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Abstract

Recent papers have introduced methods to in-
corporate gazetteer features and entity segmen-
tation techniques in neural named entity recog-
nition models. These papers rely on differ-
ent resources and include features not related
to the use of gazetteers, rendering impossible
the comparison of the relative effectiveness of
the approaches. Here, we provide a compre-
hensive overview of methods for incorporat-
ing gazetteers and for entity segmentation. We
evaluate representative methods from each in
similar settings for a fair comparison and iden-
tify the ones that are consistently better across
datasets and input representations. We further
show that gazetteers improve entity segmenta-
tion and not just entity typing. Hence, we ex-
plore their utility in recognizing long entities,
a problem for which entity segmentation tech-
niques were developed. Our work explains the
mechanisms via which gazetteers improve the
performance of neural NER models.

1 Introduction

Named Entity Recognition (NER) has the unique
property of being a task appealing to researchers
and at the same time being fairly robust for imme-
diate practical applications. In many domains, it
is of interest to identify segments of text convey-
ing a concept of a given type—a person (Grish-
man and Sundheim, 1996), an event (Hovy et al.,
2000), a disease (Dogan et al., 2014), a gene (Kim
et al., 2003), a chemical (Krallinger et al., 2015), a
food (Magnolini et al., 2019), an item of clothing
(Putthividhya and Hu, 2011), a research technique
(Augenstein et al., 2017a), etc.

Approaches to NER are typically not domain-
specific, treating the problem as a sequence la-
belling task regardless of the categories of interest.
Yet, researchers also widely agree that named entity
recognition is a knowledge intensive task (Ratinov
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and Roth, 2009; Seyler et al., 2018): the availability
of external knowledge resources in the form of lists
of example entities of a given type, or gazetteers,
improve performance almost universally. Since
gazetteers are readily available, from knowledge
bases, databases of products and specialized ontolo-
gies, having practical guidance on how to handle
gazetteers in NER would be valuable.

In this paper, we provide a survey of how
gazetteers have been used in neural approaches
to NER in English and compare key approaches
with the popular biLSTM-CREF architecture. To
ensure that our conclusions accurately character-
ize the utility of gazetteers, we test the approaches
on several datasets from different genres covering
newswire, conversations and twitter. The extensive
head-to-head comparison reveals that while certain
approaches are consistently beneficial, others are
variable, impressively improving results on one
dataset but reducing performance on others.

Gazetteers typically contain multi-word entries.
In contrast, the majority of entity mentions in text
are single word, with lower performance of models
on longer entities. This discrepancy highlights a
potential application of gazetteers for improving
NER prediction for mentions of long entities. Re-
cent work on entity segmentation! as part of the
named entity recognition task aims to recognize
long entities better. We overview this work and
compare these methods similar to the way we com-
pare methods for incorporating gazetteers.

We find that certain ways for incorporat-
ing gazetteers show stable improvements across
datasets, while segmentation approaches do not ap-
pear to be that useful overall. We further explore
the interplay of gazetteers with entity segmenta-
tion and their role in recognizing long entities. We
find that incorporating gazetteers improves entity

'Tdentifying entity spans without types

3990

Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 3990-4002
August 1-6, 2021. ©2021 Association for Computational Linguistics



segmentation, not just entity typing and depending
on the input representation to the model, gazetteer
types may be irrelevant. We also find that incorpo-
rating gazetteers can serve as an alternate method to
recognizing long entities, likely due to the abundant
presence of multi-word entities in the Wikipedia-
derived gazetteers we used.

Our work provides (i) a concise overview of
methods for incorporating gazetteers and entity
segmentation in NER, (ii) a principled compari-
son of representative approaches for each aspect,
and (iii) novel findings and analyses of the inter-
play between gazetteers and segmentation. Our
findings can inform both future researchers and
practitioners interested in NER.

2 biLSTM-CREF architecture for NER

We explore variants of the now classic biLSTM-
CREF architecture for NER (Huang et al., 2015).
We overview how gazetteer features and segmen-
tation can be integrated in this paradigm and carry
out a comparison of several representative methods.
We use two input word representations: the 300-d
GloVe vectors trained on Common Crawl (Penning-
ton et al., 2014), which is the dominant represen-
tation in NER, and the 1024-d contextual ELMo
(Peters et al., 2018) representations trained on the
1B Word Benchmark (Chelba et al., 2014). In each
case, character-based word representations learned
with CNNs (Ma and Hovy, 2016) are also concate-
nated. The final concatenated representation is used
as input to bidirectional LSTMs (Hochreiter and
Schmidhuber, 1997), followed by a CRF (Lafferty
et al., 2001) layer. We use the implementation by
Lample et al. (2016) for most experiments.

3 Why Use Gazetteers?

Gazetteers are large dictionaries consisting of lists
of entities of a particular type. For example, a per-
son gazetteer may consist of full names and parts
of names such as the first names of people. Before
we start our discussion of methods for incorporat-
ing gazetteers, it is worth considering if we have
sufficient evidence that they are needed at all.
Gazetteers are needed for better generalization
through improved entity coverage, to predict the
type for words that have not been encountered in
training and possibly even pre-training. This means
the need will be more acute for practical deploy-
ment of NER and will be less pronounced on fixed
datasets in which train and test data are sampled

from overlapping or adjacent time periods, with
high overlap of entities across both.

The most compelling example for the need to
handle unseen language comes from work on NER
on Twitter. Language on Twitter changes rapidly,
much more rapidly than for other types of text
(Eisenstein, 2013). This change requires models to
be retrained periodically to maintain optimal per-
formance for the current time period (Rijhwani and
Preotiuc-Pietro, 2020). An alternative to retraining,
not yet explored in literature, is to develop methods
that can make use of gazetteers that possibly could
be updated more quickly and cheaply compared to
continuously annotating new training data.

Even in stable domains such as newswire, the
ability of models to generalize to words not seen in
the training data is low (Augenstein et al., 2017b;
Fu et al., 2020a,b). Both traditional models with
hand-crafted features (Finkel et al., 2005; Okazaki,
2007) and more recent neural network approaches
(Collobert et al., 2011; Huang et al., 2015; Peters
et al., 2018; Devlin et al., 2019) achieve lower per-
formance on entities unseen in the training data.

Methods that make use of large pretrained lan-
guage representations, neural (Collobert et al.,
2011) or not (Miller et al., 2004), can ameliorate
the problem of coverage to some extent. We do not
yet know enough about how pretraining data should
be chosen (Cherry and Guo, 2015), though there
is some evidence that performance on downstream
tasks correlates with the vocabulary coverage in
the pre-training data (Dai et al., 2019). Prior work
has reported that performance is lowest for words
that appear neither in the training nor the pretrain-
ing vocabulary (Ma and Hovy, 2016). Moreover,
the deteriorated performance on out of vocabulary
words is not necessarily a failure of the models:
many contexts simply do not provide sufficient
knowledge to predict the type of an entity, even
for people (Agarwal et al., 2021). Models need to
expand their knowledge of entities and gazetteers
are a natural way for doing that.

4 Where Do Gazetteers Come From?

Existing tables, lists, directories, databases and
knowledge bases are widely available and can be
used to derive gazetteers. Some researchers have
specifically compiled various resources to form
gazetteers, while others make use of those provided
in prior work. Early work collected gazetteers from
the CIA factbook for geographic locations, lists of
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Table 1: Gazetteer entities(%) by length (words).

popular person names, etc (Mikheev et al., 1999).
More recently, Ratinov and Roth (2009) derived a
gazetteer from the Web and Wikipedia and Chiu
and Nichols (2016) used DBPedia.

In our work, we use the Ratinov and Roth (2009)
wide-coverage gazetteer. It contains ~3M entities
grouped into ~30 fine-grained categories. In some
experiments, we use all categories, regardless of
the entity types in the dataset. In the remaining,
we identify the gazetteer category that most closely
matches that types in a given dataset and disregard
the rest. The mapping can be found in the appendix.

Table 1 shows the approximate percentage of
entities by length in words in our gazetteer. Most
entries are of length two, but unlike NER datasets
(Table 3), the remaining entries are evenly distri-
bution between length 1, 3 and >4. Most notably,
around 24% of gazetteer entities have four or more
words. In comparison, in NER datasets where en-
tities appear in the context of a sentence that is
often a part of a longer document, such long enti-
ties typically make up about 2% of all entities. This
distributional difference hints at the possibility of
using gazetteer to not only improve coverage but
also improve performance on longer entities for
which segmentation methods are developed.

Regardless of the distribution of entity lengths,
the total number of entities in gazetteers is much
higher than that in NER datasets so a higher per-
centage of longer entities does not equate to a small
number of short entities.

5 Gazetteer Features for NER

Here, we overview the ways gazetteers have been
integrated in NER models.

5.1 Discrete Gazetteer Lookup Features

Feature-based CRF models for NER used
gazetteers to generate indicators for each word in a
sentence (Bender et al., 2003; Minkov et al., 2005;
Ratinov and Roth, 2009; Ritter et al., 2011; Yang
et al., 2016; Seyler et al., 2018). The number of
indicators equals the number of entity types in the
dataset and indicate (with a binary 1/0 value) if the
word is part of a gazetteer entry of the given type.

Many neural network approaches continue to
incorporate gazetteers as discrete indicator features

concatenated to the pre-trained word embeddings
as the input (Collobert et al., 2011; Huang et al.,
2015). Adding the features in later stages does
not work as well (Magnolini et al., 2019). Both
Collobert et al. (2011) and Huang et al. (2015)
pre-process datasets to match the gazetteer entries
to sentences, using both exact matches and multi-
word partial matches to gazetteer entries. Chiu
and Nichols (2016) perform a similar matching
but use four binary values for each label, indicating
whether the given word matches the gazetteer entity
exactly (S), at the beginning (B), end (E) or the any
of the words in between (I).

5.2 Continuous Gazetteer Features

The approach above does not use gazetteers very
effectively. Gazetteers contain many more enti-
ties of each type than are available in even the
largest training set (Table 3). One insight is to use
the gazetteers as a additional source of training
examples. A simple way is to add the gazetteer
entries to the labeled data, without any context. Liu
et al. (2019a) report that this data augmentation
approach led to much worse overall results, pre-
sumably because of the great shift in label distribu-
tions. Another approach is to augment the training
data by replacing entities in place by other entities
from gazetteers. Song et al. (2020) reported no im-
provement with such a random entity replacement,
likely due to the need for manual intervention for
replacement of entities of some types to maintain
coherence of text (Agarwal et al., 2020).

A much more successful alternative is to learn a
separate (or sub-) module, trained to predict types
for text spans, using the gazetteer entries and syn-
thetic negative examples sampled from a NER
training set or even the gazetteer. We will refer
to the separate module as a gazetteer network. It
is straightforward to integrate the label distribution
scores from this model in a semi-Markov CRF for
sequence labeling (Ye and Ling, 2018) that oper-
ates at the span level (which we describe in greater
detail later). The resulting combination is far more
effective than discrete indicator gazetteer features.

Magnolini et al. (2019) and Liu et al. (2019b)
propose a similar approach. They learn a gazetteer
network but instead of using the label score distribu-
tion, intermediate word representations (gazetteer
embeddings henceforth) are incorporated in the
NER model. Liu et al. (2019b) use a semi-Markov
CREF operating at the span level and generate the

3992



gazetteer embeddings for each potential span. They
follow the evaluation approach of Ma and Hovy
(2016), breaking down results by whether an en-
tity was seen only in training, seen only in pre-
training, seen in both and seen in neither. The
largest improvement was in the “seen in neither”
subset, showing that this approach is particularly
helpful for out-of-vocabulary words with respect
to the training and pre-training data.

Magnolini et al. (2019) use the standard word-
level CRF and hence do not have spans available
so they input the full sentence to the gazetteer net-
work. This makes the training and inference setup
for the gazetteer network different as entity phrases
are used as input during training. They reported
mixed results for this approach. In our experiments,
we evaluated their method on a larger number of
datasets but used a different approach for nega-
tive sampling for the gazetteer network training
data. We observed some improvement on almost
all datasets, contingent on the input representation.

5.3 Contextual Gazetteers

Learning from just the gazetteer has the drawback
that the representations do not include any clues
about the context in which the entity types are used.
The same entity may appear in multiple gazetteers.
Given that current methods heavily rely on entity
memorization and little on context, this is possibly
acceptable. For completeness however, we ought
to mention that the link structure of Wikipedia can
be used to derive dense representations for entity
types directly (Long et al., 2016; Ganea and Hof-
mann, 2017; Mengge et al., 2020; Ghaddar and
Langlais, 2018). Comparing gazetteer representa-
tions with and without context would be a direction
for exploration in future work.

6 Entity Segmentation in NER

Early work (Collins and Singer, 1999; Downey
et al., 2007; Ritter et al., 2011) treated NER as two
subtasks, i.e. entity segmentation: finding spans of
text that refer to named entities, and typing: assign-
ing a type to the identified span. Recent efforts have
also incorporated entity segmentation explicitly in
neural models, with goal of finding longer entities
better (Xiao et al., 2019; Ye and Ling, 2018). Such
work can be divided into two categories—Multi-
task learning and semi-Markov CRFs.

6.1 Multi-task Learning

Multi-task learning (MTL) involves jointly training
multiple related tasks using the same representa-
tion such that the auxiliary tasks can help with the
performance of the target task. Aguilar et al. (2017)
use MTL with hard parameter sharing to add two
auxiliary tasks—binary classification to identify
entity spans (segmentation) and multi-class classi-
fication to type them without CRF. Both tasks use
the same biLSTM representation as the target task.
The output of the additional tasks is not used in the
NER task; they only act as regularizers for NER.
Others (Stratos, 2017; Aguilar et al., 2018) also use
auxiliary tasks as regularizers but instead of binary
classification, the additional tasks performs multi-
class classification into B (first word of entity), I
(remaining entity words) and O (non-entity).

The auxiliary tasks in MTL can also be used for
extra supervision by concatenating their output la-
bel distribution to the representation used by NER
(Xiao et al., 2019). Unlike prior work, Xiao et al.
(2019) do not use the same representation for the
target and auxiliary task. Instead, they build a sub-
module called similarity-based auxiliary classifier
(SAC). SAC takes as input the original input rep-
resentation and adds token position embeddings
(Vaswani et al., 2017), followed by multiple convo-
lution layers. It maintains two randomly initialized
vectors representing entity and non-entity classes.
These vectors are combined with an attention layer
to get the final word representations. The attention
weights are calculated with the multiplicative atten-
tion function over the word representation and each
of these two vectors. The final word representation
is concatenated with the biLSTM representation for
NER and the attention weights are used as proxy
for probabilities of the word being an entity or not.
The loss of both tasks is jointly optimized, with less
weight given to entity segmentation over NER. Yu
et al. (2018) also add extra supervision, but with a
two-step approach. They learn two character-level
language models for entity and non-entity words
and use their output as a binary feature in NER.

Augenstein and Sggaard (2017) use MTL for
NER in scientific texts, adding five auxiliary tasks.
They add syntactic chunking, hyperlink prediction,
multi-word expression identification, frame target
annotation, and semantic super-sense tagging; the
first three target segmentation. The auxiliary tasks
are used one at a time with the target task. Since
the datasets for NER and the auxiliary tasks are
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Dataset | Genre Labels
CoNLL [news |[PER,LOC, ORG, MISC
Ontonotes | convers- PERSON, ORG, LOC, EVENT, NORP,
ations |LANGUAGE, LAW, MONEY, DATE,
TIME, WORK OF ART, PERCENT,
QUANTITY, CARDINAL, ORDINAL
PER, LOC, ORG
PER, LOC, ORG

twitter
twitter

BTC
TTC

Table 2: Dataset Genre and Entity Labels

different, at each training step, a random task is
chosen, followed by a random training instance.

6.2 Semi-Markov CRFs

Semi-Markov CRFs (Sarawagi and Cohen, 2004)
are a variant of linear chain CRFs that capture de-
pendencies between adjacent spans of text instead
of adjacent words. The Markov assumption still
holds across spans but not within the span. The
goal is to find the best possible segmentation into
spans using scores at span-level. The maximum
length of spans is bound to reduce computation
cost. Sarawagi and Cohen (2004) use hand-crafted
features for span representations but recent work
has explored other techniques to represent spans.

Gated recursive semi-markov CRF (Zhuo et al.,
2016) creates a pyramid-shaped feature extractor
for spans. The bottom-most layer consists of word
representations and hence length one spans. Repre-
sentation of adjacent words are combined to form
length two spans for the next layer and so on. The
top layer consists of a single span with the full
sentence. Hybrid semi-Markov CRF or HSCRF
(Ye and Ling, 2018) do not use an explicit span
representation. Instead they consider the span-level
score as sum of the word-level CRF scores of con-
stituent words. Both the word-level and span-level
CREF are jointly optimized. Sato et al. (2017) use a
two step process to reduce the search space of the
spans. They first generate possible spans from a
separate model using a score cutoff and then find
the best possible labelling over these spans instead
of all spans upto a maximum specified length.

7 Datasets

We evaluate several of the above models on four
datasets, to compare their performance. Table 2
shows the entity types in each dataset.

1. CoNLL is the English portion of the
CoNLL’03 data (Tjong Kim Sang and
De Meulder, 2003), extracted from the
Reuters 1996 newswire corpus.

2. ON is the union of broadcast conversation (bc)
and telephone conversation (tc) domains in
the English portion of Ontonotes (Hovy et al.,
2006).>2 The number of entity types is the
largest in this dataset. We merge the closely
related categories, GPE with LOC and FAC
with ORG, to allow us to easily map gazetteer
labels to dataset labels.

3. BTC or Broad Twitter Corpus (Derczynski
et al., 2016) consists of tweets. We use the
recommended train, validation and test splits.

4. TTC or Temporal Twitter Corpus (Rijhwani
and Preotiuc-Pietro, 2020) also consists of
tweets. It has multiple training splits from
years ranging from 2014 to 2018 and valida-
tion and test splits from 2019. We use the
2014 training split as it overlaps less with
2019 and hence is more challenging.

Some dataset statistics are shown in Table 3.
CoNLL and OntoNotes are the largest and are
roughly equal in size. OntoNotes has more long
entities and fewer entities that are sequences of
capitalized words. Such characteristics will favor
methods that perform better segmentation without
relying on standard orthography. BTC and TTC are
smaller and have more distinct surface forms. The
entities in TTC follow capitalization conventions
but BTC has many entities that consist of words
that are not capitalized. BTC also exhibits a differ-
ent distribution of capitalization patterns between
the training and the test set. In the training set,
roughly half of the entities are sequences of word
with capitalized first letter but this number falls to
just 28% in the test set. Most entities in all datasets
consist of a single words. Only about 2% of entities
have length more than three. OntoNotes contains
the largest percentage of long entities, 10% of all.

We also present statistics on in/out of vocabu-
lary words in the test data, with respect to the pre-
training data, the training data and the gazetteer
entries. An entity is considered seen in pre-training
if the phrase is seen as such in the pre-training cor-
pus or all of the constituent words are seen. For
CoNLL and OntoNotes, almost all entities are seen
in the pretraining data (>90%), followed by TTC
(88%). For BTC, only 65-75% entities are seen
in pretraining. Adding ELMo increases the entity
coverage by only a small amount in all datasets.

2We also experimented with newswire, broadcast news
and magazines, which had similar results to CoNLL.
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System . CoNLL . ON . BTC ‘ TTC
train test train test train test train test
Entities (spans) 23326 5613 10419 1972 8774 4376 1175 1539
Distinct surface forms (%) 35.49 48.03 37.98 44.62 55.20 59.53 83.83 75.18
Dataset Entities by length in words(%)
1 62.60 62.94 57.49 47.16 75.88 87.27 68.51 64.72
2 31.51 31.32 22.38 27.74 19.49 10.03 24.94 30.54
3 4.17 4.56 10.62 13.74 2.89 1.97 4.26 3.44
>4 1.70 1.17 9.51 11.36 1.72 0.73 2.32 1.28
Seen entities (%)
Pretraining (GloVe ) 92.96 92.25 97.13 97.77 75.21 65.40 84.26 87.91
Pretraining (GloVe+ELMo) 95.04 94.53 97.83 98.17 75.92 66.06 84.77 88.56
Training, any type 100.00 62.62 100.00 74.80 100.00 45.70 100.00 22.29
Gazetteer, any type 82.52 82.31 92.73 94.93 65.56 59.32 68.34 79.08
Gaz, not train, any type 0.00 26.55 0.00 21.86 0.00 14.79 0.00 57.76
Training, correct type 100.00 59.43 100.00 69.78 100.00 4442 100.00 18.91
Gazetteer, correct type 74.34 73.97 67.22 69.78 50.24 32.38 64.09 75.37
Casing
Title case (%) [ 82.60 80.76 | 58.13 56.09 | 49.50 28.88 [ 67.66 78.17

Table 3: Dataset Statistics. CoNLL and Ontonotes are larger but TTC and BTC have more distinct surface forms.
Except Ontonotes, all datasets have very few long entities. Most entities are seen in the pre-training data. Test
entities seen in the training data are generally seen with the same type at least. BTC has many lowercase entities.

The gazetteer provides a better coverage than the
training data. Training data coverage is especially
low in TTC, making the dataset more challenging.
According to our definition of seen, entities may
be seen in the training data but not necessarily with
the expected types. We also check if they are seen
in the training data with the same type as in the
test data. There is a decrease of only 1-5% when
taking the type into consideration. Overwhelming,
the type in training is also that in testing.

8 Experiments

Results for models using different word represen-
tations, without any gazetteer or segmentation fea-
tures, are shown in Table 4. We report micro-F1
over all entity types, averaged over three runs. On
all datasets, the combination of GloVe, ELMo and
character-based representations works best. Given
these results, it would have been reasonable to
study methods of adding gazetteers only for this
representation. However, given that the GloVe
along with character-based embeddings is much
more commonly used in recent work on NER, we
also present results for that.

We now compare one representative approach
from each class of methods for adding gazetteer
and segmentation features to the biLSTM-CRF ar-
chitecture. For a fair comparison, we add only the
core idea of the model and use the same hyperpa-
rameters, noted in the appendix, removing different
peripheral features such as part-of-speech tags and
word shape, used in papers that introduced the idea.

System | CONLL ON BTC TTC
G 89.55 77.66 72.04 50.11
G+ch 90.64 7195 7275 57.17
E 91.02 79.93 7333 63.87
E+G+ch | 91.74 80.67 73.84 64.88

Table 4: NER F1 of models with varying input repre-
sentation to biLSTM-CRF. G refer to GloVe, E refers
to ELMo and ch refers to character-based representa-
tion. The highest value in each column is boldfaced.

8.1 Gazetteers

We compare four gazetteer-derived features. In
each case, the gazetteer representation vector is
passed through a feedforward layer with 32 neurons
and ReLU activation and then concatenated to the
input word representation to the biLSTM-CRF.

1. WORD_GAZ We map gazetteer entity types to
dataset types and split gazetteer entries into
words using space as a delimiter, to create a
vocabulary associated with each entity types,
i.e. a list of words that appeared in person
names etc. Each word in a sentence is associ-
ated with a binary valued vector with length
equal to the number of entity types in the
dataset. The dimension corresponding to a
given type gets value one if the word is in the
gazetteer vocabulary for that type and zero
otherwise. The vector is all zeros for words
that do not appear in the vocabulary for any en-
tity types and can have multiple components
with value one, when the word appeared in
gazetteer entries of more than one type.
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System |CoNLL| ON |BTC | TTC | avg | max System |CoNLL| ON |BTC | TTC | avg | max
diff | diff diff | diff

G+ch 90.64 |77.95|72.75|57.17| - - E+G+ch 91.74 [80.67|73.84|64.88| - -
WORD_GAZ [90.56 |[78.21[73.57|58.42] 0.56 | 1.25 WORD_GAZ [91.74 [80.86 |74.70 | 66.22 | 0.60 | 1.34
GAZ_IOBES |90.44 |77.83|73.70|59.70 | 0.79 | 2.53 GAZ_IOBES |[91.76 |80.66|72.96|64.60|-0.29 | 0.02
GAZ_FINE 90.52 |79.01|73.53(58.82| 0.84 | 1.65 GAZ_FINE 91.92 |80.47|75.03|65.23| 0.38 | 1.19
PHRASE_GAZ | 90.29 |77.32|72.73|59.18 | 0.25 | 2.01 PHRASE_GAZ [92.08 |80.52|74.00|64.19|-0.08 | 0.34
LRN_GAZ 89.82 [78.55|72.91|59.36| 0.53 | 2.19 LRN_GAZ 91.32 |81.27|73.98|65.75| 0.30 | 0.87
SEG_REG 90.28 |78.46|72.74|56.78 | -0.06 | 0.51 SEG_REG 91.79 |80.99|74.42|63.52|-0.10 | 0.58
SEG_SUP 90.20 |78.34|72.85|58.54 | 0.35 | 1.37 SEG_SUP 91.81 |80.66|74.97(65.51| 0.46 | 1.13
SAC 90.35 |77.33|72.83|57.04|-0.24 | 0.08 SAC 91.87 |80.20|75.27(62.57|-0.30 | 1.43
HSCRF 89.91 |78.42|71.75|55.34|-0.77 | 0.47 HSCRF 91.66 |80.62|74.64|66.92| 0.68 | 2.04

Table 5: NER F1 on using GloVe+char. avg-diff and
max-diff are the average and maximum increase over
the base model across datasets. The most stable system
(highest avg-diff) in each category is boldfaced.

2. GAZ_TOBES is similar to WORD_GAZ but in-
stead of a single bit, there are four values for
each label denoting a matching to an entity
exactly (S), to the first word (B), to the last
word (E) or other words in between (I).

3. GAZ_FINE is also similar to WORD_GAZ but
instead of selecting types from the gazetteer to
match the label types for a given dataset, we
use all 30 gazetteer types as is. The length of
the gazetteer vector equals the numbers of the
original gazetteer types without any mapping.

4. PHRASE_GAZ Here, we perform phrase level
matching between the sentence and the
gazetteer. All subsequences (continuous se-
quence of words) in a sentence are matched
to each entry in the gazetteers, retaining the
gazetteer type only for the longest match.
For example, only ‘New York University’ is
matched, not the nested ‘New York’ entity
in it. Each word in the longest match sub-
sequence gets the bit corresponding to the
matched gazetteer category switched on in
the gazetteer vector representation.

5. LRN_GAZ Gazetteer embeddings are learned
with a separate model and concatenated to the
input representation for the NER model, as in
Magnolini et al. (2019). Random n-grams, ex-
cluding named entities, from CoNLL’03 train-
ing data are used as negative examples for
training the gazetteer network, as opposed to
negative examples generated from gazetteer
entries used in Magnolini et al. (2019).

Both word-level matching and learned gazetteers
make it possible for the model to learn phrases
beyond the exact entries in the gazetteers. For

Table 6: NER F1 using ELMo+GloVe+char. avg-diff
and max-diff are the average and maximum increase
over the base model across datasets. The most stable
system (highest avg-diff) in each category is boldfaced.

#gaztypes)y CONLL | ON | BTC | TTC
0 61.9 59.2 74.5 62.8
1 15.7 139 10.1 14.3
1+ 21.7 26.9 6.3 9.0
all 0.7 0.0 9.1 13.8

Table 7: Percentage of words in the vocabulary with the
number of gazetteer types in which they appear.

example, if the organization gazetteer contains
‘GAZ High School’ but the dataset contains “TST
High School’, phrase-level matching would not
match any of the words in “TST High School’ to
a gazetteer. A word-level matching would at least
mark ‘High’ and ‘School’ as organizations. Sim-
ilarly, learned gazetteer embeddings may learn a
similar representation for both and make it possible
to recognize ‘TST High School’ correctly.

8.2 Segmentation

We experiment with the different multi-task learn-
ing methods of incorporating segmentation and one
of the semi-Markov CRF models.

1. SEG_REG (Aguilar et al., 2017) is the MTL
approach with two auxiliary tasks: binary clas-
sification to predict if the word is a part of
entity and multi-class classification to predict
the type of the word without CRF.

2. SEG_SUP is the same as SEG_REG, but the
label distribution scores from the binary clas-
sification auxiliary task are concatenated to
the final representation used for NER.

3. SAC is the similarity-based auxiliary classifier
in Xiao et al. (2019) as described above.

4. HSCRF is the hybrid semi-Markov CRF in Ye
and Ling (2018) as described above
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System |CoNLL| ON |BTC | TTC | avg | max System |CoNLL| ON |BTC | TTC | avg | max
diff | diff diff | diff

G+ch 94.84 |83.24|8534|67.74| - - E+G+ch 9548 |85.01| 85.4 |73.59| - -
WORD_GAZ [94.86 |83.02|86.60|69.20| 0.63 | 1.46 WORD_GAZ |95.32 |85.17 |86.67|74.29 | 0.49 | 1.27
GAZ_IOBES |94.90 |83.03(86.50|70.15| 0.86 | 2.41 GAZ_IOBES |95.54 |84.77|85.89|73.64| 0.09 | 0.49
GAZ_FINE 94.85 |83.67|86.07|70.17 | 0.90 | 2.43 GAZ_FINE 95.51 |84.61|86.55|74.10| 0.32 | 1.15
PHRASE_GAZ | 94.74 |82.26 | 86.00|69.64 | 0.37 | 1.90 PHRASE_GAZ | 95.54 |84.64|85.84|73.17|-0.07 | 0.44
LRN_GAZ 94.44 |83.65|85.70|68.97 | 0.40 | 1.23 LRN_GAZ 95.08 |85.18|86.07|74.52| 0.34 | 0.93
SEG-REG 94.80 |83.66|85.75|66.90 | -0.01 | 0.42 SEG_REG 95.60 |85.08|86.46|72.88| 0.13 | 1.06
SEG_SUP 9471 |83.16|86.20|69.98 | 0.72 | 2.24 SEG_SUP 95.51 |84.76|86.38|74.57| 0.43 | 0.98
SAC 94.79 |82.74186.93|69.25 | -0.42 | -0.19 SAC 95.37 |84.38|86.93|71.70 | -0.28 | 1.53
HSCRF 94.55 |82.11]85.15]|67.03 | 0.48 | 1.59 HSCRF 95.37 |84.73|86.38|76.63 | 0.91 | 3.04
Table 8: Entity segmentation F1 using GloVe+char. Table 9: Entity Segmentation F1  using
avg-diff and max-diff are the average and maximum in-  ELMo+GloVe+char. avg-diff and max-diff are

crease over the base model across datasets. The most
stable system (highest avg-diff) in each category is
boldfaced.

9 Results

We test the gazetteer-enhanced and segmenta-
tion approaches using both GloVe+char and
ELMo+GloVe+char as the input representations.
Results are shown in Tables 5 and 6 respectively.

9.1 Consistency Across Datasets

We report the average and maximum improvement
in F1-score over the base model across datasets. A
high average improvement means that the model
is consistently better across datasets spanning
newswire, conversations and Twitter posts. A high
maximum improvement with a low or negative av-
erage improvements means that the model can do
well on some dataset but fails to perform well when
tested on multiple datasets of varied genres.

The word indicator gazetteer features are the
best and most consistent on average. With
ELMo+GloVe, they also show the maximum im-
provement. WORD_GAZ combines gazetteer labels
to dataset labels whereas the GAZ_FINE does not
do any dataset specific mapping. Prior work has
used the former but this experiment shows that we
do not need to do such dataset specific modifica-
tions of gazetteer labels. We can use fine-grained
labels and obtain similar gains. PHRASE_GAZ and
LRN_GAZ improve performance with GloVe+char,
with especially high performance on TTC, but they
are not as good with ELMo+GloVe+char. Im-
provement with both representation by incorpo-
rating gazetteers is higher on BTC and TTC than
CoNLL and OntoNotes. This is likely because the
gazetteer features are more ambiguous in CoNLL
and OntoNotes (Table 7), with most words appear-
ing in two or more possible categories.

the average and maximum increase over the base
model across datasets. The most stable system (highest
avg-diff) in each category is boldfaced.

Segmentation methods can show vast improve-
ment on specific datasets but they are unstable
across datasets. The average improvement is
negative in many cases for both representations.
SEG_SUP is the only segmentation approach that
is consistently beneficial across datasets for both
representations. HSCRF performs well too, but only
when ELMo is used as well. In comparison, includ-
ing gazetteers is consistently better.

9.2 Gazetteers for Segmentation

In this section, we explore if gazetteers can be used
as an alternative for segmentation, owing to their
stable performance across datasets. We ask the
following question:Are gazetteers recognizing new
entities not previously marked as entities or are
they improving the typing of spans already rec-
ognized as entities by adding entity type informa-
tion? To answer this question, we report the entity
segmentation F1 in Tables 8 and 9. Entity seg-
mentation is the task of finding the correct entity
span, regardless of the type. Since pre-training data
covers most entities (Table 3), one would expect
gazetteers to improve typing of entities through
a more explicit type signal. However, segmenta-
tion results are consistent with those of NER. The
models that improved performance of NER also
perform well on segmentation and often by similar
margins as NER. In fact, following similar trends
as NER, gazetteer-enhanced models are more con-
sistent than segmentation methods at entity seg-
mentation as well. Since gazetteer-enhanced mod-
els induce segmentation and improve performance
despite a near perfect coverage provided by the pre-
training data, we expect them to improve perfor-
mance of even the latest transformer-based models
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System CoNLL Ontonotes BTC TTC

I 2 3 >4 1 2 3 >4 1 2 3 >4 I 2 3 >4
E+G+ch 92.1 920 858 854 |87.0 787 644 743|742 755 576 413[599 776 540 3838
WORD_GAZ 92.1 920 855 850 (|87.0 784 65.6 75.6 | 752 752 58.0 44.6 | 61.5 783 54.5 358
HSCRF 92.2 922 838 789|868 793 635 737|753 754 532 369|621 794 50.7 47.2

Table 10: NER F1 by entity length (words) using ELMo+GloVe+char on the most stable gazetteer and segmenta-
tion method. The highest value in each column is bolfaced. Generally, gazetteers perform better on long entities

and segmentation methods perform better on short entities.

System |CoNLL| ON |BTC | TTC | avg | max
diff | diff

G+ch 90.64 |77.95|72.75|57.17| - -
WORD_GAZ |90.56 |78.21|73.57|58.42| 0.56 | 1.25
-gaztypes |90.64 |78.69|74.13(59.16| 1.03 | 1.99

E+G+ch 91.74 | 80.67 | 73.84 | 64.88 - -
WORD_GAZ |91.74 |80.86|74.70|66.22| 0.60 | 1.34
-gaztypes |91.58 |80.31(74.75(65.16| 0.17 | 0.91
Table 11: NER Fl. avg-diff and max-diff are the

average and maximum increase over the base model
across datasets. Removing gazetteer typ information
improves performance for GloVe+char.

(Devlin et al., 2019) pre-trained on large corpora.

Next, we modify WORD_GAZ to mark the pres-
ence in any gazetteer without taking the type into
consideration (Table 11). Surprisingly, removing
type information results in better performance with
GloVe, indicating the most benefit came from seg-
mentation and not typing. With ELMo included,
however, we do not observe the same trend. While
performance is better than the baseline system, it
is not better than WORD_GAZ that includes types.
Though we cannot point conclusively to the rea-
son behind such results with ELMo, we suspect
it is due to the ambiguity within the pre-training
data. The model may not be using the gazetteer
representation if there is a strong signal from the
pretrained representation that the word is not an en-
tity. This can only be verified if all representations
are trained on the same pre-training corpus.

9.3 Gazetteers for Long Entities

To further verify the effectiveness of gazetteers
for segmentation, we break down performance by
entity length in words, reporting F1 in Table 10
for the top performing gazetteer-enhanced model
and segmentation model with ELMo+GloVe+char.
Recall that the majority of entities in all corpora are
of length one and that entities consisting of more
than three words are the rare, about 2% in three
of the datasets, expect in OntoNotes, where they
are 10%. The highest performance is on entities of
length two, followed by length one. Longer entities

are recognized much more more poorly.

Typically segmentation methods have been used
to improve performance on long entities. But our
experiments reveal that gazetteers are better at it.
With the exception of TTC, WORD_GAZ is better
on long entities and HSCRF on shorter ones. This
is likely due to the presence of many long entities
in gazetteers (§4, Table 1).

10 Conclusion

We provided a comprehensive overview of methods
for incorporating gazetteers and inducing segmen-
tation in NER. We chose these two areas because
even though they have been explored separately
in prior work, we find that they are interrelated
and achieve similar goals. We implemented rep-
resentative models from each category for a fair
comparison. We found that while segmentation
methods can achieve impressive improvements on
specific datasets, gazetteer-enhanced models are
more stable across datasets. Moreover, the simpler
methods of gazetteer enhancement (binary valued
discrete feature vector with word-level gazetteer
matching) and segmentation (multi-task learning
with a extra supervision from and auxiliary binary
classification for segmentation) performed better
within their respective categories.

Furthermore, contrary to expectation, we found
that gazetteer-enhanced models improve entity seg-
mentation, not just entity typing. In fact, one
need not perform a gazetteer to dataset label map-
ping for incorporating gazetteers; using the orig-
inal gazetteer types works just as well. Even
more surprisingly, gazetteer types are even un-
necessary depending on the input representation.
With GloVe, performance improves by removing
gazetteer types altogether. This is likely a conse-
quence of gazetteers inducing segmentation. Lastly,
we showed that gazetteers are better at finding long
entities, another consequence of inducing segmen-
tation. They are an effective alternative to segmen-
tation techniques developed to identify long enti-
ties, which we found are unstable across datasets.
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A Dataset Label to Gazetteer Mapping
CoNLL

* PER: People
e LOC: Locations, Locations.Generic, Parks

* ORG: Organization, PoliticalParties, Corpora-
tions, Government

* MISC: EthnicGroups, Languages, Vehicles,
Nationalities

Ontonotes

* PERSON: People
e LOC: Locations, Locations.Generic, Parks

* ORG: Organization, PoliticalParties, Corpora-
tions, Government

* DATE: Temporal

* TIME: Temporal

* CARDINAL: NumberCardinal

* ORDINAL: NumberOrdinal

* EVENT: CompetitionsBattlesEvents
* LANGUAGE: Languages

* MONEY: Currency
* NORP: Nationalities, EthnicGroups
e QUANTITY: Measurements

* WORK_OF_ART: TV.Programs,
Films

ArtWork,

BTC and TTC

* PER: People
e LOC: Locations, Locations.Generic, Parks

* ORG: Organization, PoliticalParties, Corpora-
tions, Government

B Implementation

We use the implementation in https://github.
com/guillaumegenthial/tf_ner for most mod-
els.

SAC uses https://github.com/XiaoShiyuan/NCRF-
SAC but is based off the same codebase.

HSCRF uses https://github.com/ZhixiuYe/
HSCRF-pytorch but ELMo was added additionally
by us.

C Hyperparameters

Hyperparameters used as same as the ones in
https://github.com/guillaumegenthial/tf_
ner/models/chars_conv_lstm_crf, except for
number of epochs and the minimum number of
steps before early stopping which depend on
dataset size. Numbers of epochs used were 25, 25,
50 and 50 for CoNLL, Ontonotes, BTC and TTC
respectively. Minimum steps were 8000, 15000,
2500 and 2500 for CoNLL, Ontonotes, BTC and
TTC respectively.
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