c)

TWcom(HsTps
w1),

(HbTpb
c)

TWcom(HsTps
w2)),

(9)

where Wcom ∈ Rd×d is a trainable matrix, and
pcom denotes the probability that the world is rele-
vant to the cause property.

3.2.3 Deduction
The Deduction module aims to conduct the reason-
ing by considering the evidence computed from
each module in the reasoning chain. In particu-
lar, we applied the decision functions as shown in
Figure 2c for each reasoning type to generate the
synthetic text.

We take the examples in Figure 1 as an illustra-
tion. From the Find Cause and Effect, and Polarity
Check modules, we conclude a positive relationship
existed between the cause mass and the effect grav-
itational pull, so we denote ppol(Effect|Cause)
as +.
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For Prediction, the Value Prediction module
states that the attribute value of the world in terms
of cause property is an increment. Thus, we denote
pval(W orld|Cause) as ↑. Therefore, the world
must also have an increment on the effect property
due to the positive relationship between the cause
and effect. In this way, we generated a synthetic
text by slot-filling as follows: large mass will cause
more gravitational pull.

Similarly, for Comparison, the Worlds Com-
parison module showed that compared with
world 2, world 1 was more relevant to the
cause property in the background knowledge.
Thus, we denote pcom(World1,World2)
as > (i.e., pcom(World1|Cause) >
pcom(World2|Cause)). In this way, we
rendered world 1 larger than world 2 in terms of
the effect property because of the positive polarity.
Then, a synthetic text was also be generated.

3.2.4 Reasoning Type Classification
As the reasoning type is not available during the
inference time, we added a classifier based on the
statement representations, which is defined as fol-
lows:

s =
1

m

m∑
i

Hs
i ∈ Rd, (10)

pcla = σ(MLP (s; θcla)), (11)

where s can be viewed as an embedding of the
statement, θcla is the trainable parameter in the
MLP, and σ is an activation function. pcla denotes
the classification scores.

3.3 Answer Prediction

In the Answer Prediction component, we re-
placed the given background knowledge with
the synthetic text from the Reasoning compo-
nent. Then we combined it with the ques-
tion and answer choice A = {ak}2k=1 as
〈s〉SyntheticText 〈/s〉 〈/s〉 q; ak 〈/s〉. We used
the final hidden vector corresponding to the first
input token (〈s〉) as the aggregate representation.
We further predicted the probabilities of an answer
being the answer choice ak in the same manner as
in Liu et al. (2019).

3.4 Model Training

Two models (i.e., reasoning and answer prediction)
are learned in our approach.

Reasoning The loss function for reasoning is de-
fined as

`Reason = −
∑
y∈Y

αyγyỹ
T log(y). (12)

Y = {ps
w ∈ Rm,ps

w1
∈ Rm,ps

w2
∈ Rm,pb

e ∈
Rn,pb

c ∈ Rn,pval ∈ R2,pcom ∈ R2,pcla ∈ R2}
are predictions of different modules, ỹT ∈ {0, 1}m
or ỹT ∈ {0, 1}n or ỹT ∈ {0, 1}2 are correspond-
ing gold labels, γy ∈ {0, 1}2 denotes whether the
loss function should use the label (as some annota-
tions would be missed due to different reasoning
type), and αy is the weight for each module y.

Answer Prediction: We took the standard binary
cross entropy loss `AP as the training objective of
the Answer Prediction component.

During the inference time, we first determined
the reasoning type based on the classification score
obtained in section 3.2.4. Then we followed the
Deduction module to synthesize corresponding text
and further fed it into the trained Answer Predic-
tion model. The answer choice with the highest
probability was selected as the final answer.

4 Experiment Setup

4.1 Datasets

Datasets QuaRTz (Tafjord et al., 2019b) and
QuaRel (Tafjord et al., 2019a), were used to evalu-
ate the proposed model. Both datasets require rea-
soning about textual qualitative relationships and
provide well-defined annotations used for symbolic
reasoning. The detailed statistics are in Table 1.

Auxiliary Supervision: The loss function for the
Reasoning component takes two different types of
supervision, i.e., span supervision (e.g., cause, ef-
fect spans in the knowledge) and binary logits su-
pervision (value prediction, world comparison, and
reasoning type). The QuaRTz dataset provides the
annotations for the property descriptions and prop-
erty values, but not every instance in the dataset
contains such annotations (2280 out of 2696 are
annotated completely). Furthermore, some annota-
tions are not standard and must be further processed
to satisfy the training objective. Therefore, we
mitigated these issues by generating an additional
auxiliary from hypothesis and manual annotating.
The detailed guidelines and labeled examples are
in Appendix A.2. All modules in the Reasoning
component are trained only on the QuaRTz (the
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Statistics Train Dev Test

QuaRTz 2,696 384 784
QuaRel 1,941 278 552

Table 1: Statistics of the datasets

proportion of Prediction and Comparison questions
is 2296:400).

4.2 Implementation Details
We used the pre-trained language model RoBERTa-
large in the experimentation1. In particular, we
trained all modules in the Reasoning component
end-to-end on one Nvidia RTX8000 48GB GPU
and used two GPUs for the Answer Prediction com-
ponent. We tuned the Reasoning component pa-
rameters according to the averaged performance
of all modules and tuned the parameters in the
Answer Prediction component based on the final
accuracy. We selected F1 scores and accuracy as
the evaluation metrics. Specifically, we set αy’s
in equation 12 as follows: 0.1 for span-based loss,
0.2 for the World Comparison, Value Prediction,
and Reasoning Type Classification. The detailed
hyperparameters and search bounds are described
in the Appendix A.1.

4.3 Compared Models
QUASP and QUASP+: The models proposed
by Tafjord et al. (2019a) which extend type-
constrained semantic parsing to address the prob-
lem of tracking different “worlds” in questions.

BERT and RoBERTa: The standard multiple-
choice QA frameworks are based on a powerful
pre-trained language model (Devlin et al., 2019;
Liu et al., 2019). As described in section 3.3, it
took the concatenation of knowledge, the question,
and answer options as the input and used the first
token representation for classification.

gvQPS+: Instead of introducing a semantic
parser, this model applies the generate-validate
framework (Mitra et al., 2019). It first generates a
natural language description of the logical form and
validates whether the natural language description
is followed from the input text.

DeepEKR: Similar to Mitra et al. (2019), this
model replaces the parser with a neural network,

1https://github.com/huggingface/
transformers

Model QuaRTz QuaRel

Dev Test Dev Test

Random 50.0 50.0 50.0 50.0
QUASP - - 62.1 56.1
QUASP+ - - 68.9 68.7

BERT - 67.7 - 53.0
BERT(PFT on RACE) - 79.8 - 79.9
gvQPS+ - - - 76.6
DeepEKR - 79.8 - 81.15

RoBERTa 86.8∗ 85.7∗ 81.1(84.5∗) 80.0(83.3∗)
LG(DA) - - 84.5 84.7
LG(DA+Reg) - - 85.1 85.0
Ours 89.6 89.9 89.5 86.8

Table 2: Performance of different models on both
datasets, where PFT stands for pre-finetune, and ∗
means the result we implemented.

softening the symbolic representation (Mitra et al.,
2020).

LG(DA,Reg): The RoBERTa-based model lever-
ages logical and linguistic knowledge to aug-
ment labeled training data (DA) and then uses
a consistency-based regularizer (Reg) to help the
training (Asai and Hajishirzi, 2020).

5 Experimental Results

5.1 Question Answering Performance

The performance of the development and test of
QuaRTz and QuaRel is shown in Table 2. Our
model outperformed the existing state-of-the-art
models (RoBERTa and LG with DA+Reg) by a
large margin (2.8% and 4.2% absolute difference
on QuaRTz, 4.4%, and 1.8% on QuaRel). These re-
sults illustrate that compared to the semantic parser-
based model and the one-step “black box” model,
our approach that imitates human cognitive behav-
iors is more capable of conducting qualitative rea-
soning and generalization.

Furthermore, compared with the semantic parser-
based methods (i.e., the first group in the table),
almost all language model-based methods achieved
superior performance, demonstrating the power of
the pre-trained language model. However, these
models are mostly data-driven. The BERT model
without pre-finetuning on RACE (Lai et al., 2017)
was unable to converge on QuaRel. Furthermore,
the data augmentation technique resulted in a 4.7%
improvement in the LG(DA) model, proving the
one-step “black box” model has high demand for
training resources. Nonetheless, our approach,
without any additional training data, still achieves

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
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Module F1 Fuzzy F1 Accuracy

Find Cause and Effect
pb
c 72.6 82.3 -

pb
e 67.0 78.4 -

Polarity Check ppol - - 88.8

Find World ps
w 76.4 82.5 -

Value Prediction pval - - 91.5

Find Worlds
ps
w1 77.3 83.4 -

ps
w2 74.9 80.6 -

World Comparison pcom - - 84.6

Reasoning Type Classification pcla - - 88.0

Table 3: Performance in the Reasoning component.

better performance, demonstrating its effectiveness
and rationality.

5.2 Reasoning Component Performance
In the Reasoning component, we designed multiple
neural network modules for two reasoning chains.
Each module was designed to accomplish its sub-
task and provide an intermediate prediction that
explains the reasoning process in a human cogni-
tive manner. To evaluate the effectiveness of each
module, we converted the attention vectors over the
context into a text span and the probability scores
into a predicted class. The conversion details are in
the Appendix A.3. Table 3 shows the performance
results for each module.

Find Cause and Effect, Find World, and Find
Worlds, three modules that should detect concerned
text spans from the context, all achieved adequate
F1 scores. There are two reasons why our model
did not score very well on a span extraction task
like extractive machine reading comprehension
(e.g., SQuAD2). First, the text span in our task
is not as accurately defined as the answer in MRC.
Generally, the length of the text span is long, and
the boundary is fuzzy. Second, our approach com-
puted the attention score for each token in the con-
text and leveraged it softly, and thus less sensitive
to boundary detection. However, when we used
fuzzy F1 scores as the evaluation metrics (intro-
duced in (Ren et al., 2020), which were marked as
1 as long as the original F1 was not equal to 0), the
scores for all modules increased by a large margin,
proving the reasoning ability.

Polarity Check, Value Prediction, and World
Comparison, three modules that require classifi-
cation capability based on the given span predic-
tion of the upstream modules, achieved high ac-
curacy (88.8%, 91.5%, and 84.6%), indicating the

2https://rajpurkar.github.io/
SQuAD-explorer/

Figure 3: An example from QuaRTz with visualized
intermediate outputs provided by our model.

rationality of our end-to-end sequential model de-
sign. Additionally, We could argue that determin-
ing whether an attribute is incremental or decremen-
tal is a relatively simple task for language models.

The Reasoning Type Classification module ob-
tained a good-enough performance (90.1%), the
recall value for Prediction type was 88.0%, and
the recall value for Comparison type was 76.7%.
The result is acceptable as some questions could
be solved simultaneously in a Prediction and a
Comparison manner. For example, the Compar-
ison question in Figure 1 can also be considered
a Prediction if we care only about the world with
high priority (i.e., two planets with very large mass).
This phenomenon somehow increased the fault tol-
erance and improved the generality of our method.

Case study: Our approach provides intermedi-
ate outputs that sufficiently explain the reasoning
process, which can lead to interpretability. Fig-
ure 3 presents examples of the transparent reason-
ing process run by our model. More examples can
be found in the Appendix A.5. The knowledge
states the relationship between active cells and mi-
tochondria, while two questions describe different
scenarios to test the application of this knowledge.

As shown in Figure 3, our model outputs several
intermediate results through the Reasoning compo-
nent. First, it identifies the reasoning chain type for

https://rajpurkar.github.io/SQuAD-explorer/
https://rajpurkar.github.io/SQuAD-explorer/
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each question; the left one is prediction, while the
right one requires comparison. Then, each module
in the corresponding reasoning chain outputs its
prediction. For example, the Find Cause and Effect
module captured the cause property and the effect
property in the knowledge. Then the Polarity Check
module correctly figured out the positive relation-
ship between them. The examples indicate that our
approach not only conducts final answer prediction
but also explains the machine understanding and
reasoning process.

5.3 Human Evaluation
In the Answer Prediction component, we fed the
generated synthetic text instead of given knowledge
into the model. To further measure the effect of syn-
thetic text on answer prediction, we introduced the
human evaluation widely used in NLG field. We
assembled ten well-educated volunteers and gave
each person 30 randomly sampled questions from
QuaRTz, half of which provided knowledge, half of
which provided our synthetic text. Then we asked
the participants to rate the question on a 5-point
scale for each following metric: fluency (does it
read coherently), informativeness (how much infor-
mation is contained), explicitness (does it describe
the relation clearly), and relevance (is it relevant to
the question). We also measured the time consump-
tion for problem-solving by giving knowledge or
synthetic text. Table 4 shows the results.

The given knowledge had higher scores for flu-
ency and informativeness because the knowledge
sentences were manually extracted from a large
corpus and may contain multiple relations among
multiple properties, while the synthetic text was
generated by slot-filling and described only the re-
lation mentioned in the question. Furthermore, the
synthetic text achieved superior scores for explicit-
ness and relevance, which indicates our Reasoning
component is successful in understanding and rea-
soning between the question and knowledge and
expressed the explicit relationship in a way close
to the description in the question scenario. Addi-
tionally, this is shown in that the participants took
less time to answer questions with synthesized text.

5.4 Error Analysis
We randomly sampled 60 examples for error anal-
ysis and more than half were caused by wrong
predictions in the Reasoning component (48 out of
60). The other errors were in two main categories.

Given Knowledge Synthetic Text

Fluency 4.3 3.9
Informativeness 4.5 3.3
Explicitness 3.4 4.4
Relevance 3.8 4.6
Time Consumption(s) 31.1 24.3

Table 4: Human evaluation results.

Incomplete Knowledge: These errors occurred
when the question mentioned only a world without
any attribute value description; e.g., the question
aimed to predict the gravitational pull for the Sun,
and knowledge told that a larger mass causes a
larger gravitational pull. To answer this question,
we need to know that the sun has a large mass.

Incomplete Synthetic Text: Two reasons cause
such errors. One is that the boundaries are not well-
defined when attention vectors are turned into text,
resulting in a lack of fluency or loss of information.
The other is a mismatch between the knowledge
and the question; e.g., the knowledge talks about
the distance, but the question describes hugging.
Thus, the generated synthetic text does not provide
enough information to solve the problem.

6 Conclusion

In this paper, we aimed to solve the qualitative rea-
soning task in an interpretable manner. Inspired
by human cognition, we first summarized the ques-
tions into two categories, Prediction and Compar-
ison. Then an end-to-end trained Reasoning com-
ponent that contains two reasoning chains was de-
signed. Both reasoning chains contained multiple
neural modules that provide transparent intermedi-
ate predictions for the understanding and reasoning
process. The experimental results showed the ef-
fectiveness of our approach, and the analysis of
each module and case study demonstrated the su-
perior interpretability compared with the “black-
box” model. Moreover, we found that some ques-
tions could be solved by both reasoning chains,
thus increasing the default tolerance and generaliza-
tion capability. Furthermore, a human evaluation
was conducted to validate the function of the syn-
thetic text and provide an additional explanation for
the superior performance achieved by our method.
However, the error analysis showed the inadequacy
under complicated scenarios. Therefore, our future
work will focus on applying interpretable reasoning
on complex reasoning tasks. The annotated data
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and models are shared publicly 3.
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A Appendices

A.1 Parameters List

Table 5 and Table 6 show the parameter details used
in our settings.

Reasoning Search Space(Bounds) Best Assignment

Max Seq. Length choice[256,384,512] 512
Learning Rate uniform-float[5e-6,3e-5] 1e-5
Batch Size per GPU choice[4,8,16] 8
Gradient Accumulation choice[1,2] 2
No. of Epoch uniform-integer[1,10] 8

No. of Search trials 20 20
Optimizer Adam Adam
Fixed Length for B,S [200,200] [200,200]
No. of GPU(RTX8000) 1 1
Average runtime (mins) 25 25

Table 5: Detailed parameters used in the Reasoning
component.

Answer Prediction Search Space(Bounds) Best Assignment

Max Seq. Length choice[256,384,512] 256
Learning Rate uniform-float[1e-6,3e-5] 1e-5
Batch Size per GPU uniform-integer[4,8,16] 16
Gradient Accumulation choice[1,2] 2
No. of Epoch uniform-integer[5,15] 10

No. of Search trials 30 3 0
learning rate optimizer Adam Adam
No. of GPU(RTX8000) 2 2
Average runtime (mins) 40 40

Table 6: Detailed parameters used in the Answer Pre-
diction component.

A.2 Auxiliary Supervision Construction

Figure 4 shows one labelled example. The official
dataset already provides detailed annotations for
both knowledge and question, where some anno-
tations could be directly introduced in our train-
ing objective. For the example, “para anno” tells
the cause and effect properties described in the
knowledge, and the polarity among them would
be marked as positive if the “effect dir sign” is
the same as the “casue dir sign”, otherwise will be
marked as negative.

However, some annotations are still missing, e.g.,
reasoning type. We introduce two methods to get
additional labels. On the one hand, We made some
hypotheses. For example, if “question anno” con-
tains “more effect xxx” and “less effect xxx” si-
multaneously, we would consider this question as
a comparison type. On the other, we annotate the
samples manually. For the questions without qual-
ified annotation, we label them by hand. Partic-
ularly, we find the text spans in the knowledge
and question, then transform the annotations to the
machine-readble form automatically.

A.3 Conversion Instruction

For Find Cause and Effect, Find World, and Find
Worlds modules, we should convert the attention
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Figure 4: An example with auxiliary supervision.

vector output into a text span.
First, the token with the highest probability is

selected. After that, we check left and right from
the selected word position and extend it if the prob-
ability of each neighbor is larger than the thresh-
old. The threshold value is determined based on F1
scores.

For the rest modules, we select the predicted
class with the highest probability.

A.4 Ablation Study on sub-tasks

We decompose the complex qualitative reasoning
task into several simple sub-tasks according to
logic and then train several sub-tasks together. Nat-
urally, as the number of tasks increases, errors accu-
mulate, but our method ultimately performs better.
To further examine the rationality of our work, we
conduct an ablation study on partial modules.

Modules Cause Effect Polarity

F1 Fuzzy F1 F1 Fuzzy F1 Accuracy

Find Cause and Effect + Polarity Check 72.6 82.3 67.0 78.4 88.8
only Find Cause and Effect 71.7 81.8 66.8 75.5 58.6
only Polarity Check 8.3 14.3 9.6 16.7 83.3

Table 7: Ablation study on Find Cause and Effect and
Polarity Check modules.

Table 7 shows the ablation study result on Find
Cause and Effect and Polarity Check modules. The
model achieves the best performance when we train

two modules together. However, when we remove
any module, i.e., focus on a single sub-task, the
corresponding performance deteriorates. This may
due to our approach, which mimics human cogni-
tive design, enables the model to make better use
of information from upstream modules to facili-
tate training. Therefore, our model could finally
achieve superior performance.

A.5 More Examples
We present more example with intermediate out-
puts that correctly answered by our model in Ta-
ble 8.
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ID:QRQA-10004-2
Knowledge: The gravitational force increases with mass and
decreases with the distance between the bodies.
Q&A: John was watching the physics calculator and noted
a profound finding. As the mass increases, the pull of the
gravitational force A) Decreases B) Increases.

Type: Prediction
Cause: mass
Effect: gravitational force
Polarity: +
World: mass increases
Value: ↑
Deduction:
mass increases will cause more grav-
itational force.

ID:QRQA-10004-2-flip
Knowledge: The gravitational force increases with mass and
decreases with the distance between the bodies.
Q&A: John was watching the physics calculator and noted
a profound finding. As the mass decreases, the pull of the
gravitational force A) Decreases B) Increases.

Type: Prediction
Cause: mass
Effect: gravitational force
Polarity: +
World: mass decreases
Value: ↓
Deduction:
mass decreases will cause less gravi-
tational force.

ID:QRQA-10228-1
Knowledge: The larger the light collecting area, the more light
a telescope gathers and the higher resolution (ability to see fine
detail) it has.
Q&A: Compared to a 1 inch wide telescope, would a 100 meter
telescope collect A) more light B) less light?

Type: Comparison
Cause: collecting area
Effect: light
Polarity: +
World 1: 1 inch wide telescope
World 2: 100 meter telescope
Comparison: <
Deduction:
1 inch wide telescope will cause less
light than 100 meter telescope.

ID:QRQA-10228-1-flip
Knowledge: The larger the light collecting area, the more light
a telescope gathers and the higher resolution (ability to see fine
detail) it has.
Q&A: Compared to a 100 meter wide telescope, would a 1 inch
telescope collect A) more light B) less light?

Type: Comparison
Cause: collecting area
Effect: light
Polarity: +
World 1: 100 meter wide telescope
World 2: 1 inch telescope
Comparison: >
Deduction:
100 meter wide telescope will cause
more light than 1 inch telescope.

Table 8


