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Abstract
Reporting and providing test sets for harm-
ful bias in NLP applications is essential for
building a robust understanding of the cur-
rent problem. We present a new observation
of gender bias in a downstream NLP appli-
cation: marked attribute bias in natural lan-
guage inference. Bias in downstream appli-
cations can stem from training data, word
embeddings, or be amplified by the model
in use. However, focusing on biased word
embeddings is potentially the most impact-
ful first step due to their universal nature.
Here we seek to understand how the intrin-
sic properties of word embeddings contribute
to this observed marked attribute effect, and
whether current post-processing methods ad-
dress the bias successfully. An investiga-
tion of the current debiasing landscape reveals
two open problems: none of the current de-
biased embeddings mitigate the marked at-
tribute error, and none of the intrinsic bias mea-
sures are predictive of the marked attribute ef-
fect. By noticing that a new type of intrinsic
bias measure correlates meaningfully with the
marked attribute effect, we propose a new post-
processing debiasing scheme for static word
embeddings. The proposed method applied
to existing embeddings achieves new best re-
sults on the marked attribute bias test set. See
https://github.com/hillary-dawkins/MAB.

1 Introduction

Pre-trained distributed representations of words
(a.k.a. word embeddings) are ubiquitous tools in
natural language processing (NLP). Their utility
is owing to the remarkable success in mapping se-
mantic and syntactic relationships among words to
linear relationships among real-valued vectors. For
instance, analogy generation using vector addition
on word embeddings (e.g. Tokyo is to Japan as
Paris is to France) was taken to be an early mea-
sure of word embedding quality. In all kinds of

related tasks, the vector space is known to encode
semantic meaning surprisingly well (Pennington
et al., 2014; Mikolov et al., 2013b,c). However,
harmful gender-biased properties of word embed-
dings are also known to exist. Later is was observed
that the same analogy generation property that pro-
duced the celebrated “man is to king as woman is
to queen” analogy would also predict “man is to
programmer as woman is to homemaker” (Boluk-
basi et al., 2016). This observation sparked interest
in developing debiased word embeddings.

Post-processing debiasing schemes are usually
motivated by recognizing some intrinsic measure of
bias in the embedding space, and then attempting
to reduce that intrinsic bias. Early work (2016-
2017) focused on the idea of a “gender direction”
vector within the embedding space, loosely defined
as the difference vector between female and male
attribute words. It was noted that any non-zero pro-
jection of a word onto the gender direction (termed
direct bias) implied that the word was more related
to one gender over another. In the case of ideally
gender-neutral words (e.g. doctor, nurse, program-
mer, homemaker), this was viewed as an undesir-
able property. The first debiasing methods, Hard
Debias (Bolukbasi et al., 2016) and Gender Neutral-
GloVe (Zhao et al., 2018b), worked to minimize
or eliminate the direct bias, and were shown to
be successful in mitigating harmful analogies gen-
erated by word embeddings in relation to gender-
stereotyped occupations.

An influential critique paper by Gonen and Gold-
berg (2019) demonstrated that minimizing direct
bias did not eliminate bias in the vector space en-
tirely. Rather, words that tended to cluster together
due to gender bias (e.g. nurse, teacher, secretary,
etc.) would still cluster together in the nullspace of
the gender direction. Furthermore, the original bias
could be recovered by classification techniques us-
ing only the debiased word embeddings as input.
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These observations were termed cluster and recov-
erability bias.

The next wave of debiasing methods (2019-
present) focused on reducing cluster and recov-
erability bias while proposing new metrics to sys-
tematically quantify the indirect bias of the embed-
ding space (e.g. the Gender-based Illicit Proxim-
ity Estimate, introduced by Kumar et al. (2020)).
While these new debiasing schemes do reduce indi-
rect bias in multiple ways, there is a general lack
of connection to downstream applications such as
coreference resolution, natural language inference
(NLI) and sentiment analysis.

Current gender-bias evaluation tests (GBETs)
in widespread use include the WinoBias test set
(Zhao et al., 2018a), designed to measure bias in
coreference resolution systems using stereotypical
occupations as a probe, and the NLI test set (Dev
et al., 2020a), designed to measure stereotypical in-
ferences again using occupations as the concept of
interest. More commonly used evaluations include
the Word Embedding Association Test (WEAT)
(Caliskan et al., 2017), and the analogy genera-
tion test SemBias (Zhao et al., 2018b). However
these tests solely evaluate the vector properties of
the word embeddings, without any connection to
downstream applications. Adding to the library of
downstream GBETs is essential in building a robust
understanding of gender bias in NLP applications
(Sun et al., 2019).

Here we introduce a new observation of gender-
biased predictions in a downstream task, namely
“marked attribute bias” in natural language infer-
ence, and develop corresponding GBETs. Marked
attribute bias refers to the language model’s ten-
dency to predict that “person” implies “man”
(the default attribute), while simultaneously under-
standing that “person” does not necessarily imply
“woman” (the marked attribute). Marked attribute
bias was found to exist on explicitly defined gender
words (e.g. man, woman, etc.), and persist on im-
plicit gender words (e.g. names) as well as latent
gender-carriers (e.g. stereotypical occupations).

An analysis of the currently available de-
biased embeddings reveals that none are able
to successfully mitigate marked attribute bias.
Furthermore, none of the currently proposed
measures of intrinsic bias on the embedding space
are predictive of the marked attribute effect. We
define a new measure of intrinsic bias that was
found to correlate with the marked attribute effect

better than any currently available metric. Using
this insight, we introduce a new debiasing scheme:
Multi-dimensional Information-weighted Soft
Projection. Applying MISP to an existing debiased
embedding achieves the lowest observed marked
attribute bias error.

Summary of main contributions:

1. We present a new observation of gender bias
in a downstream NLP application: marked
attribute bias (MAB). The MAB test sets are
made available in order to expand the current
set of GBETs.

2. An analysis of current debiasing methods and
current intrinsic bias measures finds that none
sufficiently mitigate the error, and likewise
none sufficiently explain the effect. This ob-
servation creates two new open problems.

3. We propose a new measure for quantify-
ing intrinsic bias on the embedding space:
Multi-dimensional Information-weighted Di-
rect Bias (MIDB). This measure was found
to correlate meaningfully with the marked at-
tribute effect.

4. We introduce a new debiasing scheme: Multi-
dimensional Information-weighted Soft Pro-
jection. MISP-debiased embeddings obtain
new best performance on the MAB test set.

2 Marked Attribute Bias in Natural
Language Inference

2.1 Background: Natural Language
Inference

Natural language inference is one of the pillars
of natural language understanding. It is the task
of determining whether a hypothesis sentence is
(neutral, entailed, or contradicted) with respect to a
premise sentence. For example:

Premise: A choir sings in the church.
Hypothesis: The church is filled with the sound

of singing. (Correct prediction: Entail)
Dev et al. (2020a) previously used NLI as a test

case for gender bias with respect to occupations.
For example, consider:

Premise: A doctor prepared a meal.
Hypothesis 1: A man prepared a meal. (N)
Hypothesis 2: A woman prepared a meal. (N)
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This inference task essentially asks the question:
is “doctor” a subset of man/woman? I.e. if some-
one is a doctor, must they be a man? While both
hypothesis sentences should receive a neutral pre-
diction (as “doctor” does not imply any specific
gender), hypothesis 1 will more likely receive an
entailment, while hypothesis 2 will more likely
receive a contradiction, given biased word embed-
dings. The corresponding GBET was published by
Dev et al. (2020a) and contains 1936512 sentence
pairs in the form [A occupation verb object]→ [A
gender word verb object]. Throughout this paper,
we will use the notation [Sentence A]→ [Sentence
B] to mean that premise Sentence A is paired with
hypothesis Sentence B.

2.2 Observation of marked vs. default
attribute bias

Marked vs. default attribute bias occurs whenever a
default attribute (e.g. male, white, etc.) is assumed,
and a marked attribute has to be explicitly stated or
becomes a defining trait. In the context of the natu-
ral language inference task, consider the sentence
pair:

Premise: A person prepared a meal.
Hypothesis 1: He prepared a meal. (N)
Hypothesis 2: She prepared a meal. (N)
Due to the language model’s1 tendency to pre-

dict that “person” implies a male (default) attribute,
the first hypothesis sentence will have a prediction
probability vector shifted towards Entail. However
the same language model would tend towards a
Neutral prediction for the second hypothesis, rec-
ognizing that “person” does not necessarily imply
female (the marked attribute). To put it another way,
this inference task essentially asks the question: is
“person” a subset of man/woman? When presented
with a masculine form, the model answers: yes (en-
tailment), a person must be a man. When presented
with a feminine form, the model answers: not nec-
essarily (neutral), a female has an attribute (gender)
that not all persons have. The name “Marked At-
tribute Bias” therefore derives from the observation
that masculine forms are unmarked with respect

1All NLI models mentioned throughout this paper are
based on the Decomposable Attention Model (Parikh et al.,
2016) with intra-attention, trained on the Stanford Natural
Language Inference training dataset (Bowman et al., 2015)
(trained for 100 epochs; learning rate 0.025; weight decay
1e-5; dropout rate 0.2; 200 hidden units; approximately 104

total model parameters). All the code and data needed to
reproduce results mentioned in this paper are available at
https://github.com/hillary-dawkins/MAB.

to gender, whereas female forms carry a marked
gender attribute.

In this particular example, the model trained
with (original) GloVe2 word embeddings (Penning-
ton et al., 2014) gives a probability distribution
(N,E,C) of (0.0538, 0.929, 0.0177) for hypoth-
esis 1 and (0.687, 0.238, 0.0750) for hypothesis
2.

Note that although the MAB test construction
appears similar to Dev et al. (2020a), it is actually
measuring quite a distinct effect. The (Dev et al.,
2020a) test set measures associations between gen-
der and some concept of interest (occupations).
The MAB test set measures something more gen-
eral and pervasive; it measures how gender words
carry meaning, independent of any concept of in-
terest.

Achieving the correct prediction probability of
(N,E,C) = (1, 0, 0) on both sentences is diffi-
cult because it requires the language model to be
attribute-aware (in this case gender-aware) while
not using the gender attribute to alter predictions
when it would be inappropriate to do so.

3 Analysis of the current situation

In order to investigate the presence of systematic
marked attribute bias in natural language inference,
we construct three types of tests: bias on explicit
gender words, implicit gender carriers, and latent
gender carriers. We wish to understand the depth
and persistence of the marked attribute effect, as
well as how it is handled by current debiasing meth-
ods. Firstly we provide a brief description of the
current debiasing methods to be analyzed. Next we
provide details of the test sets and report results.

3.1 Debiased embeddings
Within the scope of this paper, we focus on post-
processing techniques applied to static word em-
beddings. These types of methods are computa-
tionally inexpensive, easy to concatenate, and are
independent of the base embedding. In addition, we
include GN-GloVe, one of the highly cited retrain-
ing methods. Notationally, we specify embeddings
as (base embedding).method. Where available, we
use published debiased embeddings made avail-
able from the original authors of the corresponding
method. Otherwise, we apply the method to the

2Taken as the GloVe embeddings trained on the
Common Crawl corpus for 840B tokens; available at
https://nlp.stanford.edu/projects/glove/. Results were not
found to vary significantly among undebiased embeddings.
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base GloVe embeddings. The methods we will
analyze include:

Hard Debias3 (GloVe4.HD) (Bolukbasi et al.,
2016): The subset of gender-neutral words are pro-
jected onto the nullspace of the gender direction ~g.
Gender-neutral words are made equidistant to pairs
of words in a defined equalization set.

Gender-Neutral GloVe5 (GN-GloVe) (Zhao
et al., 2018b): Similar to hard debias, this method
seeks to eliminate the direct bias. The embeddings
are retrained from scratch using a modified version
of GloVe’s original objective function. The gender
information is sequestered to the final component
of the word embedding. The gender-neutral portion
of the word embedding is then defined as the first
d−1 = 299 components, denoted GN-GloVe(wa)(wa)(wa).

Gender-Preserving6 (GloVe4.GP) (Kaneko
and Bollegala, 2019): This method seeks to elimi-
nate harmful gender bias while retaining as much
useful semantic gender information as possible.

Double Hard Debias7 (GloVe4.DHD) (Wang
et al., 2020): An extended version of the hard
debias algorithm, based on the observation that
frequency information encoded in the word em-
beddings convolutes the definition of the gender
direction. Correctional pre-processing is applied
prior to hard debiasing.

Bias Alignment Model8 (GloVe4.BAM)
(Lauscher et al., 2019): Gender subspace matrices
are defined by stacking explicit gender words.
The projection that maps the embedding space
to itself while approximately aligning the gender
subspaces is learned and applied to all words. After
alignment, gender information is not retained.

Orthogonal Subspace Correction and Recti-
fication9 (GloVe4.OSCaR) (Dev et al., 2020b):
The rationale is that linear projective methods are
too aggressive in modifying the entire embedding
space. OSCaR rectifies two concepts of interest
(gender and occupations), such that these subspaces
are orthogonal in the debiased space.

Iterative Nullspace Linear Projection10

3https://github.com/tolga-b/debiaswe
4 The base (undebiased) embeddings are GloVe trained on

the 2017 January Wikipedia dump (vocab contains 322,636
tokens). Available at https://github.com/uclanlp/gn glove.

5https://github.com/uclanlp/gn glove
6https://github.com/kanekomasahiro/gp debias
7https://github.com/uvavision/Double-Hard-Debias
8https://github.com/anlausch/DEBIE
9https://github.com/sunipa/OSCaR-Orthogonal-

Subspace-Correction-and-Rectification
10https://github.com/shauli-ravfogel/nullspace projection.

(GloVe4.INLP) (Ravfogel et al., 2020): Rather
than defining a gender direction, INLP learns the
most informative decision boundary for classifying
gendered and gender-neutral words. All words are
projected to the nullspace of the gender subspace,
and the process proceeds iteratively until gender
information is sufficiently erased. A closely related
method is the D4 algorithm (Davis et al., 2020).

Repulse Attract Neutralize Debias11

(GloVe4.RAN) (Kumar et al., 2020): Moti-
vated by the persistence of implicit bias after
debiasing through projective methods (observed
as clustering and recoverability), RAN-debias at-
tempts to address both direct bias and gender-based
proximity bias.

3.2 Explicit gender words test set and error
definitions

Firstly, we construct a test set where every sentence
pair is of the form [A person verb object]→ [(A)
gender word verb object] (the correct inference is
always neutral since a person can be of any gender).
Verbs (n = 27) and objects (n = 184) are paired
to create n = 1968 unique premise sentences12.
Gender words are taken to be {man, woman, guy,
girl, gentleman, lady, He, She}, following (Dev
et al., 2020a) with the addition of the pronouns, for
a total test set S of |S| = 15744 sentence pairs
where hypotheses represent binary genders evenly
(denoted SM , SF , |SM | = |SF |).

For every hypothesis sentence in the test set, the
ideal prediction probability vector is (N,E,C) =
(1, 0, 0). We could define the error on the test set
as the average Euclidean distance from the ideal
distribution:

E =
1

|S|
∑
i∈S
‖(1, 0, 0)− (N,E,C)i‖2. (1)

This task, test set, and error definition are sim-
ple, and yet they encapsulate the central chal-
lenge of the debiasing field: to create attribute-
aware (required to obtain the Neutral prediction)
but attribute-unbiased embeddings.

A weaker, but still potentially desirable, con-
dition might be to minimize the effect of gender

The projection matrix computed for our base GloVe embed-
dings is available at https://github.com/hillary-dawkins/MAB.

11https://github.com/TimeTraveller-San/RAN-Debias
12Verbs and objects are taken from (Dev et al.,

2020a) word lists (https://github.com/sunipa/On-Measuring-
and-Mitigating-Biased-Inferences-of-Word-Embeddings) and
are paired using the same pairing rules.
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while not requiring that the model be gender-aware.
Typically, this means that all hypotheses tend to-
wards an Entail prediction, regardless of gender.
We could define the error as the average distance
between probability vectors between genders:

d =
1

2|S|

∥∥∥∥∥∥
∑
i∈SM

(N,E,C)i −
∑
j∈SF

(N,E,C)j

∥∥∥∥∥∥
2

.

(2)
A gender-agnostic model could achieve zero error
by this definition even with an accuracy of zero on
the test set.

Table 1 shows the results for this test set on all
the embeddings of interest. None of the debiased
embeddings successfully mitigate the marked at-
tribute error. A similar test set shows that the effect
persists on implicit gender words (e.g. names).
Results are shown in the appendix.

3.3 Latent gender carriers: Stereotyped
occupations

Next, we would like to check if the gender-induced
marked attribute bias can affect entities which
should be gender neutral, but turn out to be hid-
den carriers of a gender attribute (e.g. stereotypi-
cal occupations). The same template [A person
verb object] → [A/An occupation verb object]
was used with the common vocabulary. Stereo-
typical occupations (n = 32) were sourced from
Bolukbasi et al. (2016), and the SemBias test set.
Examples are (doctor, engineer, boss, etc. vs. nurse,
maid, homemaker, etc.). In total there are 62,976
sentence pairs in the test set13.

Results are shown in Table 2. A permutation test
is used to check if dividing the occupations into
groups according to gender stereotypes produces
a significant difference in the probability vectors
(rather than dividing them randomly). As shown,
the marked attribute effect persists on stereotypi-
cal occupations, especially on original embeddings.
This is an important result because it highlights that
unintended behaviour can appear in unexpected
places due to a latent attribute. Previously, GBETs
have focused on how explicit gender words are
treated under biased models. To our knowledge,
this is the first GBET designed to analyze unin-
tended behaviour on a latent attribute carrier.

Note that this task is easier to correct than the
explicit gender words because occupation words

13The exact word set used to produce these results is avail-
able at https://github.com/hillary-dawkins/MAB.

have defining characteristics beyond gender. That
is, a debiasing method such as Iterative Nullspace
Projection can perform well by removing gender
information entirely. This does not mean that the
challenge of having a gender-aware but gender-
unbiased embedding is solved, but it does provide
evidence that latent gender effects can be mitigated
using linear projective methods. The full extent of
latent biased-attribute effects and possible mitiga-
tion strategies should be investigated further.

4 Intrinsic bias measures

How to define bias on an embedding space remains
an active area of study. In general, we seek to un-
derstand how the intrinsic or geometric properties
of an embedding space translate to real observable
bias in downstream tasks. Intrinsic properties are
easy to compute quickly, whereas computing per-
formance on downstream tasks requires us to train
new models for every case. Understanding of the
correlations between the two gives insight on how
word embeddings should be debiased.

As a case study, let us focus on the marked at-
tribute error E on the explicit gender words (shown
in Table 1). Recall that this measure of bias is of
interest because zero error corresponds to the gold
standard: having an attribute-aware model, while
simultaneously not using the gender attribute to
make inappropriate inferences. In this section, we
look at 5 existing intrinsic bias measures: Direct
Bias, Clustering, Recoverability, Gender-based Il-
licit Proximity Estimate (GIPE), and SemBias. We
will investigate whether any of these measures are
predictive of the marked attribute effect.

Recall that direct bias was the first measure to
be proposed; it simply measures the average pro-
jection of word vectors onto a predefined gender
direction. Early methods (i.e. Hard Debias and
GN-GloVe) defined bias in the embedding space
completely as direct bias. The idea of clustering
and recoverability refer to a classifier’s ability to
correctly reassign gender labels to words, even af-
ter debiasing methods have been applied. Gonen
and Goldberg (2019)’s observation of clustering
and recoverability sparked new interest in defining
metrics for indirect bias on the embedding space.
Although clustering and recoverability do not pro-
vide well-defined measures of bias given an embed-
ding space (as they depend training implementa-
tion - though they could be said to provide a lower
bound), many new debiasing proposals will cite re-
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Table 1: Results of the marked attribute test set on explicit gender words. Due to varying results on gender nouns
vs. pronouns, results are shown separately for each case (M and F represent averages across the gender nouns).
Some debiased embeddings are able to eliminate the distance across pronouns (really by definition since ~she ≈ ~he
in these cases), but none are able to eliminate differences between the gender nouns significantly. Even when
differences between genders are minimized, distance from the ideal distribution (error E) remains or increases.
This highlights the challenge of creating gender-aware but not gender-biased embeddings.

Emb.method Gender N E C Gender N E C d E
GloVe M 0.7832 0.1966 0.0202 F 0.9449 0.0401 0.0149 0.225 0.182

he 0.0982 0.8838 0.0180 she 0.6549 0.3137 0.0315 0.797 0.865
GloVe.HD M 0.8306 0.1329 0.0365 F 0.9269 0.0499 0.0232 0.128 0.155

he 0.2944 0.6737 0.0319 she 0.5174 0.4334 0.0491 0.328 0.813
GN-GloVe M 0.6339 0.3402 0.0259 F 0.9169 0.0461 0.0370 0.408 0.301

he 0.1767 0.7968 0.0265 she 0.8223 0.1405 0.0373 0.921 0.688
GN-GloVe(wa) M 0.8446 0.1254 0.0300 F 0.9211 0.0395 0.0394 0.115 0.149

he 0.1430 0.8266 0.0304 she 0.4237 0.5367 0.0396 0.404 0.990
GloVe.DHD M 0.7013 0.2685 0.0302 F 0.9282 0.0510 0.0209 0.315 0.247

he 0.1566 0.8187 0.0247 she 0.1597 0.8139 0.0264 0.006 1.173
GloVe.GP M 0.6172 0.3521 0.0306 F 0.8777 0.0693 0.0530 0.385 0.336

he 0.2443 0.7262 0.0295 she 0.6481 0.3040 0.0480 0.585 0.758
GloVe.BAM M 0.7983 0.1703 0.0314 F 0.9329 0.0447 0.0224 0.184 0.175

he 0.1625 0.8083 0.0292 she 0.6752 0.2878 0.0369 0.731 0.800
GloVe.OSCaR M 0.8233 0.1572 0.0195 F 0.9431 0.0400 0.0169 0.168 0.154

he 0.1482 0.8292 0.0226 she 0.8428 0.1278 0.0294 0.987 0.697
GloVe.RAN M 0.8055 0.1686 0.0260 F 0.8994 0.0701 0.0305 0.136 0.193

he 0.1939 0.7811 0.0250 she 0.5962 0.3420 0.0618 0.597 0.828
GloVe.INLP M 0.8298 0.1537 0.0166 F 0.9204 0.0633 0.0164 0.128 0.167

he 0.1081 0.8710 0.0209 she 0.1119 0.8672 0.0209 0.005 1.244

Table 2: Results of marked attribute test set on stereotypical occupations. Each (N,E,C) probability vector is
averaged over the 1968 unique premise sentences and the gender attribute words from each category (M or F)
(n = 31, 488 sentences for each gender). Smaller distances between the M and F vectors indicate less gender bias.
The significance of the difference was evaluated using a permutation test; the alternate distance d∗ is computed for
10,000 randomly sampled partitions of the occupations into two groups. The significance value is the proportion
of these samples to generate a distance d∗ > d. This gives us an idea of whether the defined partition, based on
gender, is a meaningful grouping. Smaller significance values indicate that the defined partition is non-random
with respect to the distance.

Emb.method M attribute (N, E, C) F attribute (N, E, C) Distance d Significance
GloVe (0.6000, 0.3350, 0.0650) (0.7378, 0.1711, 0.0910) 0.216 0.0001
GloVe.HD (0.4975, 0.4500, 0.0525) (0.6075, 0.3357, 0.0568) 0.159 0.0408
GN-GloVe (0.5026, 0.4434, 0.0540) (0.7126, 0.2036, 0.0838) 0.320 0.0000
GN-GloVe(wa) (0.5309, 0.3915, 0.0776) (0.6197, 0.2771, 0.1032) 0.147 0.0478
GloVe.DHD (0.5285, 0.4126, 0.0589) (0.6513, 0.2811, 0.0676) 0.180 0.0038
GloVe.GP (0.5016, 0.4380, 0.0604) (0.6479, 0.2639, 0.0882) 0.229 0.0010
GloVe.BAM (0.6293, 0.3077, 0.0630) (0.7116, 0.1972, 0.0912) 0.141 0.0060
GloVe.OSCaR (0.5577, 0.3901, 0.0522) (0.6789, 0.2400, 0.0812) 0.195 0.0036
GloVe.RAN (0.5393, 0.3933, 0.0674) (0.5924, 0.3026, 0.1050) 0.112 0.0477
GloVe.INLP (0.5065, 0.4197, 0.0739) (0.5465, 0.3949, 0.0587) 0.050 0.6595
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duced clustering as a positive result. The effect on
downstream applications is not well understood as
of yet. The Gender-based Illicit Proximity Estimate
(GIPE) measures the extent of undue proximities
in the embedding space due to a pervasive gender
attribute. Lastly, the SemBias analogy test set mea-
sures whether gender-biased analogies exist within
the embedding space based on vector arithmetic
properties.

Implementation details for each measure as well
as the experimental set of embeddings (n = 16) are
given in the appendix. The average Direct Bias on
the embedding space was found to have a Pearson
correlation coefficient of 0.104 with the marked
attribute error. The Clustering v-measure14 (Rosen-
berg and Hirschberg, 2007) achieved a correlation
coefficient of 0.184. Recoverability was attempted
using an SVM with a linear decision boundary, an
SVM with a non-linear (radial basis function) ker-
nel, logistic regression, and a simple 1-hidden-layer
fully-connected network. All recoverability corre-
lation results were comparable, but the best coeffi-
cient of 0.223 was achieved by logistic regression.
The GIPE15 had a correlation coefficient of 0.432.
The SemBias16 test set had a correlation coefficient
of 0.091. The full correlation matrix between all in-
trinsic bias measures can be found in the appendix.
The results suggest that the marked attribute effect
is not well correlated with any present notion of
intrinsic bias, therefore we do not have a good un-
derstanding of how the word embedding properties
contribute to this type of observable bias.

In seeking a potential solution, we make note
of a new intrinsic bias measure, multi-dimensional
information-weighted direct bias (MIDB), found to
have a more meaningful correlation of 0.667 with
the marked attribute error. We define the MIDB
of a particular word ~x to be a weighted average
over inner products with basis vectors of a multi-
dimensional gender subspace:

MIDBd(x) =

d∑
i=1

ai〈gi|x〉 (3)

where {gi} form an orthonormal basis for the gen-
der subspace, here defined as the first d princi-

14With cluster size n = 1500 (which lead to the highest
observed correlation); see appendix.

15Using an indirect bias threshold of θ = 0.05, and number
of nearest neighbours n = 100.

16The SemBias score was taken as the proportion of analogy
examples in the test set for which the embedding space returns
the correct definitional analogy.

pal components summarizing difference vectors
{δjk}. The difference vectors are taken as all
pairwise differences17 between vectors in defined
gender sets (here common names were used13):
{δjk} = ~fj − ~mk, fj ∈ Fnames, mk ∈ Mnames
(|Mnames| = |Fnames| = 100). The weighting ai
is the proportion of variance explained by the ith

principal component, and d is a hyperparameter
controlling the number of dimensions to keep18.

New proposals for defining a gender direction
or subspace potentially have far reaching conse-
quences in the landscape of intrinsic bias measures
and their related debiasing schemes. In fact all
of Clustering, Recoverability, GIPE, and SemBias
use the classic uni-dimensional gender direction ~g
within their definitions. The weak observed corre-
lation between DB and MIDB suggests that these
subspaces are independent. Swapping in a uniquely
informative gender subspace to the existing indirect
measures would produce a new family of intrinsic
bias measures. The observed utility of names in
defining a meaningful gender subspace is encour-
aging because it opens an obvious avenue for this
method to be applied to attributes of interest be-
yond gender (e.g. race or ethnicity).

5 Multi-dimensional
information-weighted soft projection

In this section we motivate the above search for an
informative intrinsic bias measure. As discussed,
a greater understanding of how embedding prop-
erties influence observed bias can inform new de-
biasing techniques. Translating the idea of MIDB
into a debiasing scheme yields Multi-dimensional
Information-weighted Soft Projection (MISP).

In this debiasing procedure, we project all words
into the nullspace of the multi-dimensional gender
subspace, proportional to our belief that certain di-
mensions actually encode the latent idea of gender:

~wdeb = ~w −
d∑

i=1

ai〈gi|w〉|gi〉 (4)

where ~w is the input embedding, ~wdeb is the debi-
ased output embedding, and all other quantities are
defined as in eq. (3).

17Using all pairwise differences creates a matrix with rank
much less than the dimension of the matrix, however the rank
is still much larger than d (the number of principal components
to extract) so it doesn’t cause a problem.

18On our set of experimental embeddings, d = 4 was em-
pirically found to produce the 0.7 correlation result.
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Table 3: Results for word similarity and analogy benchmarks. Results on the word analogy tasks are reported
as percentage accuracy. Results on the word similarity tasks are reported as a Spearman correlation (× 100).
Application of MISP does not alter the overall quality of word embeddings as measured by these classic test sets.

Embedding.method Sem Syn Google-Total MSR RG MTurk MEN SL999
GloVe 80.48 62.76 70.80 51.49 75.29 64.27 72.19 34.86
GloVe.MISP 80.49 62.81 70.84 51.51 76.06 64.32 72.41 35.04
GN-GloVe 77.62 61.60 68.87 49.29 74.11 66.36 74.49 37.12
GN-GloVe(wa) 77.68 61.56 68.87 49.38 75.46 66.55 74.72 37.53
GN-GloVe(wa).MISP 77.68 61.59 68.89 49.26 75.49 66.45 74.76 37.60

As shown in Table 1, the GN-GloVe(wa) em-
beddings are currently the top performers on the
explicit gender words test set, as measured by either
error E = 0.149, or distance d = 0.115. Apply-
ing MISP to GN-GloVe(wa) embeddings (denoted
GN-GloVe(wa).MISP), we achieve an error on the
explicit gender words test set of E = 0.1107, a 26%
error reduction over the previous best. The distance
d between genders is reduced to d = 0.08744, a
21% reduction over the previous best. Successful
concatenation suggests that this technique is dis-
tinct, and independently useful, from techniques
that seek to minimize the traditional direct bias
(including GN-GloVe). This observation is consis-
tent with the weak observed correlation between
direct bias and MIDB4 on the experimental set of
embeddings.

Computing the intrinsic bias measures Clus-
tering, Recoverability, GIPE and SemBias
on the newly created embedding space GN-
GloVe(wa).MISP (compared to the base GN-
GloVe(wa)), we observe a clustering v-score of
0.498 (previously 0.497)19, a recoverability ac-
curacy of 0.992 (previously 0.993)20, a GIPE of
0.1169 (previously 0.1173)21, and a SemBias score
of 0.938 (previously 0.938)22. The MISP method
did not reduce bias by any of these measures, al-
though this is not particularly surprising as it was
designed to address the marked attribute effect
(through MIDB). It is encouraging however that
none of these bias measures were increased. In
other words, there is no expected trade-off between
the reduced marked attribute error and any previous
debiasing work that relied on these measures. The

19Where clustering size n = 1500.
20This is the highest accuracy achieved by any of the four

classification methods tested; implementation details are in
the appendix.

21Computed with indirect bias threshold θ = 0.03, and
number of nearest neighbours n = 100.

22Reported as the proportion of samples in the full test set
to return the definitional analogy; higher scores are better.

SemBias result informs us that MISP did not rein-
troduce any harmful biased analogies, for example.

For reference, if we apply the analogous multi-
dimensional hard debias method (i.e. equation (4)
where all weights ai are set to 1), the output em-
beddings GN-Glove(wa).MHD do not successfully
mitigate the marked attribute effect (E = 0.1501,
d = 0.1603). This suggests that the soft nature of
the projection is a key ingredient.

Furthermore, we provide some evidence that
specifically the information weighting of the soft
projection is a good ingredient as follows. Re-
call that we are attenuating components of each
basis vector according to our belief in that vec-
tor as a good gender direction. The basis vec-
tors are defined to be the first d principal compo-
nents, weighted by their corresponding variance ex-
plained. Therefore the first basis vector receives the
greatest weight and so on. To test the significance
of this decision, we define alternative debiased em-
beddings by applying MISP where the weights get
reassigned to the “wrong” vector (for d = 4, we
have 23 alternative pairings). We observe that none
of the 23 alternatives obtain an error E less than the
“true” implementation of MISP. This suggests that
weighting the components by order of information
is a good ingredient. Values of E for the alternate
embeddings can be found in the appendix. Model
parameters for each case are made available in or-
der to reproduce this argument on any extended
version of the MAB test set.

Information weighting is an interesting idea be-
cause it could be applied to either defined or learned
gender subspaces alike. For instance, if the ba-
sis vectors of a gender subspace are taken as the
iteratively learned linear decision boundaries (as
in INLP), we could investigate weighting each di-
mension by the accuracy acci of classification on
each iteration, as ai = (1 − 2acci). In this way,
dimensions receive weights proportional to their



4222

ability to predict gender information. When accu-
racy reaches 0.5, no gender information remains,
the learned decision boundary is meaningless, and
the basis vector receives zero weighting.

Finally, as with any debiasing method, we wish
to verify that application of the method has not
damaged the overall embedding quality. We assess
the MISP embeddings on a handful of classic anal-
ogy and word semantic similarity benchmarks. The
word similarity benchmarks measure how closely
the word embeddings capture similarity between
words compared to human annotation. We use the
following datasets: RG (Rubenstein and Goode-
nough, 1965), MTurk (Yih and Qazvinian, 2012),
MEN (Baroni, 2014), and SimLex999 (Hill et al.,
2015). The word analogy task measures how well
the word embeddings capture semantic and syntac-
tic relationships among words as vector properties.
We report on the Google (Mikolov et al., 2013a),
and MSR (Mikolov et al., 2013c) test sets. Re-
sults were obtained following the word embedding
benchmark package23 (Jastrzebski et al., 2017). As
shown, application of MISP does not alter the over-
all word embedding quality.

6 Conclusion

This paper highlights a new observation of gen-
der bias in a downstream setting: marked attribute
bias in natural language inference. The current
inference is that “person” implies male, while “per-
son” does not imply female. Consequently, this
inference is being baked into our models of natural
language understanding. The effect was shown to
persist on explicitly defined gender words and on
latent gender-attribute carriers. Based on an assess-
ment of the current debiasing landscape, none of
the current debiasing methods satisfactorily mit-
igate the marked attribute error, and furthermore
none of the intrinsic bias measures are useful at
predicting the marked attribute effect.

By noticing a more meaningful correlation with
a newly identified intrinsic bias measure, we pro-
pose a new debiasing scheme: multi-dimensional
information-weighted soft projection (MISP). This
method introduces several concepts, including the
use of a multi-dimensional defined gender sub-
space. Previously, the concept of a defined gender
subspace always appeared as a single dimension.
The iterative nullspace projection method implic-

23https://github.com/kudkudak/word-embeddings-
benchmarks

itly uses higher learned dimensions, however this
requires learning a new decision boundary at ev-
ery iteration, subject to the implementation of a
training procedure. Furthermore, the learned di-
mensions were not used to define any bias metric,
they were strictly used operationally for the debi-
asing procedure. MISP also introduces the idea of
a soft or partial projection, where weights are in-
formed by some measure of the dimension’s ability
to capture the intended latent concept of a gen-
der direction. Both of these ideas could be further
explored and extended to create new notions of
indirect bias, which in turn could inform more so-
phisticated debiasing procedures.

Multi-dimensional information-weighted soft
projection applied to GN-GloVe(wa) produces new
debiased embeddings that achieve the lowest error
on the marked attribute bias test set, a 26% reduc-
tion over the previous best, and a 45% reduction
over the original undebiased embeddings. Error re-
duction on this test set is thought to encapsulate the
overall goal of producing gender-aware but gender-
unbiased embeddings. Therefore, this method and
its composite ingredients warrant further investiga-
tion. Each of the marked attribute bias test sets are
made available for further exploration and iteration
on these ideas.
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A Implicit gender carriers: Names

As mentioned in the main text, we check if the
marked attribute effect will persist through implicit
gender words. These are words with no gender
attribute by definition, but are usually associated
with a specific binary gender (e.g. names). This
test set uses a similar template: [A person verb ob-
ject]→ [Name verb object], using the same (verb,
object) vocabulary as above. Names24 (n = 64)
are sourced from the most common names of the
previous decade in the US, according to the So-
cial Security Administration25. In total there are
n = 125, 952 sentence pairs in the test set.

Results are shown in Table 4. In short, the same
effect is observed on names, especially on the orig-
inal embeddings. A permutation test was used to
check whether the stratification of names by gen-
der was a non-random division according to the
observed bias.

B Intrinsic bias measures and
correlations

Please refer to tables 5 and 6.

C Alternate weighted embeddings

As discussed in the main text, we compute the error
E on the explicit gender words test set for alternate

24The exact word set used to produce these results is avail-
able at https://github.com/hillary-dawkins/MAB.

25https://www.ssa.gov/oact/babynames/

soft-weighted embeddings. The alternate embed-
dings are created by permuting the weights to be
matched with the incorrect basis vectors. For ex-
ample, the permutation denoted 1243 means that
weight a1 is applied to basis vector ~g1, a2 to ~g2,
a4 to ~g3, and a3 to ~g4. Results for all alternate
permutations and their errors are as follows: (per-
mutation = 1243, E = 0.1574), (1324, 0.2331),
(1342, 0.1919), (1423, 0.1330) (1432, 0.1487)
(2134, 0.1273) (2143, 0.1565) (2314, 0.2289)
(2341, 0.1963) (2413, 0.1639) (2431, 0.1287)
(3124, 0.1951) (3142, 0.1694) (3214, 0.2813)
(3241, 0.1602) (3412, 0.2110) (3421, 0.1732)
(4123, 0.1945) (4132, 0.1764) (4213, 0.1879)
(4231, 0.1363) (4312, 0.1241) (4321, 0.1435).
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Table 4: Results of marked attribute test set on names. Each (N,E,C) probability vector is averaged over the 1968
unique premise sentences and the gender attribute words from each category (M or F) (n = 62, 976 sentences
for each gender). Smaller distances between the M and F vectors indicate less gender bias. The significance of
the difference was evaluated using a permutation test; the alternate distance d∗ is computed for 10,000 randomly
sampled partitions of the names into two groups. The significance value is the proportion of these samples to
generate a distance d∗ > d. This gives us an idea of whether the defined partition, based on gender, is a meaningful
grouping. Smaller significance values indicate that the defined partition is non-random with respect to the distance.

Emb.method M attribute (N, E, C) F attribute (N, E, C) Distance d Significance
GloVe (0.4657, 0.4766, 0.0577) (0.7283, 0.1598, 0.1120) 0.415 0.0000
GloVe.HD (0.5745, 0.3547, 0.0708) (0.6685, 0.2760, 0.0555) 0.124 0.0140
GN-GloVe (0.4619, 0.4713, 0.0668) (0.7209, 0.1906, 0.0885) 0.383 0.0000
GN-GloVe(wa) (0.5882, 0.2878, 0.1240) (0.6662, 0.2321, 0.1017) 0.098 0.0241
GloVe.DHD (0.4731, 0.4464, 0.0805) (0.5690, 0.3529, 0.0780) 0.134 0.0192
GloVe.GP (0.5488, 0.3761, 0.0751) (0.7470, 0.1677, 0.0853) 0.288 0.0000
GloVe.BAM (0.5941, 0.3424, 0.0635) (0.7698, 0.1628, 0.0674) 0.251 0.0000
GloVe.OSCaR (0.6012, 0.3149, 0.0839) (0.7191, 0.2020, 0.0789) 0.163 0.0001
GloVe.RAN (0.5295, 0.3865, 0.0839) (0.6920, 0.2151, 0.0929) 0.236 0.0000
GloVe.INLP (0.5091, 0.4042, 0.0867) (0.5447, 0.3639, 0.0914) 0.054 0.4049

Table 5: Pearson correlation matrix between intrinsic bias measures (and marked attribute error) on the experimen-
tal set of embeddings. MIDB obtains the highest correlation with the marked attribute error E ; the GIPE was also
observed to have a weak correlation. Recoverability bias is most related to the direct bias. The sub-matrix among
the SemBias results indicate that trade-off is mostly happening between “definitional” and “other” analogies.

DBvt MIDB Clus:v1500 Rec:LR SBdef SBstereo GIPE:0.03 E
DBvt 1 -0.166 0.694 0.814 0.161 -0.045 0.350 0.104
MIDB 1 -0.145 -0.020 -0.273 0.005 -0.003 0.667
Clus:v1500 1 0.776 0.600 -0.185 0.271 0.184
Rec:LR 1 0.786 -0.390 0.290 0.223
SBdef 1 -0.693 0.304 0.091
SBstereo 1 -0.487 -0.270
GIPE:0.03 1 0.432
E 1
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Table 6: Intrinsic bias measures of interest on the experimental set of embeddings. There are two base (undebi-
ased) embeddings, word2vec and GloVe. All other embedding spaces are obtained by applying a debiasing method,
where each method found here is described in the main text. Implementation notes:
DB and MIDB: The direct bias (DB) and the new multi-dimensional information-weighted direct bias (MIDB) are
average measures over a specific (ideally gender-neutral) vocabulary Vt. Vt (n = 46960) is defined by taking the
50,000 most frequent words in the common vocabulary between word2vec and GloVe, filtering out punctuation,
numbers, and removing the gender-specific word set Vs (n = 1622), defined as the union of gender-specific word
sets used in previous works (Bolukbasi et al., 2016; Zhao et al., 2018b). DB is defined as the projection onto a
gender direction, here taken to be the ~she− ~he direction. For debiasing methods that promote ~she ≈ ~he, the DB is
not well defined (although it can be computed numerically, it is unstable). We leave these cases as NA rather than
a spurious numerical value.
Clustering: The clustering experiment follows (Gonen and Goldberg, 2019) in taking the n ∈ [500, 1500] “most
biased” words in the original embedding space (according to their projection on the ~she − ~he axis), and then ap-
plying k-means (k = 2) clustering on the words in the debiased embedding space. Bias is reported as the either
the clustering accuracy or the v-measure (only n = 1500 shown here with v-measure).
Recoverability: Similarly, the dataset (n = 5000) is taken to be the most biased words in the original embed-
ding space, where bias labels are assigned according to the projection on the gender direction (n = 2500 taken
from each class). Several classifiers (SVM with a linear decision boundary, SVM with an RBF kernel, logisitic
regression, and a simple fully-connected 1-hidden layer network) were trained on 20% of the dataset with balanced
classes. Recoverability bias is reported as the accuracy of classification on the remaining test set (only logisitic
regression shown here).
SemBias: The SemBias analogy test set is available from (Zhao et al., 2018b). The set contains n = 440 tuples
of possible analogies (~a,~b): 1 definitional analogy (e.g. king, queen), 1 stereotypical analogy (e.g. doctor, nurse),
and 2 other analogies (e.g. cup, plate). For every sample, the best analogy is selected as the one to maximize
cos( ~he− ~she,~a−~b). Bias is reported as the proportion of samples to return a definitional analogy, a stereotypical
analogy, and an “other” analogy. (Only definitional and stereotypical shown here.)
GIPE: The gender-based illicit proximity bias (GIPE) (see (Kumar et al., 2020) for details) was computed with
n = 100 nearest neighbours for each word, with an indirect bias threshold of θ ∈ [0.03, 0.05] following (Kumar
et al., 2020). (Only θ = 0.03 shown here.)
Full results, plus all code, embedding files, and word sets needed to replicate these results are available at
https://github.com/hillary-dawkins/MAB.

Emb.method DBvt MIDB Clus:v1500 Rec:LR SBdef SBstereo GIPE:0.03 E
w2v 0.052 0.023 0.933 0.992 0.830 0.134 0.021 0.206
w2v.HD 0.000 0.007 0.440 0.887 0.759 0.114 0.014 0.163
w2v.DHD NA 0.025 0.271 0.881 0.295 0.373 0.014 0.164
w2v.BAM 0.061 0.038 0.844 0.974 0.814 0.136 0.023 0.131
w2v.OSCaR 0.050 0.024 0.928 0.993 0.830 0.134 0.021 0.188
GloVe 0.055 -0.032 0.984 1.000 0.802 0.109 0.115 0.198
GloVe.HD 0.000 -0.004 0.302 0.927 0.786 0.130 0.070 0.155
GN-GloVe 0.038 0.172 0.588 0.999 0.977 0.014 0.141 0.301
GN-GloVe(wa) 0.068 -0.096 0.497 0.989 0.939 0.011 0.117 0.149
GloVe.DHD NA 0.201 0.258 0.903 0.250 0.123 0.064 0.247
GloVe.GP 0.059 0.068 0.996 1.000 0.843 0.080 0.145 0.336
GN-GloVe.GP 0.036 0.006 0.601 0.999 0.984 0.011 0.118 0.179
GloVe.BAM 0.068 -0.019 0.964 0.999 0.775 0.145 0.137 0.175
GloVe.OSCaR 0.056 -0.012 0.984 1.000 0.814 0.102 0.117 0.154
GloVe.RAN 0.044 -0.001 0.419 0.951 0.927 0.011 0.040 0.193
GloVe.INLP NA -0.001 0.015 0.660 0.198 0.160 0.080 0.167


