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Abstract

We present a simplified, task-agnostic multi-
modal pre-training approach that can accept
either video or text input, or both for a va-
riety of end tasks. Existing pre-training are
task-specific by adopting either a single cross-
modal encoder that requires both modalities,
limiting their use for retrieval-style end tasks
or more complex multitask learning with two
unimodal encoders, limiting early cross-modal
fusion. We instead introduce new pretraining
masking schemes that better mix across modal-
ities (e.g. by forcing masks for text to pre-
dict the closest video embeddings) while also
maintaining separability (e.g. unimodal pre-
dictions are sometimes required, without us-
ing all the input). Experimental results show
strong performance across a wider range of
tasks than any previous methods, often outper-
forming task-specific pre-training1.

1 Introduction

We study the challenge of achieving task-agnostic
pre-training for multimodal video understanding,
building on recent unimodal approaches such as
pretrained language models for text (Peters et al.,
2018; Devlin et al., 2019). Although certain lan-
guage models are near task-agnostic (Devlin et al.,
2019; Lewis et al., 2020) on NLP tasks, being task-
agnostic on multi-modal tasks are more challeng-
ing due to cross-modal tasks such as text-video re-
trieval. Existing video-and-language pre-trainings
are task-specific, which adopt either (1) a cross-
modal single encoder (Sun et al., 2019b,a; Zhu and
Yang, 2020) favoring tasks that require cross-modal
reasoning (e.g. video captioning), or (2) multiple
unimodal encoders/decoders (Miech et al., 2019,
2020; Li et al., 2020b; Luo et al., 2020; Korbar
et al., 2020) combining specific tasks that require
separately embedding each modality (e.g. video

1Code will be released under fairseq.

Figure 1: Existing models (upper figure) adopt com-
plex architectures and multiple task-specific training to
merge two streams of data to cover a wide range of
downstream tasks (such as retrieval or text generation).
Our video-language model (VLM) (lower figure) uses
a single BERT encoder for task-agnostic pre-training
(e.g. only masking tokens, no matching or alignment
for specific end tasks) in a joint feature space, while
still covering a wide range of tasks (see Figure 3).

retrieval). We instead show that it is possible to pre-
train a task-agnostic model called video-language
model (VLM) that can accept text, video, or both
as input.

As shown in Figure 1, this task-agnostic single
encoder approach has several advantages: (1) it
reduces the complexity of pre-training with mul-
tiple losses and models (e.g. Luo et al. (2020)),
and (2) it holds less assumption on being close to
end tasks as in retrieval-based pre-training Miech
et al. (2020) and is as general as classic LMs, and
(3) it encourages feature sharing among modalities
when present, without sacrificing separability, and
(4) it is more parameter efficient (see Section 5, we
achieve strong performance with BERTBASE sized
models). Table 1 summarizes the design choices of
recent models.

Our encoder is a transformer block that com-
bines the existing masked frame model and masked
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language model (MFM-MLM) (Sun et al., 2019a;
Li et al., 2020b; Luo et al., 2020) with two new
methods to improve the learning of multi-modal fu-
sion. First, we introduce a masking scheme called
masked modality model (MMM) that randomly
masks a whole modality for a portion of training
examples (the rest of the examples goes for tradi-
tional MFM-MLM), thereby forcing the encoder
to use the tokens from the other modality to pro-
duce tokens for the masked modality. We then
introduce a single masked token loss to replace two
(2) losses on video and text separately for MFM-
MLM. Masked token loss uses the embeddings of
both video and text tokens to learn joint hidden
states for the encoder.

We also show it is possible to fine-tune a single
encoder for a wide range of tasks by using task-
specific attention masks. Experiments demonstrate
that it performs well on a wider range of tasks than
previous models, including outperforming task-
specific pre-training baselines with unimodal en-
coders of similar hyper-parameters by more than
2% on retrieval tasks and 1% on video captioning.
Note that these results are also achieved with a
much smaller model than previous approaches, fur-
ther demonstrating the improved fusion and sharing
across modalities.

In summary, the main contributions of this paper
are as follows: (1) we propose to pre-train a task-
agnostic encoder for video understanding; (2) we
introduce masked modality model (MMM) and
masked token loss for cross-modal fusion during
pre-training without sacrificing separability; (3)
experimental results show that the proposed simple
baseline achieves competitive performance with
significantly fewer parameters.

2 Related Work

Numerous multimodal task-specific pre-training
models are proposed for downstream visual-
linguistic tasks. In video and text pre-training,
existing research adopts different design choices
regarding proxy tasks and neural architectures for
end tasks (Luo et al., 2020).

On one hand, VideoBERT (Sun et al., 2019b),
Unicoder-VL (Li et al., 2020a), VL-BERT (Su
et al., 2020), UNITER (Chen et al., 2020), VLP
(Zhou et al., 2018), ActBERT (Zhu and Yang, 2020)
adopt a shared encoder approach, where the vision
and text sequences are concatenated and input to a
single Transformer(Vaswani et al., 2017) encoder.

Although this approach is simple, it limits the types
of downstream tasks to those that input both modal-
ities simultaneously. For example, (Sun et al.,
2019b) may not be able to perform joint retrieval
tasks and added another decoder for video caption-
ing during fine-tuning. (Zhu and Yang, 2020) uses
[CLS] token for pairwise metric-learning based
retrieval (which is an easier problem but requires
a quadratic number of examples and is 50 times
slower as reported in (Luo et al., 2020)).

Meanwhile, many existing approaches adopt
or add task-specific pre-training to accommodate
retrieval and video captioning tasks (e.g. two-
stream encoders (video and text separately) and
text decoders). For example, (Miech et al., 2019,
2020; Rouditchenko et al., 2020; Ging et al., 2020;
Gabeur et al., 2020; Alayrac et al., 2020; Patrick
et al., 2021; Huang et al., 2021) adopts a retrieval
task for pre-training. CBT (Sun et al., 2019a),
HERO (Li et al., 2020b), VideoAsMT (Korbar
et al., 2020) and UniVL (Luo et al., 2020) adopt
multi-task learning (MTL) to learn retrieval tasks
on video and text encoders. HERO (Li et al.,
2020b) and UniVL (Luo et al., 2020) adopts an-
other cross-encoder to further learn the fusion of
different modality. UniVL (Luo et al., 2020) and
VideoAsMT (Korbar et al., 2020) add another text
decoder for video captioning. Compared with the
single-stream input in the shared encoder approach,
two-stream encoders typically come with a com-
plex architecture and proxy tasks to cover more end
tasks. To the best of our knowledge, none of the
existing works target task-agnostic pre-training.

2.1 Image-Text Pre-training
ViLBERT (Lu et al., 2019), LXMERT (Tan and
Bansal, 2019) adopt two transformers for image
and text encoding separately. VisualBERT (Li et al.,
2019), Unicoder-VL (Li et al., 2020a), VL-BERT
(Su et al., 2020), UNITER (Chen et al., 2020), Uni-
fied VLP (Zhou et al., 2020) use one shared BERT
model. These models employ MLM and pairwise
image-text matching as pretraining tasks which are
effective for downstream multimodal tasks. Our
fine-tuning for video captioning is inspired by Uni-
fied VLP (Zhou et al., 2020) that adopts attention
masks and language model heads of BERT for
image-captioning.

2.2 Video-Text Pre-training
VideoBERT (Sun et al., 2019b) and CBT (Sun
et al., 2019a) are the first works to explore the
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capability of pre-training for video-text. Although
VideoBERT and CBT pre-train the model on
multimodal data, the downstream tasks mainly
take video representation for further prediction.
ActBERT (Zhu and Yang, 2020) is a weakly-
supervised pre-training method. It leverages global
action information to catalyze mutual interactions
between linguistic texts and local regional objects
and introduces a transformer block to encode global
actions, local regional objects, and linguistic de-
scriptions. HERO (Li et al., 2020b) encodes mul-
timodal inputs in a hierarchical fashion. Besides,
two new pre-training tasks, video-subtitle matching
and frame order modeling, are designed to improve
representation learning. VideoAsMT (Korbar et al.,
2020) and UniVL (Luo et al., 2020) further adopt a
BART-style(Lewis et al., 2020) text generation task
for downstream tasks such as video captioning and
UniVL adopts a EnhancedV training stage to mask
all text tokens for better learning of generation.

3 Pre-training

As a reminder, our goal is to train a task-agnostic
model for various tasks in video-text understand-
ing. This section introduces task-agnostic prox-
ies for pre-training. We first describe two mask-
ing schemes as a baseline: masked frame model
(MFM) for video frames and masked language
model (MLM) for text tokens (Sun et al., 2019a; Li
et al., 2020b; Luo et al., 2020). Then we introduce
masked modality model (MMM) that encourage to
learn the representations of one modality from the
other. Lastly, we introduce masked token loss that
unifies losses on masked video and text tokens as a
single loss function.

3.1 Vector Quantization and BERT

Assume we have a clip (v, t) sampled from a video,
where v and t corresponds to video modality and
text modality, respectively. Since videos are signals
in continuous space, we first extract token embed-
dings from raw videos. We decode v into frames
and then feed them into a (frozen) video encoder
Encodervideo(·) and a trainable MLP layer to obtain
video tokens:

xv = MLP(Encodervideo(fv)), (1)

where we use a bolded symbol to indicate a se-
quence and fv is a sequence of continuous frames
from a video. We use S3D (Xie et al., 2018;

Miech et al., 2020), which is pre-trained via self-
supervised learning on the Howto100M dataset.
The MLP layer allows the hidden size of video
tokens to be the same as BERT’s hidden sizes d:
xv ∈ Rd. Similarly, vectors for text tokens xt are
obtained via embedding lookup as in BERT.

To simplify multi-modal pre-training, we adopt
a single BERT transformer with minimum changes.
We first concatenate video tokens xv and text to-
kens xt via the [SEP] token so video and text
belongs to one corresponding segment of BERT:

x = [CLS] ◦ xv ◦ [SEP] ◦ xt ◦ [SEP]. (2)

We further mask x as xmasked (detailed in the
next subsection) and feed the whole sequence into
BERT:

h = BERT(xmasked), (3)

where h indicates the hidden states of the last layer
of BERT. To encourage learning video/text hidden
states in a shared space for the masked token loss
(introduced in Section 3.3), we use a shared head
to predict video/text token embeddings via a linear
projection layer:

e = Wh+ b, (4)

where e ∈ Rd and W and b are the weights from
the prediction heads of BERT. In this way, our
model learns a joint embedding space for both
video and text tokens from inputs to outputs of
BERT. This allows for pre-training a single encoder
directly from any existing LMs and the only layer
that requires initialization is the MLP layer.

3.2 MFM-MLM
Inspired by (Sun et al., 2019a; Li et al., 2020b;
Luo et al., 2020), we adopt masked frame model
(MFM) for videos and masked language model
(MLM) for text as a baseline. Note that unlike
LMs that typically come with a fixed vocabulary
with a special [MASK] token, video tokens are
innumerable in the continuous space and we mask
a video token by setting a video token with all zeros
and ask the encoder to recover the video token. via
noisy contrastive estimation (NCE):

LMFM = −Es∼V logNCE(xs|xmasked;V
′), (5)

where V is all indexes of video tokens and

NCE(xv|xmasked;V
′) =

exp(xTv ev)

exp(xTv ev) +
∑

j∈V ′ exp(xTj ev)
,

(6)
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Figure 2: Task-agnostic pre-training (e.g. w/o task
on retrieval-style alignment): MFM-MLM: 50% of
training examples are masked as masked frame model
(MFM) and masked language model (MLM); the rest
50% examples are masked as masked modality model
(MMM) (25% on text as in the second row and 25% on
video as in the third row).

where V ′ indicates all non-masked video tokens
within the same batch. The final loss is the sum of
both MFM and MLM:

LMFM-MLM = LMFM + LMLM, (7)

where LMLM is the same as BERT and we omit
its details for brevity. We experiment this classic
baseline in Section 5.

3.3 MMM and Masked Token Loss

Masked Modality Model We introduce masked
modality modal (MMM) that masking either all
video or all text tokens out for a given example
of video-text clip. This masking scheme comple-
ments MFM-MLM (e.g. in our experiments 50%
of training examples are masked as MMM and the
rest 50% are masked as MFM-MLM). This encour-
ages the encoder to use tokens from one modality
to recover the tokens for the other modality. This
resolves the issue that an encoder may use nearby
tokens from their modality for prediction just be-
cause tokens from a single modality are closer As
in the lower two (2) sub-figures in Figure 2, we
either mask the whole modality of video or text
so this modality can be “generated” from the other
modality. Our experiments indicate that this is crit-
ical for pre-training a single encoder for retrieval
tasks.
Masked Token Loss We further introduce masked
token loss that unifies loss functions for MFM and
MLM. This loss encourages learning a joint to-
ken embedding space for video and text and both
types of tokens contribute to the prediction of a

masked (video or text) token. This also improves
the number of contrasted negative embeddings in
two separate losses for MFM and MLM.

We define masked token loss LVLM as the fol-
lowing:

−Es∼V ∪D logNCE(xs|xmasked;V
′ ∪D\s), (8)

where D is the word embeddings over the vocab-
ulary of BERT and D\s excludes token s (if s is a
text token). Further, NCE(xs|xmasked;V

′ ∪D\s) is
defined as:

exp(xTs es)

exp(xTs es) +
∑

j∈V ′∪D\s
exp(xTj es)

. (9)

Note that j ∈ V ′ ∪ D\s can be either a video
or text token and one predicted token es must be
closer to the ground-truth token embedding (either
a video token or word embedding) and be away
from other embeddings of video/text tokens. We
perform an ablation study in Section 5 to show that
LVLM works better than LMFM-MLM.

4 Fine-tuning

In this section, we describe how to use different
types of attention masks to fine-tune VLM for a
variety of tasks, as shown in Figure 3.

4.1 Text-Video Retrieval

One major challenge of pre-training on a single
encoder is how to adapt such a model to joint
space retrieval without using unimodal encoders
for task-specific pre-training on contrastive loss (as
in Howto100M (Miech et al., 2019, 2020)). The
main reason is that many existing models encode
text and video tokens together via self-attention,
and one cannot obtain hidden states for text/video
alone.

To resolve this, we propose to apply an isolated
attention mask with two squared masks that are
diagonally placed, as shown in the lower sub-figure
of the first box in Figure 3.2 These two squares
disable video and text tokens to attend and see each
other, while still allow video and text tokens to use
the same self-attention layers for learning represen-
tations in the same feature space. Further, note that
the first and second [SEP] tokens of BERT will

2One can further reduce O(m+n)2 complexity to O(m2+
n2) (m and n are lengths for video and text, respectively) by
feeding video/text separately to BERT but we adopt squared
masks for simplicity.
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Figure 3: Fine-tuning of downstream tasks: we adopt different types of attention masks for BERT to accommodate
downstream tasks that require different modalities: in each box, the upper sub-figure indicates a forward computa-
tion; the lower sub-figure indicates squared self-attention mask, where tokens from each row have a weighted sum
of columns that are not in white colors.

be used by video and text, respectively, aiming to
learn sequence-level features(Clark et al., 2019).
The [CLS] is disabled as no need to learn features
across video and text. After forwarding, all hidden
states of video and text tokens are average pooled,
respectively. Then we use a contrastive loss on
text-video similarity to discriminate a ground-truth
video clip from other video clips in the same batch
for a given text clip. During the evaluation, to en-
sure video and text are isolated (to avoid leaking
ground-truth of a similar pair), we split text and
video and forward them separately. We report an
ablation study in Section 5 showing that the MMM
introduced in the previous section is crucial to en-
sure that the pre-trained hidden states (for video or
text) are a good initialization for retrieval tasks.

4.2 Action Segmentation

Action segmentation is to assign each frame of a
video with one of the pre-defined labels. This is
similar to the named entity recognition (NER) task
in NLP but on video frames. We feed in VLM with
the whole video, a dummy text token, and an iso-
lated attention mask. Then we add a classification
head (with the number of pre-defined labels) on top
of the hidden states for each video token in the last
layer of VLM.

4.3 Action Step Localization

In action step localization, each video belongs to
a task with multiple steps, where each step is de-
scribed as a short text. Then each frame of a video
needs to be aligned with a step in text form. The
challenge for applying BERT to action step lo-
calization is similar to text-video retrieval: video
frames need to be aligned with textual steps in
joint space and it is almost impossible for pair-
wise video/text matching because the number of
frame/text pairs is large.

Similar to the text-video retrieval model, we also
apply isolated attention masks to video and text.
The major difference is that we pass video and
text separately to BERT. This is because the video
can be several minutes long (more than 100 to-
kens) but the number of text labels for each video
is fixed (e.g. under 10). To keep the format of
BERT being consistent for multi-modal inputs, we
add a dummy text token for video forwarding and
a dummy video token for text, respectively. For
a given frame(video token), we compute the dis-
tribution of that frame over textual steps via dot
products and the softmax function.

4.4 Multiple-choice VideoQA

Multiple-choice VideoQA (Yu et al., 2018) aligns
each video with one out of several candidate an-
swers in the text. The major difference between ac-
tion step localization and multiple-choice VideoQA
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is that the video hidden state is not on frame-level
but sequence-level. We apply isolated attention
masks to BERT and forward video and text answers
(with dummy tokens), respectively. Then the an-
swer with the maximum similarity with the video is
reported. During fine-tuning, we apply contrastive
loss on video-text similarity to rank answers.

4.5 Video Captioning

Another big challenge of using a single encoder is
how to apply generative tasks (such as video cap-
tioning) without pre-training an explicit decoder.
We observe that a transformer decoder (Vaswani
et al., 2017) has the following major differences
from an encoder: (1) an auto-regressive loss that
does not allow a text token to see future tokens;
(2) a prediction head to generate texts. To resolve
(1), one can easily fine-tune the text segment of
VLM as auto-regressive loss by passing in shifted
tokens and a lower-triangle attention mask to the
text segment, as shown in Figure 3. To resolve
(2), inspired by (Rothe et al., 2020; Zhou et al.,
2020) that uses BERT as a decoder, one can re-use
language model heads as prediction heads for gen-
eration. Note that this setting has less architecture
design than a standard transformer decoder (e.g.
no explicit self-attention on text or cross-attention
on video). The implicit text decoder inside BERT
shares self-attention with the video encoder so to
save the total number of parameters.

5 Experiment

5.1 Dataset

5.1.1 Pre-training
We adopt the Howto100M dataset (Miech et al.,
2019) for pre-training, which contains instructional
videos originally from YouTube via searching key-
words from wikihow (www.wikihow.com). After
filtering the unavailable ones, we get 1.1M videos.
We split 4000 videos as the validation set and the
rest for pre-training. On average, the duration of
each video is about 6.5 minutes with 110 clip-text
pairs. After removing repeated texts within over-
lapped clips from ASR, we get about 7.7+ GB texts
of captions, with 2.4 tokens per second on average.

5.1.2 Fine-tuning
MSR-VTT (Xu et al., 2016) is a popular dataset
for text-video retrieval and VideoQA. It has open
domain video clips, and each training clip has 20
captioning sentences labeled by humans. There

are 200K clip-text pairs from 10K videos in 20
categories, including sports, music, etc. Following
JSFusion(Yu et al., 2018; Miech et al., 2019), we
randomly sampled 1,000 clip-text pairs as test data.
We further use the QA test data (Yu et al., 2018) as
the dataset for multiple-choice VideoQA.
Youcook2 (Zhou et al., 2017) contains 2,000 cook-
ing videos on 89 recipes with 14K video clips from
YouTube. The overall duration is 176 hours (5.26
minutes on average). Each video clip is annotated
with one captioning sentence. Follow the split set-
ting in(Miech et al., 2019), we evaluate both text-
based video retrieval and multimodal video caption-
ing tasks. We filter the data and make sure there
is no overlap between pre-training and evaluation
data. After filtering out unavailable ones, we have
9,473 training clip-text pairs from 1222 videos and
3,305 test clip-text pairs from 430 videos.
COIN (Tang et al., 2019) are leveraged to evaluate
action segmentation. It has 11,827 videos (476
hours) and each video is labeled with 3.91 step
segments on average and 46,354 segments in total.
There are 778 step labels, plus one background
(Outside) label. Since one video can last for several
minutes that are much longer than the maximum
length of the video segment of VLM. We apply a
sliding window with step size 16 and window size
32. During inference, we average the logits for
overlapped frames from multiple windows.
CrossTask (Zhukov et al., 2019) is a dataset for
action localization that contains 83 different tasks
and 4.7k videos. Each task has a set of steps with
text descriptions annotated on temporal frames of
the video. We use the testing data split via the offi-
cial code3, which contains annotated 1690 videos.
The rest of the 540 annotated videos are used for
weakly supervised training.

5.2 Hyper-parameters

We extract video tokens from video frames using
the S3D encoder pre-trained from (Miech et al.,
2020). The fps is 30 and we extract one (1) video
token per second with the dimension of 512. We
apply an MLP to transform such 512 dimensions
to the hidden size (768) of BERTBASE.

Following (Luo et al., 2020), we adopt
BERTBASE (uncased) as our base model and
tuned directly from BERT’s weights, so all hyper-
parameters are the same as the original BERT. The
maximum length of BERT is set as 96, where 32

3https://github.com/DmZhukov/CrossTask

www.wikihow.com
https://github.com/DmZhukov/CrossTask
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Model Paradigm #params. #loss #unimodal/cross en/decoder Joint Retrieval Generation
MMT(Gabeur et al., 2020) task-specific alignment 127.3M 1 2/0/0 yes no
ActBERT(Zhu and Yang, 2020) weakly supervised/MTL n/a (3 typed attentions) 4 0/1(modal-typed attn.)/0 no(pair) extra decoder
VideoAsMT(Korbar et al., 2020) weakly supervised/MTL 286M(base)/801M(large) 1 1/1/1 no (gen.) yes
HERO(Li et al., 2020b) SSL(w/ sup. video feat.)/MTL 159M 5 1(query)/2/0 no(pair) extra decoder
UniVL(Luo et al., 2020) SSL/MTL 260M 5 2/1/1 yes yes
VLM SSL/Task-agnostic 110M 1 0/1/0(shared w/ encoder) yes yes

Table 1: Comparison of pre-trained models on learning paradigms (SSL means self-supervised learning; MTL
means multi-task learning), number of parameters (# params.), number of losses (#loss), number of unimodal/cross-
modal encoders/decoders, and whether to support retrieval in joint space(joint retrieval) and text generation. Types
and numbers are estimated based on released code or papers: exceptions are in parenthesis (e.g. pair means
pairwise matching using [CLS]). VLM is extremely simple with fewer parameters and limitations.

tokens are for videos and the rest tokens are for
text and special tokens. Remind that texts are 2.4
tokens per second and video tokens are 1 token
per second. We form a text clip with a random
length in-between 8 and 64 text tokens and col-
lect the corresponding video clip to form a training
example. We randomly sample 32 video/text clip
pairs from each video and use 8 videos to form a
batch of size 256. Each training example has 50%
chance for MMM (25% for whole video masking
and 25% for whole text masking) and 50% chance
on MFM-MLM (with 15% probability of video and
text token masking).

We pre-train VLM on 8 NVIDIA Tesla V100
GPUs (each with 32 GB memory) for 15 epochs
using fp16 for one (1) day. Following (Liu et al.,
2019), we choose Adam (Kingma and Ba, 2014)
optimizer with initial learning rate of 5e-5 (with
betas as (0.9, 0.98)), 1000 steps of warm-up and a
polynomial decay learning rate scheduler. Gradi-
ents are clipped with 2.0. All fine-tuning tasks use
the same hyper-parameters as pre-training except
the number of warm-up steps is 122.

5.3 Model Comparison
We first investigate the design choices of VLM com-
pared to other transformer-based multimodal pre-
training baselines. As shown in Table 1, we collect
training paradigms, model sizes, etc. of these mod-
els (estimated based on their source codes or pa-
pers). VLM is significantly smaller than other mod-
els since it is just a BERTBASE (uncased), while it
is still fully self-supervised, task-agnostic (e.g. no
training on retrieval or auto-regressive style tasks)
and supports joint retrieval and text generation.

5.4 Quantitative Analysis
We investigate the performance of VLM on fine-
tuning tasks with very basic setups (e.g. no aug-
mented features, large LMs, optimized losses for
particular tasks). Note that it could be hard for

Methods R@1 R@5 R@10 Median R
Random 0.1 0.5 1.0 500
Task-specific Alignment Pre-training
MMT (Gabeur et al., 2020) 25.8 57.2 69.3 4
Pairwise Matching
ActBERT(Zhu and Yang, 2020) 8.6 23.4 33.1 36
VideoAsMT(Korbar et al., 2020) 14.7 - 52.8 -
Multi-task Pre-training
HERO (Li et al., 2020b) 16.80 43.40 57.70 -
UniVL (FT-Joint) (Luo et al., 2020) 20.6 49.1 62.9 6
VLM 28.10 55.50 67.40 4

Table 2: Results of text-video retrieval on MSR-VTT
dataset.

Methods R@1 R@5 R@10 Median R
Random 0.03 0.15 0.3 1675
Task-specific Alignment Pre-training
Coot(Ging et al., 2020) 16.7 40.2 52.3 9
Pairwise Matching
ActBERT(Zhu and Yang, 2020) 9.6 26.7 38.0 19
VideoAsMT(Korbar et al., 2020) 11.6 - 43.9 -
Multi-task Pre-training
UniVL (FT-Joint)(Luo et al., 2020) 22.2 52.2 66.2 5
VLM 27.05 56.88 69.38 4

Table 3: Results of text-based video retrieval on
Youcook2 dataset.

fair comparisons between task-agnostic and task-
specific approaches. We list other baselines by type
and our goal is a simple baseline for task-agnostic
pre-training as better initialization of strongly per-
formed fine-tuning models.
Text-video Retrieval We use MSR-VTT and
Youcook2 to evaluate the performance on text-
video retrieval. The results are shown in Table 2
and 3, respectively. VLM achieves good perfor-
mance on these two datasets, indicating that the
MMM and isolated self-attention mask can be
used together for joint retrieval. Ablation study
shows that using an isolated self-attention mask
alone does not yield good performance, indicating
MMM is very important to learn features for align-
ment. Note that our pre-training is task-agnostic
but still outperforms baselines with retrieval style
pre-training.
Action Segmentation We report the results of ac-
tion segmentation on COIN dataset in Table 4.
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Method Frame Accuracy
NN-Viterbi (Richard et al., 2018) 21.17
VGG (Simonyan and Zisserman, 2014) 25.79
TCFPN-ISBA (Ding and Xu, 2018) 34.30
CBT (Sun et al., 2019a) 53.90
MIL-NCE (Miech et al., 2020) 61.00
ActBERT (Zhu and Yang, 2020) 56.95
VLM 68.39

Table 4: Action segmentation on COIN dataset.

Methods Average Recall
Joint Alignment
Alayrac (Alayrac et al., 2016) 13.3
Zhukov (Zhukov et al., 2019) 22.4
Supervised (Zhukov et al., 2019) 31.6
HowTo100M (Miech et al., 2019) 33.6
MIL-NCE (Miech et al., 2020) 40.5
UniVL (Luo et al., 2020) 42.0
Pairwise Matching
ActBERT (Zhu and Yang, 2020) 41.4
VLM (task-agnostic, zero-shot) 28.5
VLM (supervised on 540 videos) 46.5

Table 5: Action step localization results on CrossTask.

VLM outperforms other baselines indicating its
good token-level video representations. Note that
this task only tests the hidden states of the video in-
dicating the unimodal encoding capability of VLM
is not compromised.
Action Step Localization We setup two (2) evalu-
ations for the CrossTask dataset. First, we evaluate
the zero-shot transfer of VLM. Note that existing
studies evaluate Crosstask with retrieval/alignment
style pre-training, where the aligned hidden states
are directly used for action step localization. Our
task-agnostic pre-training derives an even harder
problem: applying hidden states learned from
proxy tasks on video frame/text alignment for ac-
tion step localization without explicitly training on
alignment. We simply use the hidden states from
the last layer of VLM for video/text representation
and directly compute the similarities between video
frames and text descriptions. Surprisingly, the per-
formance is better than some baselines and closer
to one supervised method. This indicates masked
token loss together with MMM can learn certain
video-text alignments in joint space. Second, we
use just 540 videos for weakly supervised training
and we get a much better result.
Video Question Answering We use MSR-VTT
QA to evaluate multiple-choice question answer-
ing. Recall that this task essentially tests video-text
similarity. The performance of VLM is better than

Method Accuracy
Joint Retrieval
JSFusion(Yu et al., 2018) 83.4
Pairwise Matching
ActBERT(Zhu and Yang, 2020) 85.7
VLM 91.64

Table 6: Video question answering (multiple-choices)
evaluated on MSR-VTT.

Methods B-3 B-4 M R-L CIDEr
Extra Decoder
VideoBERT (Sun et al., 2019b) 6.80 4.04 11.01 27.50 0.49
CBT (Sun et al., 2019a) - 5.12 12.97 30.44 0.64
ActBERT (?) 8.66 5.41 13.30 30.56 0.65
Coot(Ging et al., 2020) 17.62 11.09 19.34 37.63 -
w/ Pre-trained Decoder
VideoAsMT (Korbar et al., 2020) - 5.3 13.4 - -
UniVL (Luo et al., 2020) 16.46 11.17 17.57 40.09 1.27
VLM 17.78 12.27 18.22 41.51 1.3869

Table 7: Video captioning results on Youcook2 dataset.

ActBERT, which leverages pairwise matching for
each video/answer pair.
Video Captioning We lastly evaluate VLM on
video captioning with autoregressive attention
mask with other baselines that have an explicit text
decoder. As shown in Table 7, our “compact” de-
coder using BERT’s LM heads is surprisingly good
at video captioning compared to other fine-tuning
baselines with external decoders (e.g. Coot). This
indicates that it is possible to remove an explicit
decoder and sharing weights between video and
text tokens.

5.4.1 Ablation Study
We use Youcook2 as the base task for the ablation
study on text-retrieval and video captioning. We are
interested in the following study: (1) percentage of
examples for MMM (w/ MMM x%); (2) minimum
length of text tokens, where the length of video
will be determined by the start/end timestamps of
text tokens; (3) performance of LVLM (Equation 8).
The results are shown in Table 8 and Table 9.
Effects of MMM Without MMM (w/ MMM 0%,
or MFM-MLM 100%), the performance signifi-
cantly dropped. This indicates that a naive adoption
of traditional MFM-MLM masking may not learn
joint video/text representations well, as indicated
by both retrieval and captioning task. We suspect a
masked token is more likely predicted from tokens
of the same modality. We further try MMM with
different probabilities (30% or 70%) and 50% is
the best.
Minimum Length of Texts The length of a clip
can be important for retrieval tasks (Miech et al.,
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2020). We ran VLM on longer (at least 16 text to-
kens) video/text pairs. The performance is slightly
dropped, indicating pre-training on longer clips
may not cover fine-tuning tasks with short clips.
Effects of Masked Token Loss We notice that us-
ing multi-task style loss LMFM-MLM may reduce
the performance. This indicates learning a masked
token from both video/text tokens can help.

VLM R@1 R@5 R@10 Median R
w/ MMM 50% 27.05 56.88 69.38 4.0
w/ MMM 0% 15.12 39.47 52.81 9.0
w/ MMM 30% 25.30 54.80 68.96 4.0
w/ MMM 70% 25.17 54.98 69.11 4.0
w/ min. 16 text tokens 25.84 54.43 68.29 5.0
w/ LMFM-MLM 26.93 55.92 69.86 4.0

Table 8: Ablation study of VLM for text-based video
retrieval on Youcook2.

VLM B-3 B-4 M R-L CIDEr
w/ MMM 50% 17.78 12.27 18.22 41.51 1.3869
w/ MMM 0% 15.47 10.54 16.49 38.83 1.2163
w/ MMM 30% 16.57 11.30 17.55 40.76 1.3215
w/ MMM 70% 16.94 11.68 17.67 41.24 1.3739
w/ min. 16 text tokens 17.25 12.00 17.67 40.62 1.3076
w/ LMFM-MLM 16.66 11.53 17.34 40.36 1.3224

Table 9: Ablation study of VLM for video captioning
on Youcook2 dataset.

5.5 Qualitative Analysis

5.5.1 Error Analysis
Text-video retrieval. We use MSR-VTT as the
dataset for error analysis on text-video retrieval,
as shown in Table 10 of Appendix. We pair the
query text with the text of the top-1 ranked video
to show 100 errors in ranking since video tokens
are harder to present. We observe the following
types of errors in video understanding: (1) objects
sometimes are hard to recognize such as dog or cat;
(2) attributes of objects may be hard to match the
text, e.g. gender, ages, etc. (3) subtle differences
of actions; (4) specific videos for a general query
or vice versa, e.g. people vs basketball player. We
believe the last type may not be errors but hard for
existing annotations or evaluations to separate.
Video Captioning. We further examine the gen-
erated text from video captioning. Note that our
video captioning has no support from ASR or tran-
script so the video is the only source to generate
text content and errors of video understanding can
easily be reflected in the text. From Table 11 of
Appendix, we notice that one major type of error

is from objects of similar shapes and colors, e.g.
onion rings vs shrimp.

5.5.2 Visualization
. We observe that video tokens take the majority of
space while text tokens are rather clustered together.
This is probably because videos from the physical
world are more diverse and sparse than text from a
fixed vocabulary.

We plot the self-attention of VLM layers within
and in-between each modality, as in Figure 4 of
Appendix. We observe the following patterns from
all 144 attention heads:

• Unlike LMs, there are no recurrent (shifted)
position-wise patterns for video tokens;

• Self-attentions in the 1st layer are more di-
verse than later layers. This suggests that ex-
isting video encoders might be too deep for
transformers;

• Some attention heads show patterns of cross-
modal mapping in-between video and text (e.g.
sub-figure (a));

• Word-level cross-modal co-reference: video
tokens with pouring soy sauce refers to the
text token of “soy” (e.g. sub-figure (b));

6 Conclusions

We presented a task-agnostic pre-training with new
masking schemes that enable the training of a sin-
gle masked language model that can accept ei-
ther video or text input, or both. We showed that
this simple VLM model can be effectively tuned
for a broad range of downstream tasks, such as
text-video retrieval and video captioning via dif-
ferent types of attention masks. Experimental re-
sults show that the proposed methods maintain
competitive performance while requiring a signifi-
cantly smaller number of parameters than compet-
ing methods.
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Query Text of Top-1 video
Objects (26%)
cartoon show for kids pokemon video game play
little pet shop cat getting a bath and washed with little brush several dogs playing dead
Attributes of Objects (6%)
a little boy singing in front of judges and crowd a woman singing on the voice
a woman is mixing food in a mixing bowl a man is stirring something in a pot
Action (6%)
a person is connecting something to system a man looks at the battery of a computer
a boy plays grand theft auto 5 a narrator explains where to find a rare vehicle in grand theft auto
a man is giving a review on a vehicle a person is discussing a car
a naked child runs through a field the girl shows the boys her medal in this cartoon
a man is singing and standing in the road a man in sunglasses and a blue shirt beat boxes
Specific vs General (62%)
some cartoon characters are moving around an area a cartoon girl and animal jumping on body of male guy girl image still shown displaying on screen
baseball player hits ball people are playing baseball
the man in the video is showing a brief viewing of how the movie is starting scrolling the the menu of movieclips with different movie trailers
a student explains to his teacher about the sheep of another student there is a guy talking to his father
a video about different sports a woman talks about horse racing

Table 10: Error analysis for text-video retrieval of MSR-VTT on 100 errors: we group errors in four (4) categories:
objects, attributes of objects, actions, and specific vs general. Specific videos for general queries (or vice versa)
sometimes may not be errors but hard to evaluate.

Hypothesis Reference
add the lamb to the pan add the lamb to the pot
add the cilantro cilantro and lime juice to the pot cut the cilantro and lime
add the onions to a pot of water add flour to the pot and stir
dip the onion rings into the batter dip the shrimp in the batter
add water to the bowl and mix pour water into the flour mixture and mix
remove the mussels from the pot once the shrimps are defrosted drain the water
add the sauce to the pan and stir add the sauce to the wok and stir
add lemon juice to the pan and stir add rice vinegar and lemon juice to the pan and stir
add the beef to the pan and stir add the diced beef meat to it and roast it

Table 11: Error analysis for video captioning on Youcook2: VLM tends to make mistakes in recognizing objects
of similar shapes and colors to generate the wrong text.
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(a) Layer 1, Head 1
(b) Layer 1, Head 5

Figure 4: Self-attention for video HfIeQ9pzL5U from 4:03 to 4:28: darker color indicates higher weights; v0-v24
are video tokens of 25 seconds.


