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Abstract

Large pretrained models have achieved great
success in many natural language processing
tasks. However, when they are applied in spe-
cific domains, these models suffer from do-
main shift and bring challenges in fine-tuning
and online serving for latency and capacity
constraints. In this paper, we present a gen-
eral approach to developing small, fast and
effective pretrained models for specific do-
mains. This is achieved by adapting the off-
the-shelf general pretrained models and per-
forming task-agnostic knowledge distillation
in target domains. Specifically, we propose
domain-specific vocabulary expansion in the
adaptation stage and employ corpus level oc-
currence probability to choose the size of in-
cremental vocabulary automatically. Then we
systematically explore different strategies to
compress the large pretrained models for spe-
cific domains. We conduct our experiments
in the biomedical and computer science do-
main. The experimental results demonstrate
that our approach achieves better performance
over the BERTBASE model in domain-specific
tasks while 3.3× smaller and 5.1× faster than
BERTBASE. The code and pretrained models
are available at https://aka.ms/adalm.

1 Introduction

Pre-trained language models, such as GPT (Rad-
ford et al., 2018), BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019) and UniLM (Dong
et al., 2019) have achieved impressive success in
many natural language processing tasks. These
models usually have hundreds of millions of param-
eters. They are pre-trained on a large corpus of gen-
eral domain and fine-tuned on target domain tasks.
However, it is not optimal to deploy these models
directly to edge devices in specific domains. First,
heavy model size and high latency makes it difficult
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(b) Distill-then-Adapt(a) From scratch

Domain Corpus

(c) Adapt-then-Distill (d) Adapt-and-Distill

Figure 1: The four alternatives when distilling BERT
into specific domains. All strategies are task-agnostic.

to deploy on resource-limited edge devices such as
mobile phone. Second, directly fine-tuning a gen-
eral pre-trained model on a domain-specific task
may not be optimal when the target domain varies
substantially from the general domain. Thirdly,
many specialized domains contain their own spe-
cific terms, which are not included in pre-trained
language model vocabulary.

In this paper, we introduce AdaLM, a framework
that aims to develop small, fast and effective pre-
trained language models for specific domains. To
address domain shift problem, recent studies (Lee
et al., 2020; Gururangan et al., 2020) conduct con-
tinual pre-training to adapt a general domain pre-
trained model to specific domains. However, spe-
cific domains contain many common in-domain
terms, which may be divided into bite-sized pieces
(e.g., lymphoma is tokenized into [l, ##ym, ##ph,
##oma]). Gu et al.(2020) mentions that domain-
specific vocabularies play a vital role in domain
adaptation of pre-trained models. Specifically, we
propose a domain-specific vocabulary expansion
in the adaptation stage, which augments in-domain
terms or subword units automatically given in-
domain text. Also, it is critical to decide the size of
incremental vocabulary. Motivated by subword reg-

https://aka.ms/adalm
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ularization (Kudo, 2018), AdaLM introduces a cor-
pus occurrence probability as a metric to optimize
the size of incremental vocabulary automatically.

We systematically explore different strategies
to compress general BERT models to specific do-
mains (Figure 1): (a) From scratch: pre-training
domain-specific small model from scratch with do-
main corpus; (b) Distill-then-Adapt: first distill-
ing large model into small model, then adapting it
into a specific domain; (c) Adapt-then-Distill: first
adapting BERT into a specific domain, then distill-
ing model into small size; (d) Adapt-and-Distill:
adapting both the large and small models, then dis-
tilling with these two models initializing the teacher
and student models respectively.

We conduct experiments in both biomedical and
computer science domain and fine-tune the domain-
specific small models on different downstream
tasks. Experiments demonstrate that Adapt-and-
Distill achieves state-of-the-art results for domain-
specific tasks. Specifically, the 6-layer model of
384 hidden dimensions outperforms the BERTBASE
model while 3.3× smaller and 5.1× faster than
BERTBASE.

2 Related Work

Domain adaptation of pre-trained model
Most previous work on the domain-adaptation
of pre-trained models targets large models. Lee
et al. (2020) conduct continual pre-training to
adapt the BERT model to the biomedical domain
using the PubMed abstracts and the PMC full text.
Gururangan et al. (2020) also employ continual
pre-training to adapt pre-trained models into
different domains including biomedical, computer
science and news. However, many specialized
domains contain their own specific words that
are not included in pre-trained language model
vocabulary. Gu et al.(2020) propose a biomedical
pre-trained model PubMedBERT, where the
vocabulary was created from scratch and the
model is pre-trained from scratch. Furthermore, in
many specialized domains, large enough corpora
may not be available to support pre-training
from scratch. Zhang et al. (2020) and Tai et al.
(2020) extend the open-domain vocabulary with
top frequent in-domain words to resolve this
out-of-vocabulary issue. This approach ignores
domain-specific sub-word units (e.g., blasto-,
germin- in biomedical domain). These subword
units help generalize domain knowledge and avoid

unseen words.

Task-agnostic knowledge distillation In recent
years, tremendous progress has been made in
model compression (Cheng et al., 2017). Knowl-
edge distillation has proven to be a promising way
to compress large models while maintaining ac-
curacy (Sanh et al., 2019; Jiao et al., 2020; Sun
et al., 2020; Wang et al., 2020). In this paper, we
focus on task-agnostic knowledge distillation ap-
proaches, where a distilled small pre-trained model
can be directly fine-tuned on downstream tasks.
DistilBERT (Sanh et al., 2019) employs the soft
label and embedding outputs to supervise the stu-
dent. TinyBERT (Jiao et al., 2020) and Mobile-
BERT (Sun et al., 2020) introduce self-attention
distributions and hidden states to train the student
model. MiniLM (Wang et al., 2020) avoids restric-
tions on the number of student layers and employs
the self-attention distributions and value relation
of the teacher’s last transformer layer to supervise
the student model. Because this method is more
flexible, we implement MiniLM to compress large
models in this work. No previous work system-
atically explores different strategies to achieve an
effective and efficient smaller model in specific
domains.

3 Methods

3.1 Overview

We systematically explore different strategies to
achieve an effective and efficient small model in
specific domains. We summarize them into four
strategies: from scratch, distill-then-adapt, adapt-
then-distill and adapt-and-distill.

Pretrain-from-scratch Domain-specific
pretraining from scratch employs a random
initialization of a pretrained model and pretrains a
small model directly on domain-specific corpus.
In this work, we conduct pretraining from scratch
on different vocabularies including BERT original
vocabulary, from scratch vocabulary, and expanded
vocabulary.

Distill-then-adapt These approaches first distill
the large general pretrained model which pretrained
on Wikipedia and BookCorpus. Then it continues
the pretraining process using a domain-specific cor-
pus. In this work, we first distill the BERT model
into a small model using task-agnostic knowledge
distillation in MiniLM (Wang et al., 2020). Then
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we initialize the small model with it and conduct
continual training with both the BERT original vo-
cabulary and the expanded vocabulary.

Adapt-then-distill In this work, we select differ-
ent large models as teacher models such as BERT
and large models with different vocabularies. We
first adapt these models into domain-specific mod-
els and then implement MiniLM to compress them
to small models.

Adapt-and-distill In the previous part, when do-
ing knowledge distill, we initialized the student
model randomly. In order to get a better domain-
specific small model, we try to explore the impact
of the initialization of the student model. In this
part, we adapt large and small models into spe-
cific domains separately, then use these two models
to initialize the teacher and student model respec-
tively.

3.2 Domain Adaptation
AdaLM contains a simple yet effective domain
adaptation framework for a pretrained language
model. As shown in Figure 2, it takes a general pre-
trained language model, original vocabulary and a
domain specific corpus as input. Through vocabu-
lary expansion and continual pretraining, AdaLM
adapts general models into specific domains.

The core pipeline of domain adaptation consists
of the three steps described below:

1. Given original vocabulary and a domain-
specific corpus, the vocabulary expansion
module aims to augment original vocabulary
with domain-specific subword units or terms.
We augment domain-specific vocabulary from
the target domain, while keeping the original
BERT vocabulary unchanged. We describe
them in more detail in Section 3.3.

2. Due to the size of the vocabulary having
changed, we cannot initialize our model with
BERT directly. As illustrated in Figure 3, we
initialize the original embedding and Trans-
former encoder with weights from BERT (the
green part in Figure 3). For incremental vocab-
ulary, we first tokenize them into sub-words
with the original vocabulary and then use an
average pooling of their own sub-words em-
bedding to initialize. As shown in Figure 3,
the word ‘lymphoma’ is not included in BERT
vocabulary. We tokenize it into three sub-
words (lym, ##pho, ##ma). The embedding

General BERT Original Vocab Domain Corpus

Vocabulary Expansion

Expanded 

Vocab

Continual Pre-training

Model Initial Data Preprocessing

Figure 2: The pipeline of domain adaptation. Here we
adapt the BERT model into the biomedical domain with
PubMed dataset.

vector of ‘lymphoma’ is initialized by the av-
erage embedding vector of ‘lym’, ‘##pho’and
‘##ma’.

3. After model initialization and data prepro-
cessing, we continually pretrain our model
with domain-specific corpus using masked
language model loss. Following BERT, we
randomly replace 15% of tokens by a special
token (e.g., [MASK]) and ask the language
model to predict them in continual pretrain-
ing.

3.3 Vocabulary Expansion
Vocabulary expansion is the core module of
AdaLM. It augments domain-specific terms or sub-
word units to leverage domain knowledge. The
size of the incremental vocabulary is a vital param-
eter for vocabulary expansion. Considering that
unigram language modeling (Kudo, 2018) aligns
more closely with morphology and avoids prob-
lems stemming from BPE’s greedy construction
procedure, as proposed in (Bostrom and Durrett,
2020), we followed Kudo (2018) and introduced a
corpus occurrence probability as a metric to opti-
mize the size of incremental vocabulary automati-
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Figure 3: Concatenate original embedding with ex-
panded embedding.

cally. We assume that each subword occurs inde-
pendently and we assign to each subword in the
corpus a probability equal to its frequency in the
corpus.

∀i xi ∈ V,
∑
xi∈V

p(xi) = 1, (1)

where V is a pre-determined vocabulary. The prob-
ability of a subword sequence x = (x1, . . . , xM )
can be computed by the product of the subword
appearance probabilities p(xi). We convert it to
logarithmic form:

P (x) =
M∑
i=1

log(p(xi)), (2)

Given a domain-specific corpus D, the occur-
rence probability of corpus D is formulated as:

P (D) =

|D|∑
x

log(P (x)), (3)

where x represents tokenized sentence in corpus
D.

We sample 550k sentences from the PubMed cor-
pus and compute the occurrence probability P (D)
with different vocabulary sizes. The results are
shown in Figure 4. We compare the occurrence
probability with BERT and PubMedBERT vocabu-
laries. We observe that P (D) reveals a logarithmic
trend with substantial increases at the beginning
and little influence after vocabulary size of 70k in
the biomedical domain. The PubMedBERT vocab-
ulary performs similarly to the 40k size vocabulary.
We present the occurrence probability of different
vocabulary sizes in Appendix A.
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incre vocab

PubMedBERT vocabBERT vocab

Figure 4: The P (D) of different vocab sizes under
biomedical domain. We use the BERT’s vocabulary as
the 30k vocabulary without vocabulary expanding. The
PubMedBERT vocabulary is also 30k.

We propose a simple method to decide the size of
the incremental vocabulary. Assume the probability
at the time step i − 1 is Pi−1(D) and at the time
step i is Pi(D). If the rise Pi(D)−Pi−1(D)

Pi−1(D) is lower
than a threshold δ, we regard the vocabulary size
at the time step i as the final size.

Algorithm 1: Vocabulary Expansion
Input: Original vocabulary raw vocab,

domain corpora D, threshold δ and
vocabulary size step V∆

Output: vocabfinal
token count← whitespace split from D;
P0 ← computed from raw vocab;
V0 ← |raw vocab|;
do

vocabulary size Vi ← Vi−1 + V∆;
sub count← split token to subwords;
Sort sub count by frequency;
incr vocab←keep (Vi−V0) subwords;
vocabi ← raw vocab+ incr vocab;
Pi ← computed from vocabi

while Pi−Pi−1

Pi−1
> δ;

return vocabfinal ← vocabi ;

We expand the domain-specific vocabulary with
the process shown in Algorithm 1. We implement
our vocabulary expansion algorithm referring to
SubwordTextBuilder in tensor2tensor1. In experi-
ments, we set the threshold δ as 1% and vocabulary
size step V∆ as 10k. Finally, we obtain the ex-
panded vocabulary size of biomedical as 60k and
computer science domain as 50k.

1https://github.com/tensorflow/tensor2tensor
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4 Experiment Details

We conduct our experiments in two domains:
biomedical and computer science.

4.1 Datasets

Domain corpus: For the biomedical domain, we
collect a 16GB corpus from PubMed2 abstracts to
adapt our model. We use the latest collection and
pre-process the corpora with the same process as
PubMedBERT (we omit any abstracts with less
than 128 words to reduce noise.).

For the computer science domain, we use the
abstracts text from the arXiv3 Dataset. We select
abstracts in computer science categories, collecting
300M entries for the corpus.

Fine-tuning tasks: For the biomedical domain,
we choose three tasks: named entity recognition
(NER), evidence-based medical information ex-
traction (PICO), and relation extraction (RE). We
perform entity-level F1 in NER task and word-
level macro-F1 in the PICO task. The RE task
uses the micro-F1 of positive classes evaluation.
JNLPBA (Collier and Kim, 2004) NER dataset con-
tains 6,892 disease mentions, which are mapped
to 790 unique disease concepts with BIO tagging
(Ramshaw and Marcus, 1995). EBM PICO (Nye
et al., 2018) datasets annotates text spans with
four tags: Participants, Intervention, Comparator
and Outcome. ChemProt (Krallinger et al., 2017)
dataset consists of five interactions between chem-
ical and protein entities. We list the statistics of
those tasks in Table 1.

We fine-tune two downstream tasks in the com-
puter science domain. They are both classification
tasks. The ACL-ARC (Jurgens et al., 2018) dataset
mainly focuses on analyzing how scientific works
frame their contributions through different types
of citations. SCIERC (Luan et al., 2018) dataset
includes annotations for scientific entities, their re-
lations, and coreference clusters. The statistics are
available in Table 2.

4.2 Implementation

We use the uncased version of BERTBASE (12 lay-
ers, 768 hidden size) as the large model and the
MiniLM (6 layers, 384 hidden size) as the small
model.

2https://pubmed.ncbi.nlm.nih.gov/
3https://www.kaggle.com/Cornell-University/arxiv
4https://microsoft.github.io/BLURB/

Dataset Train Dev Test
JNLPBA 46,750 4551 8,662
EBM PICO 339,167 85321 16,364
ChemProt 18,035 11268 15,745

Table 1: Biomedical dataset used in our experiment.
All selected from BLURB4

Dataset Train Task Test Classes
ACL-ARC 1,688 114 139 6
SCIERC 3,219 455 974 7

Table 2: Computer science dataset used in our exper-
iment. We use the same train, development, and test
splits as Gururangan et al. (2020)

To adapt the large model, we set the batch size
at 8192 and the training step at 30,000. The peak
learning rate was set to 6e-4. To adapt the small
model, we set the batch size as 256 and the training
step as 200,000. The learning rate is set to 1e-4.
The maximum length of the input sequence was
512 and the token masking probability was 15%
for both the large model and the small model.

We implement MiniLM to compress large mod-
els and follow the setting of MiniLM, where the
batch size was set to 256 and peak learning rate as
4e-4. We set the training step as 200,000.

For biomedical tasks, we follow the setting of
PubMedBERT (Gu et al., 2020) to fine-tune these
three tasks. For computer science tasks, we use
the same setting as Gururangan et al. (2020). The
concrete parameters are shown in Appendix B.

5 Results

The results of the tasks are shown in the Table 3
and 4. We structure our evaluation by stepping
through each of our three findings:

(1) Domain-specific vocabulary plays a signifi-
cant role in domain-specific tasks and expanding
vocabulary with the general vocabulary is better
than just using domain-specific vocabulary.

We observe improved results via the expanded
vocabulary with both the large and small models.
For large model, AdaLM achieves the best results
under each domain, where 77.74 on biomedical
domain tasks, beating BioBERT and PubMedBERT
and 77.76 on the computer science domain tasks.

For small models, in the biomedical domain,
whether we train from scratch or distill-then-adapt
with small models, incremental vocabulary mod-
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Config Type Model Teacher JNLPBA PICO Chemprot Average

L=12; d=786 Large model

BERT† - 78.63 72.34 71.86 74.28
BioBERT† - 79.35 73.18 76.14 76.22
PubMedBERT† - 80.06 73.38 77.24 76.89
AdaLM♦ - 79.46 75.47 78.41 77.74

L=6; d=384

Small model MiniLM - 77.44 71.69 68.08 72.40

From scratch
BERT vocab (a) - 77.89 72.97 70.21 73.69
PubMed vocab (b) - 77.82 73.82 70.32 73.99
AdaLM vocab (c) - 77.80 73.39 70.86 74.02

Distill-then-Adapt
BERT vocab (d) - 78.63 74.00 72.28 74.97
PubMed vocab (e) - 78.36 73.91 71.33 74.53
AdaLM vocab (f) - 78.77 74.23 72.29 75.10

Adapt-then-Distill
Random initial (g) BERT 77.98 72.38 68.86 73.07
Random initial (h) PubMedBERT 78.78 74.20 70.89 74.62
Random initial (i) AdaLM♦ 78.98 74.78 71.51 75.09

Adapt-and-Distill Model (f) initial (j) AdaLM♦ 79.04 74.91 72.06 75.34

Table 3: Comparison between different strategies on biomedical tasks. The AdaLM♦ means we just adapt the
large model without distillation. Scores of the methods marked with † are taken from (Gu et al., 2020). Underlined
data marks the small models whose performances surpass the BERT model’s performance. L and d indicate the
number of layers and the hidden dimension of the model.

els always perform better than the general vocabu-
lary or just the domain-specific vocabulary. (When
distill-then-adapt with the PubMed vocabulary, we
initialize the word embedding in the same way as
mentioned in Section 3.2). In addition, with distill-
then-adapt, the model (f) (75.10) can surpass the
BERT model (74.28).

In the computer science domain, distill-then-
adapt models with incremental vocabulary also
show great performance. Model (d) achieves a
comparable result of 72.91 as BERT and outper-
forms BERT in the ACL-ARC datasets with 65.93
(+1.01 F1). We also observe that when training
from scratch, the results of Model (b) with incre-
mental vocabulary are lower (1.45 lower) than that
of model (a). This may be because after vocabu-
lary expansion, a from-scratch model needs to be
pretrained with more unlabeled data.

(2) Continual pretraining on domain-specific
texts from general language models is better than
pretraining from scratch.

Gu et al. (2020) finds that for domains with abun-
dant unlabeled texts, pretraining language models
from scratch outperforms continual pretraining of
general-domain language models. However, in our
experiments, we find that general-domains model
can help our model to learn the target domain better.
In the biomedical domain, we use MiniLM model
to initialize the model (d), (e) and (f) in distill-then-
adapt setting. No matter which vocabulary is used,
continual pretraining on domain-specific texts from

general language models is better than pretraining
from scratch. For AdaLM vocabulary, the model
(f) gets 75.10, outperforming the model (c) trained
from scratch with the same vocabulary by 1.08. On
the other hand, for domains that do not have enor-
mous unlabeled texts such as the computer science
domain in our experiments, continual pretraining
also showed better results. With continual pretrain-
ing, model (d) achieves higher results exceeding
both model (b) (+5.66 F1) and model (c) (+0.47
F1).

(3) Adapt-and-Distill is the best strategy to de-
velop a task-agnostic domain-specific small pre-
trained model.

In the Adapt-then-Distill part, our findings sup-
ports evidence from previous observations (Wang
et al., 2020) that a better teacher model leads to a
better student model. Using AdaLM which per-
forms best among large models as the teacher
model can yield good results: 75.09 in the biomed-
ical domain and 71.62 in the computer science,
better than other domain-specific large models. Fur-
thermore, we find that a better student model for
initialization can also help to get a better small
model. In the Adapt-and-Distill part, we adapt
large and small models into specific domains sepa-
rately and then compress the adapted large model
as the teacher with the adapted small model as ini-
tialization. In the biomedical domain, the model
(j), initialized from model (i), achieves the best
result of 75.34 among the small models. It also
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Config Type Model Teacher ACL-ARC SCIERC Average

L=12; d=786 Large model
BERT - 64.92 81.14 73.03
AdaLM♦ - 73.61 81.91 77.76

L=6; d=384

Small model MiniLM - 61.5 72.88 67.19

From scratch
BERT vocab (a) - 62.48 74.93 68.70
AdaLM vocab (b) - 59.57 74.93 67.25

Distill-then-Adapt
BERT vocab (c) - 65.75 79.13 72.44
AdaLM vocab (d) - 65.93 79.88 72.91

Adapt-then-Distill
Random initial (e) BERT 63.12 77.89 70.50
Random initial (f) AdaLM♦ 66.21 77.04 71.62

Adapt-and-Distill Model (d) initial (g) AdaLM♦ 68.74 78.88 73.81

Table 4: Comparison between different strategies on computer science tasks. The AdaLM♦ is the adapted large
model without compressing. We report averages across five random seeds. Data marked with underlines are the
results of small models which outperform the BERT model’s. L and d indicate the number of layers and the hidden
dimension of the model.

outperforms the BERT model (+1.06 F1). In the
computer science domain, model (g), initialized by
model (d), is the only small model that outperforms
BERT (+0.78 F1).

6 Analysis

6.1 Inference Speed
We compare AdaLM’s parameters’ size and infer-
ence speed with the BERT model in the biomedical
domain in Table 5.

Type Model #Params Speedup

Large
BERT 109M ×1.0
PubMedBERT 109M ×1.0
AdaLM vocab 132M ×1.07

Small
BERT vocab 22M ×5.0
AdaLM 34M ×5.1

Table 5: Comparison of model’s parameter size and the
inference speed. The inference speedup is computed
by the classification task ChemProt and evaluated on a
single NVIDIA P100 GPU.

First we can find that the vocabulary expansion
yields marginal improvements on the model’s in-
ference speed. We added about 20M parameters
in the embedding weights in the large model us-
ing AdaLM vocabulary, but its inference speed
is slightly faster than BERT and PubMedBERT.
Since most domain-specific terms are shattered into
fragmented subwords, the length of the token se-
quence we get by using the incremental vocabulary
is shorter than the length of the sequence got by the
original vocabulary, which reduces the computation

load. We list the change of the sequence length of
the downstream tasks in Appendix C. Meanwhile,
in the embedding layers, the model just needs to
map the sub-words’ id to their dense representa-
tions, which is little affected by the parameters’
size. The small model shows the same trend.

In addition, the small model AdaLM shows great
potential. Compared with the 12-layer model of
768 hidden dimensions, the 6-layer model of 384
hidden dimensions is 3.3x smaller and 5.1x faster
in the model efficiency, while performing similarly
to or even better than BERTBASE.

6.2 Impact of Training Time

Pre-training often demands lots of time. In this sec-
tion, we examine the adapted model’s performance
as a function of training time. Here we use the
biomedical domain since its unlabelled texts are
abundant and compare the large domain-specific
adapted model with BioBERT. For every 24 hrs of
continual pre-training, we fine-tuned the adapted
model on the downstream tasks. For comparison,
we convert the training time of BioBERT to the
time it may take with the same computing resource
of this work (16 V100 GPUs).

We list the results in Table 6, we denote the large
adapted model as AdaLM in the table. AdaLM at 0
hrs means that we fine-tune the initialized model di-
rectly without any continual pre-training. We find
that BERT is slightly better than 0hr AdaLM and
after 24 hrs, AdaLM outperforms BioBERT, which
demonstrates that domain-specific vocabulary is
very critical for domain adaption of pre-trained
model. Our experiments demonstrate promising re-
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Model Training Time Average

AdaLM

0 hrs 74.25
24 hrs 76.80
48 hrs 77.36
72 hrs 77.74

BERT 0 hrs 74.28
BioBERT 120 hrs 76.22

Table 6: Results with different pre-training time. In
the table, AdaLM is the adapted large model without
compressing.

sults in the biomedical domain. Under constrained
computation, AdaLM achieves better performance
compared to BioBERT. More details can be found
in Appendix D

6.3 Impact of Vocabulary Size

To understand the impact of the vocabulary size,
we conduct some experiments with different vocab-
ulary sizes in the biomedical domain. We select
the biomedical large AdaLM model and to reduce
the computation load, we set the batch size as 256
and step as 250K in our ablation studies. We show
performance of the model with different sizes in
Table 7.

40k 50k 60k 70k 80k
JNLPBA 78.84 79.02 78.91 78.94 79.01
PICO 75.09 74.81 74.99 74.58 75.00
ChemProt 76.10 76.80 77.21 76.40 76.85
Average 76.67 76.87 77.03 76.64 76.95

Table 7: The performance of different vocabulary sizes

We observe that the model of 60k achieves the
best results in our ablation studies. The result is
a bit surprising. Despite having a larger vocab-
ulary, the 70k and 80k model does not show a
stronger performance. A possible explanation for
these results may be that a larger vocabulary set
may contain some more complicated but less fre-
quent words, which cannot be learnt well through
continual pre-training. For example, the word fer-
rocytochrome exists in 70k and 80k vocabularies
but is split into (‘ferrocy’, ‘##tochrom’, ‘##e’) in
the 60k vocabulary. In our sampled data (about
550k sentences), ‘ferrocytochrome’ appears less
than 100 times, while the subword ‘##tochrom’ ap-
pears more than 10k times and ‘ferrocy’ appears
more than 200 times. The representation of those
rare words cannot be learnt well due to the sparsity

problem.

6.4 Vocabulary Visualization
The main motivation for using an the expanded
vocabulary set is to leverage domain knowledge
better. Compared to PubMedBERT which just uses
the domain-specific vocabulary and initializes the
model randomly, the keep of the general vocabulary
and the general language model’s weights may help
us make good use of the existing knowledge and
word embedding.

To assess the importance of the expanded vo-
cabulary, we compute the L2-distance of the em-
bedding weights before and after pre-training in
our AdaLM model in the biomedical domain in
Figure 5.

Original vocab Domain-specific vocab

Figure 5: The L2-distance of the embedding layer. The
deeper the color, the farther the distance.

We observe that the domain-specific vocabulary
part changes a lot during the pre-training time,
which indicates that our model learns much infor-
mation about these domain-specific terms. We also
observe that there is little change in many original
sub-words’ embedding weights, which indicates
that many general vocabularies can be used directly
in continual training.

7 Conclusion

In this paper, we investigate several variations to
compress general BERT models to specific do-
mains. Our experiments reveal that the best strat-
egy to obtain a task-agnostic domain-specific pre-
trained model is to adapt large and small models
into specific domains separately and then compress
the adapted large model with the adapted small
model as initialization. We show that the adapted 6-
layer model of 384 hidden dimensions outperforms
the BERTBASE model while 3.3× smaller and 5.0×
faster than BERTBASE. Our findings suggest that
domain-specific vocabulary and general-domain
language model play vital roles in domain adapta-
tion of a pretrained model. In the future, we will
investigate more directions in domain adaptation,
such as data selection and efficient adaptation.
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A Occurrence probability of different
vocabulary sizes

Vocabulary P(D)
BERT -255.92
PubMed -218.49
40k vocab -220.06
50k vocab -214.40
60k vocab -211.88
70k vocab -210.44
80k vocab -209.57
90k vocab -208.86
100k vocab -208.42

Table 8: The P (D) of different vocabulary under
biomedical domain.

Vocabulary P(D)
BERT -211.14
40k vocab -194.08
50k vocab -192.56
60k vocab -191.87
70k vocab -191.45
80k vocab -191.09
90k vocab -190.76
100k vocab -190.53

Table 9: The P (D) of different vocabulary under com-
puter science domain.

B Fine-tuning hyperparameters for
downstream tasks

Hyperameter Assignment
NER PICO RE

Batch size 32 {16,32} 32
Learning rate {1e-5,3e-5,5e-5}
Epoch {30-40} {10,15} {40-50}
Dropout 0.1

Table 10: Hyparameters we used to finetune on biomed-
ical tasks.

C Sequence Length

After the vocabulary expansion, the length of the
token sequence may get shorter. We compute the
average sentence length of the downstream tasks.
We list the results in Table 12

Hyperameter Assignment
ACL-ARC SCIERC

Batch size 16
Learning rate 2e-5
Epoch 20
Dropout 0.1

Table 11: Hyparameters we used to finetune on com-
puter science tasks.

Dataset Original Vocab Incr. Vocab

ChemProt 66 53
EBM PICO 36 31
JNLPBA 41 32

ACL-ARC 53 50
SCIERC 45 42

Table 12: The sequence length tokenized by the origi-
nal vocabulary and expanded vocabulary.

D Results of different training time

We list the biomedical tasks’ results of each pre-
training time in the following table.

0h 24h 48h 72h
JNLPBA 77.56 79.14 79.11 79.46
PICO 73.29 74.22 75.28 75.36
ChemProt 71.91 77.06 77.69 78.42
Average 74.25 76.80 77.36 77.74

Table 13: The performance of models with different
pretraining time


