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Abstract

Link prediction on knowledge graphs (KGs) is
a key research topic. Previous work mainly fo-
cused on binary relations, paying less attention
to higher-arity relations although they are ubiq-
uitous in real-world KGs. This paper considers
link prediction upon n-ary relational facts and
proposes a graph-based approach to this task.
The key to our approach is to represent the n-
ary structure of a fact as a small heterogeneous
graph, and model this graph with edge-biased
fully-connected attention. The fully-connected
attention captures universal inter-vertex inter-
actions, while with edge-aware attentive biases
to particularly encode the graph structure and
its heterogeneity. In this fashion, our approach
fully models global and local dependencies in
each n-ary fact, and hence can more effectively
capture associations therein. Extensive evalu-
ation verifies the effectiveness and superiority
of our approach. It performs substantially and
consistently better than current state-of-the-art
across a variety of n-ary relational benchmarks.
Our code is publicly available.1

1 Introduction

Web-scale knowledge graphs (KGs), such as Free-
base (Bollacker et al., 2008), Wikidata (Vrandečić
and Krötzsch, 2014), and Google Knowledge Vault
(Dong et al., 2014), are useful resources for many
real-world applications, ranging from Web search
and question answering to recommender systems.
Though impressively large, these modern KGs are
still known to be greatly incomplete and missing
crucial facts (West et al., 2014). Link prediction
which predicts missing links in KGs has therefore
become an important research topic.

Previous studies mainly consider link prediction
upon binary relational facts, which encode binary
relations between pairs of entities and are usually

1https://github.com/PaddlePaddle/
Research/tree/master/KG/ACL2021_GRAN
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Figure 1: An n-ary fact as a heterogenous graph, with
relations/attributes and entities/values as vertices, and
four types of edges designed between the vertices.

represented as (subject, relation, object) triples.
Nevertheless, besides binary relational facts, n-ary
relational facts that involve more than two entities
are also ubiquitous in reality, e.g., Marie Curie
received Nobel Prize in Physics in 1903 together
with Pierre Curie and Antoine Henri Becquerel is
a typical 5-ary fact. As pointed out by Wen et al.
(2016), more than 1/3 of the entities in Freebase
actually participate in n-ary relational facts.

Despite the ubiquitousness, only a few studies
have examined link prediction on n-ary relational
facts. In these studies, an n-ary fact is typically rep-
resented as a set of peer attributes (relations) along
with their values (entities), e.g., {person: Marie
Curie, award: Nobel Prize in Physics, point-in-
time: 1903, together-with: Pierre Curie, together-
with: Antoine Henri Becquerel}. Link prediction
then is achieved by learning the relatedness either
between the values (Zhang et al., 2018; Liu et al.,
2020; Fatemi et al., 2020) or between the attribute-
value pairs (Guan et al., 2019; Liu et al., 2021). This
representation inherently assumes that attributes of
a same n-ary fact are equally important, which is
usually not the case. To further discriminate impor-
tance of different attributes, Rosso et al. (2020) and
Guan et al. (2020) later proposed to represent an
n-ary fact as a primary triple coupled with auxiliary
attribute-value descriptions, e.g., in the above 5-ary

https://github.com/PaddlePaddle/Research/tree/master/KG/ACL2021_GRAN
https://github.com/PaddlePaddle/Research/tree/master/KG/ACL2021_GRAN
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fact, (Marie Curie, award-received, Nobel Prize
in Physics) is the primary triple and point-in-time:
1903, together-with: Pierre Curie, together-with:
Antoine Henri Becquerel are auxiliary descriptions.
Link prediction then is achieved by measuring the
validity of the primary triple and its compatibility
with each attribute-value pair. These attribute-value
pairs, however, are modeled independently before
a final aggregation, thus ignoring intrinsic semantic
relatedness in between.

This work in general follows Rosso et al. (2020)
and Guan et al. (2020)’s expressive representation
form of n-ary facts, but takes a novel graph learning
perspective for modeling and reasoning with such
facts. Given an n-ary fact represented as a primary
subject-relation-object triple (s, r, o) with auxiliary
attribute-value pairs {(ai :vi)}, we first formalize
the fact as a heterogenous graph. This graph, as we
illustrate in Figure 1, takes relations and entities (at-
tributes and values) as vertices, and introduces four
types of edges, i.e., subject-relation, object-relation,
relation-attribute, and attribute-value, to denote dis-
tinct connectivity patterns between these vertices.
In this fashion, the full semantics of the given fact
will be retained in the graph. Then, based on this
graph representation, we employ a fully-connected
attention module to characterize inter-vertex inter-
actions, while further introducing edge-aware atten-
tive biases to particularly handle the graph structure
and heterogeneity. This enables us to capture not
only local but also global dependencies within the
fact. Our approach directly encodes each n-ary fact
as a whole graph so as to better capture rich associa-
tions therein. In this sense, we call it GRAph-based
N-ary relational learning (GRAN).

The most similar prior art to this work is STARE
(Galkin et al., 2020), which uses a message passing
based graph encoder to obtain relation (attribute)
and entity (value) embeddings, and feeds these em-
beddings into a Transformer (Vaswani et al., 2017)
decoder to score n-ary facts. Our approach is more
neatly designed by (1) excluding the computational-
heavy graph encoder which, according to a contem-
poraneous study (Yu and Yang, 2021), may not be
necessary given an expressive enough decoder, and
(2) modeling the full n-ary structure of a fact during
decoding which enables to capture not only global
but also local dependencies therein.

We evaluate our approach on a variety of n-ary
link prediction benchmarks. Experimental results
reveal that GRAN works particularly well in learn-

ing and reasoning with n-ary relational facts, con-
sistently and substantially outperforming current
state-of-the-art across all the benchmarks. Our main
contributions are summarized as follows:

• We present a novel graph-based approach to
learning and reasoning with n-ary facts, capa-
ble of capturing rich associations therein.
• We demonstrate the effectiveness and superi-

ority of our approach, establishing new state-
of-the-art across a variety of benchmarks.

2 Problem statement

This section formally defines n-ary relational facts
and the link prediction task on this kind of data.

Definition 1 (N-ary relational fact) An n-ary re-
lational fact F is a primary subject-relation-object
triple (s, r, o) coupled with m auxiliary attribute-
value pairs {(ai :vi)}mi=1, where r, a1, · · · , am ∈
R and s, o, v1, · · · , vm ∈ E , with R and E being
the sets of relations and entities, respectively. We
slightly abuse terminology here by referring to the
primary relation and all attributes as relations, and
referring to the subject, object, and values as enti-
ties unless otherwise specified. The arity of the fact
is (m+ 2), i.e., the number of entities in the fact.

Definition 2 (N-ary link prediction) N-ary link
prediction aims to predict a missing element from
an n-ary fact. The missing element can be either an
entity ∈ {s, o, v1, · · · , vm} or a relation ∈ {r, a1,
· · · , am}, e.g., to predict the primary subject of the
incomplete n-ary fact

(
(?, r, o), {(ai :vi)}mi=1

)
.

3 Graph-based n-ary relational learning

This section presents GRAN, our graph-based ap-
proach to n-ary link prediction. There are two key
factors of our approach: graph representation and
graph learning. The former represents n-ary facts
as graphs, and the latter learns with these graphs to
perform inference on n-ary facts.

3.1 Graph representation

We elaborate the first key factor: graph representa-
tion of n-ary facts. Given an n-ary fact defined as
F =

(
(s, r, o), {(ai : vi)}mi=1

)
, we reformulate it

equivalently as a heterogeneous graph G = (V,L).
The vertex set V consists of all entities and relations
in the fact, i.e., V = {r, s, o, a1, · · ·, am, v1, · · ·,
vm}. The link setL consists of (2m+2) undirected
edges of four types between the vertices, i.e.,
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• 1 subject-relation edge (s, r),
• 1 object-relation edge (o, r),
• m relation-attribute edges {(r, ai)}mi=1,
• m attribute-value edges {(ai, vi)}mi=1.

The graph heterogeneity is reflected in that the ver-
tices and links are both typed, with type mapping
functions φ : V→{entity, relation} and ψ : L→{
subject-relation, object-relation, relation-attribute,
attribute-value}, respectively. Figure 1 provides a
visual illustration of this heterogenous graph.

As we can see, the graph representation retains
the full semantics of a given fact. It also enables us
to model the fact as a whole and capture all possible
interactions therein, which, as we will show later in
our experiments, is crucial for learning with n-ary
relational facts.

3.2 Graph learning
The second key factor is learning with heteroge-
neous graphs to perform inference on n-ary facts.
Given an incomplete n-ary fact with a missing ele-
ment, say

(
(?, r, o), {(ai : vi)}mi=1

)
, which is repre-

sented as a heterogeneous graph, we feed the graph
into an embedding layer, a stack of L successive
graph attention layers, and a final prediction layer
to predict the missing element, say s. This whole
process is sketched in Figure 2 (left).

The input embedding layer maps the elements of
the input n-ary fact or, equivalently, the vertices of
the input graph, to their continuous vector represen-
tations (the missing element is denoted by a special
token [MASK]). The L graph attention layers then
repeatedly encode the graph and update its vertex
representations. Our graph attention generally in-
herits from Transformer (Vaswani et al., 2017) and
its fully-connected attention which captures univer-
sal inter-vertex associations, but further introduces
edge-aware attentive biases to particularly handle
graph structure and heterogeneity. As such, we call
it edge-biased fully-connected attention. After the
graph encoding process, we use the representation
of the special token [MASK] to predict the missing
element. In the rest of this section, we emphasize
the edge-biased fully-connected attention, and refer
readers to (Vaswani et al., 2017) and Appendix A
for other modules of our graph attention layer.

Edge-biased fully-connected attention We are
given an input graph G = (V,L), with vertex type
mapping function φ and link type mapping function
ψ. Vertices are associated with hidden states (x1,
· · ·,x|V|) ∈ Rdx generated by previous layers. The

Input	Embedding

Edge-biased
fully-connected	attention

Feed	Forward

Add	&	Norm

Add	&	Norm

Linear	&	Softmax

Normal attention

Edge-biased attention (subject-relation)

Edge-biased attention (object-relation)

Edge-biased attention (relation-attribute)

Edge-biased attention (attribute-value)

Edge-biased	fully-connected	attention

Figure 2: Overview of the graph learning process, with
edge-biased fully-connected attention illustrated.

aim of this attention is to aggregate information
from different vertices and update vertex represen-
tations, by taking into account the graph structure
and its heterogeneity. We employ multi-head atten-
tion with H heads, each applied independently to
the input (x1, · · ·,x|V|) ∈ Rdx to generate updated
vertex representations (zh1 , · · ·, zh|V|) ∈ Rdz for h
= 1, · · ·, H . These updated vertex representations
are concatenated and linearly transformed to gener-
ate final attention output. We set dx = d and dz =
d
H for all layers and heads. Below we describe the
specific design of each head, and we drop the head
index h for notational brevity.

Our attention follows the traditional query-key-
value attention (Vaswani et al., 2017). Specifically,
for each input xi, we project it into a triple of query,
key, and value as (WQxi,W

Kxi,W
V xi) ∈ Rdz ,

using parameters WQ,WK ,WV ∈ Rdz×dx , re-
spectively. Then we measure the similarity between
each pair of vertices, say i and j, as a scaled dot
product of i’s query and j’s edge-biased key:

αij =
(WQxi)

>(WKxj + eK
ij )√

dz
. (1)

After we obtain the similarity scores αij , a softmax
operation is applied, and the edge-biased values
are aggregated accordingly to generate the updated
representation for each vertex i:

zi =

|V|∑
j=1

exp (αij)∑|V|
k=1 exp (αik)

(WV xj + eV
ij). (2)

We call this attention fully-connected as it takes
into account similarity between any two vertices i
and j. We call it edge-biased as it further introduces
attentive biases eKij , e

V
ij ∈ Rdz to encode the typed

edge between i and j, one to generate edge-biased
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key (cf. Eq. (1)) and the other edge-biased value
(cf. Eq. (2)). Introducing eKij enables our attention
to encode not only global dependencies that uni-
versally exist between any pair of vertices, but also
local dependencies that are particularly indicated
by typed edges. Introducing eVij further propagates
edge information to the attention output. If there is
no edge linking i and j we set eKij =eVij=0, which,
at this time, degenerates to the conventional fully-
connected attention used in Transformer (Vaswani
et al., 2017). As the attentive biases eKij , e

V
ij can be

designed freely to meet any desired specifications,
this attention is in essence quite flexible, capable of
modeling arbitrary relationships between the input
elements. This idea has actually been applied, e.g.,
to model relative positions between words within
sentences (Shaw et al., 2018; Wang et al., 2019a),
or to model various kinds of mention dependencies
for relation extraction (Xu et al., 2021).

Edge-aware attentive biases We now elaborate
how eKij and eVij are specifically designed for n-ary
facts. Recall that given an n-ary fact represented as
a heterogeneous graph G = (V,L), there are 4 dis-
tinct types of edges in the graph: subject-relation,
object-relation, relation-attribute, attribute-value.
To each we assign a pair of key and value biases.
The attentive biases between vertices i and j are
then defined as the biases associated with the type
of the edge linking i and j:

(eK
ij ,e

V
ij)=



(0,0), if (i,j) /∈L,
(eK

1 ,e
V
1 ), if ψ(i,j)=subject-relation,

(eK
2 ,e

V
2 ), if ψ(i,j)=object-relation,

(eK
3 ,e

V
3 ), if ψ(i,j)=relation-attribute,

(eK
4 ,e

V
4 ), if ψ(i,j)=attribute-value.

(3)

Here eKk , e
V
k ∈ Rdz for k = 1, 2, 3, 4 are the key

and value biases corresponding to the 4 edge types,
shared across all layers and heads. In this way, the
graph structure (whether there is an edge between
two vertices) and its heterogeneity (which type the
edge is between two vertices) can be well encoded
into the attentive biases, and then propagated to the
final attention output. Figure 2 (right) visualizes
the edge-biased attention between pairs of vertices
in an n-ary fact.

3.3 Model training

We directly use n-ary link prediction as our training
task. Specifically, given an n-ary fact F=

(
(s, r, o),

{(ai :vi)}mi=1

)
in the training set we create (2m +

3) training instances for it, each to predict a missing

element (either an entity or a relation) given other
elements in the fact, e.g.,

(
(?, r, o), {(ai:vi)}mi=1

)
is to predict the primary subject and the answer to
which is s. Here and in what follows we denote a
training instance as F̃ , with the missing element
indicated by a special token [MASK]. This training
instance is reformulated as a heterogeneous graph
G̃ with vertices (x1, · · ·, xk), where k = 2m+ 3 is
the total number of vertices therein. The label is
denoted as y. We have y ∈ E for entity prediction
and y ∈ R for relation prediction.

Each training instance F̃ or, equivalently, the
corresponding graph G̃ is fed into the embedding,
graph attention, and final prediction layers to pre-
dict the missing element, as we introduced above.
Suppose after the successive graph attention layers
we obtain for the vertices (x1, · · ·, xk) their hidden
states (h1, · · ·,hk) ∈ Rd. The hidden state corre-
sponding to [MASK], denoted as h for brevity, is
used for the final prediction. The prediction layer is
constructed by two linear transformations followed
by a standard softmax operation:

p = SOFTMAX
(
W>

2 (W1h+ b1) + b2

)
. (4)

Here, we share W2 with the weight matrix of the
input embedding layer, and W1,b1,b2 are freely
learnable. The final output p is a probability distri-
bution over entities in E or relations inR, depend-
ing on the type of the missing element.

We use the cross-entropy between the prediction
and the label as our training loss:

L =
∑

t
yt log pt, (5)

where pt is the t-th entry of the prediction p, and
yt the t-th entry of the label y. As a one-hot label
restricts each prediction task to a single answer,
which might not be the case in practice, we employ
label smoothing to lessen this restriction. Specifi-
cally, for entity prediction, we set yt=1−ε(e) for
the target entity and yt= ε(e)

|E|−1 for each of the other

entities, where ε(e) is a small entity label smooth-
ing rate. For relation prediction yt is set in a similar
way, with relation label smoothing rate ε(r). The
loss is minimized using Adam optimizer (Kingma
and Ba, 2015). We use learning rate warmup over
the first 10% training steps and linear decay of the
learning rate. We also use batch normalization and
dropout after each layer and sub-layer to regularize,
stabilize, and speed up training.

Unlike previous methods which score individual
facts and learn from positive-negative pairs (Rosso
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et al., 2020; Guan et al., 2020), our training scheme
bears two advantages: (1) Directly using n-ary link
prediction as the training task can effectively avoid
training-test discrepancy. (2) Introducing a special
token [MASK] enables us to score a target element
against all candidates simultaneously, which accel-
erates convergence during training and speeds up
evaluation drastically (Dettmers et al., 2018).

4 Experiments and results

We evaluate GRAN in the link prediction task on
n-ary facts. This section presents our experiments
and results.

4.1 Datasets

We consider standard n-ary link prediction bench-
marks including:

JF17K (Zhang et al., 2018)2 is collected from
Freebase. On this dataset, an n-ary relation is prede-
fined by a set of attributes, and facts of this relation
should have all corresponding values completely
given. Take music.group membership as an exam-
ple. All facts of this relation should get three values
w.r.t. the predefined attributes, e.g., (Guitar, Dean
Fertita, Queens of the Stone Age). The maximum
arity of the relations there is 6.

WikiPeople (Guan et al., 2019)3 is derived from
Wikidata concerning entities of type human. On
this dataset, n-ary facts are already represented as
primary triples with auxiliary attribute-value pairs,
which is more tolerant to data incompleteness. The
maximum arity there is 9. As the original dataset
also contains literals, we follow (Rosso et al., 2020;
Galkin et al., 2020) and consider another version
that filters out statements containing literals. This
filtered version is referred to as WikiPeople−, and
the maximum arity there is 7.

JF17K-3, JF17K-4, WikiPeople-3, and Wiki-
People-4 (Liu et al., 2020)4 are subsets of JF17K
and WikiPeople, consisting solely of 3-ary and 4-
ary relational facts therein, respectively.

For JF17K and its subsets, we transform the rep-
resentation of an n-ary fact to a primary triple cou-
pled with auxiliary attribute-value pairs. We follow
(Rosso et al., 2020; Galkin et al., 2020) and directly
take the values corresponding to the first and sec-
ond attributes as the primary subject and object,
respectively. Other attributes and values are taken

2https://github.com/lijp12/SIR/
3https://github.com/gsp2014/NaLP
4https://github.com/liuyuaa/GETD

as auxiliary descriptions. Facts on each dataset are
split into train/dev/test sets, and we use the original
split. On JF17K which provides no dev set, we split
20% of the train set for development. The statistics
of these datasets are summarized in Table 1.

4.2 Baseline methods

We compare against the following state-of-the-art
n-ary link prediction techniques:

RAE (Zhang et al., 2018) represents an n-ary
fact as an (n+1)-tuple consisting of the predefined
relation and its n values. It generalizes a binary link
prediction method TransH (Wang et al., 2014) to
the higher-arity case, which measures the validity
of a fact as the compatibility between its n values.

NaLP (Guan et al., 2019) and RAM (Liu et al.,
2021) represent an n-ary fact as a set of attribute-
value pairs. Then, NaLP employs a convolutional
neural network followed by fully connected neural
nets to model the relatedness of such attribute-value
pairs and accordingly measure the validity of a fact.
RAM further encourages to model the relatedness
between different attributes and also the relatedness
between an attribute and all involved values.

HINGE(Rosso et al., 2020) and NeuInfer(Guan
et al., 2020) regard an n-ary fact as a primary triple
with auxiliary attribute-value pairs. Then they de-
ploy neural modules to measure the validity of the
primary triple and its compatibility with each aux-
iliary description, and combine these modules to
obtain the overall score of a fact. As different auxil-
iary descriptions are modeled independently before
aggregation, these two methods show limited abil-
ity to model full associations within n-ary facts.

STARE (Galkin et al., 2020) is a recently pro-
posed method generalizing graph convolutional net-
works (Kipf and Welling, 2017) to n-ary relational
KGs. It employs a message passing based graph
encoder to obtain entity/relation embeddings, and
feeds these embeddings to Transformer decoder to
score n-ary facts. Hy-Transformer (Yu and Yang,
2021) replaces the graph encoder with light-weight
embedding processing modules, achieving higher
efficiency without sacrificing effectiveness. These
two methods employ vanilla Transformer decoders,
ignoring specific n-ary structures during decoding.

n-CP, n-TuckER, and GETD (Liu et al., 2020)
are tensor factorization approaches to n-ary link
prediction. They all follow RAE and represent each
n-ary fact as an (n+1)-tuple. A whole KG can thus
be represented as a binary valued (n+ 1)-way ten-

https://github.com/lijp12/SIR/
https://github.com/gsp2014/NaLP
https://github.com/liuyuaa/GETD
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All facts Higher-arity facts (%) Entities Relations Train Dev Test Arity

JF17K 100,947 46,320 (45.9%) 28,645 501 76,379 – 24,568 2-6
WikiPeople 382,229 44,315 (11.6%) 47,765 193 305,725 38,223 38,281 2-9
WikiPeople− 369,866 9,482 (2.6%) 34,825 178 294,439 37,715 37,712 2-7

JF17K-3 34,544 34,544 (100%) 11,541 208 27,635 3,454 3,455 3
JF17K-4 9,509 9,509 (100%) 6,536 69 7,607 951 951 4
WikiPeople-3 25,820 25,820 (100%) 12,270 112 20,656 2,582 2,582 3
WikiPeople-4 15,188 15,188 (100%) 9,528 95 12,150 1,519 1,519 4

Table 1: Dataset statistics, where the columns respectively indicate the number of all facts, n-ary facts with n > 2,
entities, relations, facts in train/dev/test sets, and all possible arities.

sor X ∈ {0, 1}|R|×|E|×···×|E|, where x = 1 means
the corresponding fact is true and x = 0 otherwise.
X is then decomposed and approximated by a low-
rank tensor X̂ that estimates the validity of all facts.
Different tensor decomposition strategies can be
applied, e.g., n-CP generalizes CP decomposition
(Kruskal, 1977) and n-TuckER is built on TuckER
(Balazevic et al., 2019). As the tensor representa-
tion inherently requires all facts to have the same
arity, these methods are not applicable to datasets
of mixed arities, e.g., JF17K and WikiPeople.

4.3 GRAN variants

We evaluate three variants of GRAN to investigate
the impact of modeling graph structure and hetero-
geneity, including:

GRAN-hete is the full model introduced above. It
uses edge representations defined in Eq. (3), which
encode both graph structure (whether there is an
edge) and heterogeneity (which type the edge is).

GRAN-homo retains graph structure but ignores
heterogeneity. There are only two groups of edge
attentive biases: (eKij , e

V
ij) = (0,0) or (eKij , e

V
ij) =

(eK , eV ). The former is used if there is no edge be-
tween vertices i and j, while the latter is employed
whenever the two vertices are linked, irrespective of
the type of the edge between them. This in essence
views an n-ary fact as a homogeneous graph where
all edges are of the same type.

GRAN-complete considers neither graph structure
nor heterogeneity. It simply sets (eKij , e

V
ij)=(0,0)

for all vertex pairs. The edge-biased attention thus
degenerates to the conventional one used in Trans-
former, which captures only global dependencies
between vertices. This in essence regards an n-ary
fact as a complete graph in which any two vertices
are connected by an (untyped) edge. STARE and
Hy-Transformer are most similar to this variant.

We use the following configurations for all vari-
ants of GRAN: L=12 graph attention layers, H=

4 attention heads, hidden size d = 256, batch size
b=1024, and learning rate η = 5e−4, fixed across
all the datasets. Besides, on each dataset, we tune
entity/relation label smoothing rate ε(e)/ε(r), drop-
out rate ρ, and training epochs τ in their respective
ranges. The optimal configuration is determined by
dev MRR. We leave the tuning ranges and optimal
values of these hyperparameters to Appendix B. Af-
ter determining the optimal configuration on each
dataset, we train with a combination of the train and
dev splits and evaluate on the test split, as practiced
in (Galkin et al., 2020).

4.4 Evaluation protocol and metrics

During evaluation, we distinguish between entity
prediction and relation prediction. Take entity pre-
diction as an example. For each test n-ary fact, we
replace one of its entities (i.e., subject, object, or
an auxiliary value) with the special token [MASK],
feed the masked graph into GRAN, and obtain a
predicted distribution of the answer over all entities
∈ E . Then we sort the distribution probabilities in
descending order and get the rank of the correct an-
swer. During ranking, we ignore facts that already
exist in the train, dev, or test split. We repeat this
whole procedure for all specified entities in the test
fact, and report MRR and Hits@k for k = 1, 10
aggregated on the test split. MRR is the average of
reciprocal rankings, and Hits@k is the proportion
of top k rankings (abbreviated as H@k). The same
evaluation protocol and metrics also apply to rela-
tion prediction, where a relation can be either the
primary relation or an auxiliary attribute.

4.5 Results on datasets of mixed arities

Table 2 presents entity prediction results on JF17K
and the two versions of WikiPeople, which consist
of facts with mixed arities.5 We consider two set-

5Tensor factorization based approaches which require all
facts to have the same arity are not applicable here.
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JF17K JF17K WikiPeople WikiPeople−

All Entities Subject/Object All Entities Subject/Object

MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

RAE .310 .219 .504 .215 .215 .467 .172 .102 .320 .059 .059 .306
NaLP .366 .290 .516 .221 .165 .331 .338 .272 .466 .408 .331 .546
HINGE – – – .449 .361 .624 – – – .476 .415 .585
NeuInfer .517 .436 .675 – – – .350 .282 .467 – – –
RAM .539 .463 .690 – – – .380 .279 .539 – – –
STARE – – – .574 .496 .725 – – – .491 .398 .648
Hy-Transformer – – – .582 .501 .742 – – – .501 .426 .634

GRAN-hete .656 .582 .799 .617 .539 .770 .479 .410 .604 .503 .438 .620
GRAN-homo .650 .576 .795 .611 .533 .767 .465 .386 .602 .487 .410 .618
GRAN-complete .622 .546 .774 .591 .510 .753 .460 .381 .601 .489 .413 .617

Table 2: Entity prediction results on JF17K and WikiPeople. RAE and NaLP results for predicting all entities are
collected from (Guan et al., 2020), and those for predicting the primary subject/object are collected from (Rosso
et al., 2020). Other baseline results are collected from their original literatures. Best scores are highlighted in bold,
and “–” denotes missing scores.

JF17K JF17K WikiPeople WikiPeople−

All Relations Primary Relation All Relations Primary Relation

MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

NaLP .825 .762 .927 .639 .547 .822 .735 .595 .938 .482 .320 .852
HINGE – – – .937 .901 .989 – – – .950 .916 .998
NeuInfer .861 .832 .904 – – – .765 .686 .897 – – –

GRAN-hete .996 .993 .999 .992 .988 .998 .960 .946 .977 .957 .942 .976
GRAN-homo .980 .965 .998 .964 .939 .997 .940 .910 .975 .932 .899 .971
GRAN-complete .979 .963 .998 .963 .935 .997 .940 .910 .976 .935 .902 .974

Table 3: Relation prediction results on JF17K and WikiPeople. Baseline results for predicting all relations taken
from (Guan et al., 2019, 2020), and those for predicting the primary relation taken from (Rosso et al., 2020). Best
scores are highlighted in bold, and “–” denotes missing scores.

tings: (1) predicting all entities s, o, v1, · · · , vm in
an n-ary fact and (2) predicting only the subject s
and object o. This enables us to make a direct com-
parison to previous literatures (Guan et al., 2020;
Rosso et al., 2020; Galkin et al., 2020). From the re-
sults, we can see that (1) The optimal setting of our
approach offers consistent and substantial improve-
ments over all the baselines across all the datasets
in almost all metrics, showing its significant effec-
tiveness and superiority in entity prediction within
n-ary facts. (2) All the variants, including the less
expressive GRAN-homo and GRAN-complete, perform
quite well, greatly surpassing the competitive base-
lines in almost all cases except for the WikiPeople−

dataset. This verifies the superior effectiveness of
modeling n-ary facts as whole graphs so as to cap-
ture global dependencies between all relations and
entities therein. (3) Among the variants, GRAN-hete

offers the best performance. This demonstrates the
necessity and superiority of further modeling spe-
cific graph structures and graph heterogeneity, so
as to capture local dependencies reflected by typed

edges linking relations and entities.
Table 3 further shows relation prediction results

on these datasets. Again, to make direct compari-
son with previous literatures, we consider two set-
tings: (1) predicting all relations including the pri-
mary relation r and auxiliary attributes a1, · · · , am
and (2) predicting only the primary relation r. Here,
on each dataset, GRAN models are fixed to their
respective optimal configurations (see Appendix B)
determined in the entity prediction task.6 The re-
sults show that GRAN variants perform particularly
well in relation prediction. Among these variants,
GRAN-hete performs the best, consistently outper-
forming the baselines and achieving extremely high
performance across all the datasets. This is because
relation prediction is, by nature, a relatively easy
task due to a small number of candidate answers.

6Relation prediction typically requires much less training
epochs than entity prediction according to our initial experi-
ments. But we did not conduct hyperparameter searching for
relation prediction, as the configurations we used, though not
optimal, perform well enough in this task.
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JF17K-3 JF17K-4 WikiPeople-3 WikiPeople-4
All Entities All Entities All Entities All Entities

MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

RAE .505 .430 .644 .707 .636 .835 .239 .168 .379 .150 .080 .273
NaLP .515 .431 .679 .719 .673 .805 .301 .226 .445 .342 .237 .540
n-CP .700 .635 .827 .787 .733 .890 .330 .250 .496 .265 .169 .445
n-TuckER .727 .664 .852 .804 .748 .902 .365 .274 .548 .362 .246 .570
GETD .732 .669 .856 .810 .755 .913 .373 .284 .558 .386 .265 .596

GRAN-hete .806 .759 .896 .852 .801 .939 .416 .325 .608 .431 .309 .642
GRAN-homo .803 .755 .896 .848 .795 .937 .410 .315 .606 .426 .305 .631
GRAN-complete .730 .670 .862 .844 .794 .930 .408 .314 .602 .365 .248 .604

Table 4: Entity prediction results on the four JF17K and WikiPeople subsets. Baseline results are taken from (Liu
et al., 2020). Best scores are highlighted in bold.

JF17K WikiPeople WikiPeople−

Subject/Object Values Subject/Object Values Subject/Object Values

n = 2 n > 2 n > 2 n = 2 n > 2 n > 2 n = 2 n > 2 n > 2

GRAN-hete .413 .768 .758 .495 .361 .471 .503 .505 .713
GRAN-homo .409 .759 .753 .479 .354 .467 .487 .486 .690
GRAN-complete .409 .725 .705 .478 .353 .415 .489 .480 .665

Table 5: Breakdown performance of the GRAN variants in entity prediction task on JF17K and WikiPeople. Only
MRR scores are reported.

4.6 Results on datasets of a single arity

Table 4 presents entity prediction results on the four
subsets of JF17K and WikiPeople, which consist
solely of 3-ary or 4-ary facts. Here, an entity means
either the subject, the object, or an attribute value.
On these four single-arity subsets, tensor factoriza-
tion based approaches like n-CP, n-TuckER, and
GETD apply quite well and have reported promis-
ing performance (Liu et al., 2020). From the results,
we can observe similar phenomena as from Table 2.
The GRAN variants perform particularly well, all
surpassing or at least performing on par with the
baselines across the datasets. And GRAN-hete, again,
offers the best performance in general among the
three variants.

4.7 Further analysis

We further look into the breakdown entity predic-
tion performance of the GRAN variants on different
arities. More specifically, we group the test split of
each dataset into binary (n=2) and n-ary (n>2)
categories. Entity prediction means predicting the
subject/object for the binary category, or predicting
an attribute value in addition for the n-ary category.
Table 5 presents the breakdown MRR scores in all
these different cases on JF17K, WikiPeople, and
WikiPeople−, with the GRAN variants set to their
respective optimal configurations on each dataset

(see Appendix B). Among the variants GRAN-hete

performs best in all cases, which again verifies the
necessity and superiority of modeling n-ary facts
as heterogeneous graphs. Ignoring the graph het-
erogeneity (GRAN-homo) or further graph structures
(GRAN-complete) always leads to worse performance,
particularly when predicting auxiliary attribute val-
ues in higher-arity facts.

5 Related work

Link prediction on binary relational data Most
previous work of learning with knowledge graphs
(KGs) focused on binary relations. Among differ-
ent binary relational learning techniques, embed-
ding based models have received increasing atten-
tion in recent years due to their effectiveness and
simplicity. The idea there is to represent symbolic
entities and relations in a continuous vector space
and measure the validity of a fact in that space. This
kind of models can be roughly grouped into three
categories: translation distance based (Bordes et al.,
2013; Wang et al., 2014; Sun et al., 2019), semantic
matching based (Trouillon et al., 2016; Balazevic
et al., 2019), and neural network based (Dettmers
et al., 2018; Schlichtkrull et al., 2018), according to
the design of validity scoring functions. We refer
readers to (Nickel et al., 2016; Wang et al., 2017; Ji
et al., 2021) for thorough reviews of the literature.
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Link prediction on n-ary relational data Since
binary relations oversimplify the complex nature
of the data stored in KGs, a few recent studies have
started to explore learning and reasoning with n-ary
relational data (n > 2), in particular via embedding
based approaches. Most of these studies represent
n-ary facts as tuples of pre-defined relations with
corresponding attribute values, and generalize bi-
nary relational learning methods to the n-ary case,
e.g., m-TransH (Wen et al., 2016) and RAE (Zhang
et al., 2018) generalize TransH (Wang et al., 2014),
a translation distance based embedding model for
binary relations, while n-CP, n-TuckER, and GETD
(Liu et al., 2020) generalize 3-way tensor decom-
position techniques to the higher-arity case. NaLP
(Guan et al., 2019) and RAM (Liu et al., 2021) are
slightly different approaches which represent n-ary
facts directly as groups of attribute-value pairs and
then model relatedness between such attributes and
values. In these approaches, however, attributes of
an n-ary fact are assumed to be equally important,
which is often not the case in reality. Rosso et al.
(2020) and Guan et al. (2020) therefore proposed
to represent n-ary facts as primary triples coupled
with auxiliary attribute-value pairs, which naturally
discriminates the importance of different attributes.
The overall validity of a fact is then measured by
the validity of the primary triple and its compatibil-
ity with each attribute-value pair. STARE (Galkin
et al., 2020) follows the same representation form
of n-ary facts, and generalizes graph convolutional
networks to n-ary relational KGs to learn entity and
relation embeddings. These embeddings are then
fed into a Transformer decoder to score n-ary facts.
Nevertheless, during the decoding process STARE
takes into account solely global dependencies and
ignores the specific n-ary structure of a given fact.

Transformer and its extensions Transformer
(Vaswani et al., 2017) was initially devised as an
encoder-decoder architecture for machine transla-
tion, and quickly received broad attention across all
areas of natural language processing (Radford et al.,
2018; Devlin et al., 2019; Yang et al., 2019). Trans-
former uses neither convolution nor recurrence, but
instead is built entirely with (self-) attention layers.
Recently, there has been a lot of interest in modi-
fying this attention to further meet various desired
specifications, e.g., to encode syntax trees (Strubell
et al., 2018; Wang et al., 2019c), character-word
lattice structures (Li et al., 2020), as well as relative
positions between words (Shaw et al., 2018; Wang

et al., 2019a). There are also a few recent attempts
that apply vanilla Transformer (Wang et al., 2019b)
or hierarchical Transformer (Chen et al., 2020) to
KGs, but mainly restricted to binary relations and
deployed with conventional attention. This work,
in contrast, deals with higher-arity relational data
represented as heterogeneous graphs, and employs
modified attention to encode graph structure and
heterogeneity.

6 Conclusion

This paper studies link prediction on higher-arity re-
lational facts and presents a graph-based approach
to this task. For each given n-ary fact, our approach
(1) represents the fact as a heterogeneous graph in
which the semantics of the fact are fully retained;
(2) models the graph using fully-connected atten-
tion with edge-aware attentive biases so as to cap-
ture both local and global dependencies within the
given fact. By modeling an n-ary fact as a whole
graph, our approach can more effectively capture
entity relation associations therein, which is crucial
for inference on such facts. Link prediction results
on a variety of n-ary relational benchmarks demon-
strate the significant effectiveness and superiority
of our approach.

As future work, we would like to (1) verify the
effectiveness of GRAN on newly introduced bench-
marks such as WD50K (Galkin et al., 2020) and
FB-AUTO (Fatemi et al., 2020); (2) investigate the
usefulness of specific modules, e.g., positional em-
beddings and various forms of attentive biases in
GRAN; and (3) integrate other types of data in a
KG, e.g., entities’s textual descriptions, for better
n-ary link prediction.
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A Graph attention layers

After the input embedding layer, we employ a stack
of L identical graph attention layers to encode the
input graph before making final predictions. These
graph attention layers generally follow the design
of Transformer encoder (Vaswani et al., 2017), each
of which consists of two sub-layers, i.e., an edge-
biased fully-connected attention sub-layer followed
by an element-wise feed-forward sub-layer. The
attention sub-layer, as illustrated in Section 3.2, re-
lates different vertices of the input graph to update
its vertex representations. It computes attention in
an edge-biased fully-connected fashion, which thus
is able to capture both global and local dependen-
cies within the graph. The feed-forward sub-layer
is composed of two linear transformations with a
GELU activation (Hendrycks and Gimpel, 2016) in
between, applied to each element/vertex separately
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and identically. We further introduce residual con-
nections (He et al., 2016) and layer normalization
(Ba et al., 2016) around each graph attention layer
and its sub-layers. To facilitate these residual con-
nections, all the layers and their sub-layers produce
outputs of the same dimension d.

B Hyperparameter settings

We use the following hyperparameter settings for
GRAN: L=12 graph attention layers, H=4 atten-
tion heads, hidden size d=256, batch size b=1024,
and learning rate η=5e−4. These configurations
are fixed across all the datasets. Besides, on each
dataset we tune the following hyperparameters in
their respective ranges:

• entity label smoothing rate ε(e) ∈ {.0, .1, .2,
.3, .4, .5, .6, .7, .8, .9};
• relation label smoothing rate ε(r) ∈ {.0, .1, .2,
.3, .4, .5};
• dropout rate ρ ∈ {.1, .2, .3, .4, .5};
• training epochs τ from 20 to 200 in steps of

20 on all the datasets.

We determine the optimal configuration for GRAN-

hete by dev MRR of entity prediction on each dataset.
And then we directly set GRAN-homo and GRAN-

complete to the same configuration. Table 6 presents
the optimal configuration on each dataset.

ε(e) ε(r) ρ τ

JF17K .9 .0 .2 160
WikiPeople .2 .2 .1 200
WikiPeople− .2 .1 .1 160

JF17K-3 .8 .2 .2 180
JF17K-4 .8 .0 .3 160
WikiPeople-3 .8 .4 .3 100
WikiPeople-4 .8 .4 .3 100

Table 6: Optimal configuration of the GRAN variants
on each dataset.

C Infrastructure and runtime

We train all the GRAN variants on one 16G V100
GPU. With the hyperparameter settings specified in
Appendix B, it takes about 3 hours to finish training
and evaluation on JF17K, 17 hours on Wikipeople,
10 hours on Wikipeople−, 1 hour on JF17K-3, 0.5
hour on JF17K-4, Wikipeople-3, and WikiPeople-4.
This runtime covers the whole training and evalua-
tion process. Compared to previous methods like
HINGE (Rosso et al., 2020) and NeuInfer (Guan
et al., 2020) which score individual facts and learn

from positive-negative pairs, GRAN directly scores
each target answer against all candidates in a single
pass and drastically speeds up evaluation. GRAN is
also much more efficient than STARE (Galkin et al.,
2020), which is a graph encoder plus Transformer
decoder architecture. By eliminating the computa-
tional heavy graph encoder, GRAN requires signif-
icantly less running time but still achieves better
performance than STARE, e.g., GRAN-hete achieves
.617 MRR within 3 hours while STARE takes about
10 hours to achieve .574 MRR on JF17K; GRAN-

hete achieves .503 MRR within 10 hours but STARE
takes about 4 days to achieve a similar MRR on
Wikipeople− (which is 9-10 times slower).


