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Abstract

Weakly supervised methods estimate the la-
bels for a dataset using the predictions of sev-
eral noisy supervision sources. Many machine
learning practitioners have begun using weak
supervision to more quickly and cheaply an-
notate data compared to traditional manual la-
beling. In this paper, we focus on the spe-
cific problem of weakly supervised named en-
tity recognition (NER) and propose an end-
to-end model to learn optimal assignments of
latent NER tags using observed tokens and
weak labels provided by labeling functions. To
capture the sequential dependencies between
the latent and observed variables, we propose
a sequential graphical model where the com-
ponents are approximated using neural net-
works. State-of-the-art contextual embeddings
are used to further discriminate the quality of
noisy weak labels in various contexts. Results
of experiments on four public weakly super-
vised named entity recognition datasets show
a significant improvement in F1 score over re-
cent approaches.

1 Introduction

Many industries and organizations have collected
large amounts of unlabeled text data that they want
to make use of for various Natural Language Pro-
cessing (NLP) applications. However, in many of
these applications (named-entity recognition, ques-
tion answering, text summarization, relation extrac-
tion), obtaining a large number of labels can be
prohibitively expensive, error-prone, or otherwise
infeasible. Furthermore, domain adaptation (Han
and Eisenstein, 2019), which is commonly used
in scarce label settings, can often struggle in new
emerging / specific domains that don’t have any
closely related labeled datasets.

Under the absence of a closely related labeled
dataset, weakly supervised learning is often used
as a cheaper, less time-consuming alternative to

obtaining gold standard labels. The main idea of
weak supervision is to approximate the true labels
by integrating multiple sets of noisy training la-
bels. Each set of noisy labels (commonly referred
to as “weak labels”) is provided by a weak labeling
function which often comes in the form of a knowl-
edge base, heuristic, or pre-trained model. Weak
supervision has obtained a lot of success in sev-
eral NLP tasks containing approximately i.i.d. data
such as topic classification (Bach et al., 2019), sen-
timent analysis, and social media content tagging
(Fu et al., 2020).

Weak supervision on sequential data labeling
problems such as NER is an emerging topic. Most
current methods require either the time-consuming
creation of additional heuristics such as ‘linking
rules’(Safranchik et al., 2020) or ‘entity boundary
detectors’(Fries et al., 2017), or assume that the ac-
curacy of a weak labeler only depends on the true
latent class (Safranchik et al., 2020; Lison et al.,
2020; Fries et al., 2017). The latter is likely subop-
timal since we would expect the accuracy to vary
even within instances of the same class depending
on the context given by surrounding tokens. One
exception to this is the Fuzzy-LSTM-CRF(Shang
et al., 2018). However, it ignores which weak la-
beler each prediction came from as well as the
number of predictions for each class. This could
be an issue when the weak labelers have differ-
ing accuracies, since the model may learn from a
majority of wrong labels.

To address these foregoing issues, one of our
main contributions is the proposal of an end-
to-end method called Deep Weak Supervision
on Sequential Data (DWS), that learns context-
dependent proficiency representations for weak la-
belers, enhanced further through contextual em-
beddings from pre-trained language models. In
addition, instead of following the traditional ap-
proach that treats named entity (NE) tags as multi-
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nomial samples, we directly model the conditional
dependency of tags on tokens as interactions of two
representations: tag representation and contextual
token representation.

Advantages of adopting representation learning
are two-fold: First, learning context-aware profi-
ciency of labeling functions enables the weak super-
vision procedure to denoise unreliable labels at to-
kens where labeling functions have many disagree-
ments. Second, because embedding methods have
demonstrated great potential in capturing seman-
tic meanings, the proposed model allows flexible
transfer of existing NER pipelines to new domains
through leveraging pre-trained domain-specific em-
beddings.

DWS relies on a graphical model to capture sta-
tistical dependencies among tokens, weak labels
and true latent NE tags. However, latent variable es-
timation is challenging and the techniques are often
both sample and computationally complex. For ex-
ample, Ratner et al. (2017) required a Gibbs-based
algorithm, and Ratner et al. (2019) required esti-
mating the full inverse covariance matrix among
the labelers. In video analysis, Varma et al. (2019b)
required the use of multiple iterations of stochastic
gradient descent (SGD) to learn accuracy parame-
ters, but the dependencies are limited to weak labels
and true labels. When context of the sequential in-
puts are directly involved in the model, optimizing
or even formulating the analytical solution becomes
much more difficult.

Our solution is motivated by the advantages of
using neural networks to model the transition and
output distributions (Bengio and Frasconi, 1996;
Li and Shum, 2006). Instead of deriving analyt-
ical formulations to learn the parameters for the
given structure, we use deep neural networks to ap-
proximate conditional dependencies and sequential
transitions. Furthermore, the marginal likelihood
of the proposed model is optimized via hard EM
(Min et al., 2019) to find the most probable se-
quence of latent tags. Such a hybrid process allows
us to easily integrate distributed representations in
our model and also enables us to explore complex
model structures.

We benchmarked the proposed DWS model on
several NER datasets and compared it with some
recent weak supervision approaches. Experimental
results show DWS’s advantage on tagging tasks
where there are a lot of conflicting weak labels.
Furthermore, we conduct detailed analysis to eval-

uate the complexity of these NER datasets in terms
of the number of NE tags and labeling functions
and also the amount of inconsistency among the
weak labels.

We conclude that some datasets used in past
works are useful to evaluate the robustness of weak
supervision models, whereas others contain weak
labels that are trivial to denoise and result in all
algorithms looking equivalent. Therefore, directly
comparing results on weakly labeled datasets with-
out accounting for the difficulty of denoising their
labels can drive misleading conclusions. To more
rigorously test how the performance of the algo-
rithms scale with the difficulty of the weak super-
vision problem, we introduce a new method which
stratifies a dataset into tokens containing varying
levels of weak labeler disagreement, quantified by
the entropy of the weak label predictions, and com-
pares how the performance of each algorithm scales
with the difficulty of the denoising task. Results
show that the performance advantage of our algo-
rithm over the current methods grows quickly with
respect to the disagreement among the weak label-
ers.

2 Related Work

Snorkel (Ratner et al., 2017) is a well-known tool
that learns a generative model to estimate the accu-
racies and correlations between weak labelers on
i.i.d. data. SwellShark (Fries et al., 2017) treats
weakly supervised NER as an i.i.d. task but re-
quires creating additional heuristics (sometimes
called entity span generators) to find the entity
boundaries. In recent years, various new algorithms
have been introduced to extend the weak supervi-
sion idea to tasks involving sequential data such as
NER. BOND (Liang et al., 2020) and AutoNER
(Shang et al., 2018) respectively denoise predic-
tions of a single weak labeler and a set of dictio-
naries. Several generative approaches such as Hid-
den Markov Model (Lison et al., 2020; Safranchik
et al., 2020) and a discriminative method Fuzzy-
LSTM-CRF (Shang et al., 2018) have been pro-
posed to model the dependencies between NE tags;
thus, entity span generators are no longer needed.
There have also been several relevant approaches
on other weak supervision tasks. ReHession (Liu
et al., 2017) was developed for weakly supervised
relation extraction and tries to learn the contexts
where each weak labeler is proficient, then uses
that knowledge to infer the true labels. Varma et al.
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(2019a) proposes a robust PCA-based algorithm to
learn dependency structures for image classifica-
tion. In the application of video analysis, Fu et al.
(2020) applies a general binary Ising model to fac-
torize likelihood expectations over cliques so an
analytical solution is found to speed up the model
parameter learning.

In this paper, we systematically compare most
of the recent approaches proposed for NER except
for BOND, AutoNER, and Swellshark which are
not directly applicable to our experimental settings.

3 Problem Definition

We assume a sequential labeling problem formu-
lation where we are given a sequence of tokens
X = {x1, ..., xN} which map to a sequence of la-
tent class variables Y = {y1, .., yN}. In a fully
supervised scenario, Y is usually partially anno-
tated thus Y = Ytrain ∪ Ytest, so model parameters
are estimated from (Xtrain, Ytrain). Because Ytrain is
usually expensive to obtain, our primary goal is to
estimate Ytrain with the help of multiple, potentially
noisy labeling sources. Suppose we have a set of
weak labels Ltrain available for Xtrain, where each
token is assigned a set of weak labels provided by
m different labeling sources λ1, ..λm (labelers can
choose to make no prediction by voting ‘Abstain’).
For simplicity, we drop the notion of training and
test data, and simply use X ,Y,L to represent all
tokens, latent tags, and weak labels in our problem.
Additionally, we define the vote of weak labeler λj
on token xi as li,j .

In a supervised setting where Y are given, we
learn model parameters Θ by maximizing the log-
likelihood of Y given the input X with respect to
Θ:

Jsup(Θ|X ,Y) = max logP (Y|X ; Θ) (1)

whereas in our weak supervision scenario, Y are
hidden and L are fully observable, so the learning
objective can instead be to maximize the marginal
likelihood of the weak labels. Letting E be the set
of K entity classes which includes ‘No Entity’, we
have:

P (L|X ; Θ) =
∑

Yc∈EN
P (L, Yc|X ; Θ) (2)

which can be used to compute the objective as
follows:

Jweak(Θ|X ,L) = max logP (L|X ; Θ) (3)

4 Model Overview

4.1 Model Structure and Likelihood

To incorporate the dependencies among tokens,
weak labels, and true labels, we define a graphi-
cal structure illustrated as Figure 1. The proposed
graphical model is partially directed and its ana-
lytical solutions and exact inference are available
through segmentations of the input sequence but
are usually complex to derive. In our approach, the
likelihood P (L,Y|X ) defined in (2) is factorized
as P (L|X ,Y) and P (Y|X ), where each is approx-
imated via a neural network. These networks are
described in Sections 4.2 and 4.3, respectively. The
parameters are learned through maximizing an ap-
proximation to the marginal likelihood P (L|X ) us-
ing a hard EM algorithm. Following is an in depth
description of the model formulation.

Figure 1: The DWS model where zi denotes the con-
textual embedding for the token at index i.

According to (3) and (2) we have:
P (L|X ) =

∑
Yc∈EN

P (L, Yc|X )

=
∑

Yc∈EN
P (L|X , Yc)P (Yc|X )

We now assume different labeling functions are
independent of each other given the input text and
true labels. Additionally, we assume the weak la-
bels at token xi are conditionally independent of
the true labels at any index k 6= i when given the
input text and true label at index i (d-separation
details are in Appendix A.2). Therefore, we have:

P (L|X , Yc) =
∏
i

∏
j

P (li,j |X , Yc) (4)

=
∏
i

∏
j

P (li,j |X , yc,i) (5)

where yc,i denotes the label at index i of Yc. This
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means:

logP (L|X ) = log
∑

Yc∈EN
P (Yc|X )

∏
i

∏
j

P (li,j |X , yc,i)

(6)

In it’s current form, the conditional log likelihood
is difficult to optimize because of the sum-product
inside the logarithm. As an alternative, we maxi-
mize JHardEM which is an approximation to the
conditional log-likelihood where the summation
over entity labels is replaced with a maximum.

JHardEM = log
[

max
Yc∈EN

P (Yc|X )
∏
i

∏
j

P (li,j |X , yc,i)
]

= max
Yc∈EN

[
logP (Yc|X ) +

∑
i

∑
j

logP (li,j |X , yc,i)
]

= max
Yc∈EN

logP (L, Yc|X ) (7)

This new optimization problem attempts to find
accurate modes of P (L,Y|X ). All that remains is
to formulate P (Yc|X ) and P (li,j |X , yc,i) for some
pair (i, j).

4.2 Modeling Weak Labeler Representations

In practice, a weak labeler is usually derived from
a specific rule or a controlled vocabulary. Thus, it
is reasonable to assume its accuracy depends on the
context of the token it is making a prediction on.
Inspired by Liu et al. (2017), we model labeling
function λj providing the correct label to xi as a
discrete event following a Bernoulli distribution,
given by:

P (li,j |X , yc,i) =

{
αij if li,j = yc,i
1− αij if li,j 6= yc,i

(8)

Here, αij = σ(
zTi θj√
d

), σ is the sigmoid function,
θj is a learnable embedding specific to λj , and
zi(zi ∈ Rd) is the contextual embedding of the
token xi. This formulation improves the modeling
capacity over many past methods such as Snorkel
(Ratner et al., 2017) or the HMM (Safranchik et al.,
2020; Lison et al., 2020) which have purely class-
conditioned accuracies. In addition, it allows the
utilization of external knowledge from large pre-
trained language models by making zi a function of
their contextual embeddings. When a weak labeler
abstains, there is no concept of accuracy. We chose
to set the probability of the ‘Abstain’ votes to 1, but
in the future could instead model the probability of
abstaining.

4.3 Modeling Class Representations and
Transition Scores

We model P (Yc|X ) as a function of the contex-
tual embeddings z. The model uses a linear-chain
conditional random field (CRF) output layer which
is often utilized to model dependencies between
labels (Huang et al., 2015; Lample et al., 2016; Ak-
bik et al., 2018). The distribution P (Yc|X ) is given
by

P (Yc|X )) =
eC(X ,Yc)∑

Y ′∈EN eC(X ,Y ′)
(9)

where C(X , Y ) =

N∑
j=1

sj,yj +

N−1∑
j=1

T [yj , yj+1]

(10)

and sj,yj =
zTj tyj√

d
(11)

where T is a learnable matrix defining the transition
scores between any two entity classes and tyi is the
learnable embedding for class yi. We have scaled
the dot products in both the formula for αij and
(11), by the square root of the embedding size d
to significantly increase the stability of training as
was shown to be useful in Vaswani et al. (2017).

4.4 Algorithm for Optimization

To maximize the objective JHardEM , we repeat the
following two steps:

1. Calculate Y ′ = arg maxYc∈EN

(
logP (L, Yc|X )

)
2. Maximize logP (L, Y ′|X ) for one gradient ascent step.

This approach is often termed hard EM and has
been successful in other areas such as weakly su-
pervised relation extraction (Liu et al., 2017) and
question answering (Min et al., 2019). Step 1 can
be computed as follows:

Y ′ = arg max
Yc∈EN

(
logP (L, Yc|X )

)
(12)

= arg max
Yc∈EN

( N∑
i=1

s′i,yc,i +

N−1∑
k=1

T [yc,k, yc,k+1]
)
(13)

where s′i,yc,i = si,yc,i +

m∑
j=1

logP (li,j |X , yc,i)

(14)

The details of the derivation are in Appendix A.1.
Equation (13) can be solved efficiently with the
same Viterbi decoding algorithm used in Huang
et al. (2015). In practice, we constrain each y′i to
be in the set of classes voted on among weak la-
belers on the token xi by setting s′i,yc,i = −∞ for
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any yc,i that does not satisfy the constraint. Addi-
tionally, we found it useful to penalize choosing
sequences Y ′ containing illegal class transitions.
This was done by adding a hyperparameter τ to
the transition matrix T from (13) in all locations
that correspond to illegal transitions. For example,
transitioning from the middle to the beginning of
a ‘Person’ entity (i.e, I-Per → B-Per) would be
penalized as it does not make sense.

4.5 Training Details

The contextual token embeddings z used to calcu-
late (8) and (11) are obtained from a trainable sin-
gle layer bidirectional LSTM that uses contextual
word embeddings from pre-trained BERT models
as described in Section 5.2. We choose to freeze
the parameters of the pre-trained models to allow
fast and inexpensive training.

To obtain a better starting point for the EM algo-
rithm, the models are given a warm start by training
for one epoch where the token labels Y ′ in step 2
of the optimization algorithm in Section 4.4 are set
to be the majority vote labels.

Lastly, we choose the model parameters to be
those that give the best entity F1 score on a held out
validation set over 10 random restarts of 5 epochs
each. Further details of the training procedure and
architectures used are described in Appendix A.3
and A.4.

5 Experiments and Results

Experiments are conducted on four public weakly
supervised NER datasets (Lison et al., 2020;
Safranchik et al., 2020) as summarized in Table
1. We use the same weak labeling functions as re-
ported in these approaches. Each dataset is split
into train, validation, and test set using the same
splits as Safranchik et al. (2020) suggests for NCBI-
Disease, BC5CDR, and LaptopReview, and Liang
et al. (2020) for CoNLL20031.

5.1 Weakly Labeled Dataset Difficulty

We first conduct a study to establish the diffi-
culty of denoising the weak labels in each dataset.
As we will demonstrate, this allows a detailed
analysis of the strengths and weaknesses of each
model. Both the amount and types of disagree-
ment among the weak labelers differ drastically

1Lison et al. (2020) did not define a validation set or test
set split. Instead, their results were on the full dataset.

Figure 2: The tokens in each dataset containing weak
labels were bucketed based on the number of classes
voted on among weak labelers. This figure shows the
proportion of tokens in each bucket.

between weakly supervised NER datasets. Knowl-
edge about the types of difficulties in each dataset
is necessary to understand the contexts where each
model is most useful as well as how to gauge
which results are the most important. We cat-
egorize disagreements into three types: Token
Position (i.e., {B, I, L, U,O}), Positioned Class
(i.e., {B-Per, I-Per, L-Per}), and Unpositioned
Class (i.e., {Per, Loc,Org,Misc}).

To understand the prominent types of disagree-
ment in each weakly labeled dataset, we calculated
the number of tokens which contain each type of
disagreement. The results are displayed in the last
three columns of Table 1, and show that weak la-
belers on NCBI-Disease, BC5CDR, and LaptopRe-
view disagree on a token’s positioning within an
entity much more often than on the unpositioned en-
tity class. This indicates that the main difficulty on
those weakly labeled datasets is resolving disagree-
ments on where each entity begins and ends. To
the contrary, CoNLL2003 contains many disagree-
ments on both the token position and unpositioned
class predictions.

We also include Figure 2 to emphasize the dif-
ficulty of the weakly labeled CoNLL2003 dataset
compared to the others. On average there are a
much higher number of classes being disagreed
upon per token, a heuristic for the difficulty of the
weakly labeled dataset.

5.2 Results
Our experiments focus on the following topics:
(1) Comparison of the proposed method’s per-
formance with existing methods on benchmark
datasets. (2) Stratified analysis and benchmarking
of various models w.r.t. the difficulty of the NER
task. (3) Systematic study to establish the impor-
tance of various design decisions of our proposed
method.

The proposed DWS model is compared to sev-



3833

Dataset Document Type #WL’s #Tokens #Entities Entity Types #Unpositioned #Positioned #Position
CoNLL2003 News 46 301,649 35,089 Per,Loc,Org,Misc 7439 9236 6203
LaptopReview Online reviews 12 63,379 3,005 Laptop Aspect 23 43 40
NCBI-Disease PubMed Articles 12 183,330 6,873 Disease 310 923 904
BC5CDR PubMed Articles 26 351,508 28,687 Chemical,Disease 216 1058 1001

Table 1: Summary statistics of the four datasets where WL refers to ‘Weak Labelers’. The weak labels for
CoNLL2003 are defined by Lison et al. (2020) and the weak labels for NCBI-Disease, LaptopReview, and
BC5CDR are defined by Safranchik et al. (2020). The last three columns are defined as: ‘#Unpositioned’: is
the number of tokens with more than one unpositioned class voted on. ‘#Positioned’: is the number of tokens with
more than one positioned class voted on. ‘#Position’: is the number of tokens with more than one position (i.e,
B,I,L,U) voted on. On CoNLL2003, the weak labelers were created such that their votes are in the set of the 19
OntoNotes5.0 classes. The weak supervision model is trained using this full set of classes and then at inference
time, it’s predictions are mapped to the set of CoNLL2003 classes or ‘No Entity’ for types such as Date or Ordinal.

eral recently introduced models which are trained
on the benchmark datasets. Those include Snorkel
(Ratner et al., 2017) where each token is consid-
ered as an independent example, Fuzzy-LSTM-
CRF (Shang et al., 2018), HMM (Lison et al.,
2020), the HMM formulation from Safranchik et al.
(2020) which does not use ‘linking rules’, Major-
ity Vote, and Unweighted Vote (Safranchik et al.,
2020) which creates probabilistic training labels us-
ing the empirical distribution of the weak labels on
each token. To make a fair comparison with DWS,
the Fuzzy-LSTM-CRF uses the same model archi-
tecture as its discriminative component P (Y|X ).
To enhance performance, we use contextual token
embeddings from RoBERTa (Liu et al., 2019) on
CoNLL2003, uncased BERT (Devlin et al., 2019)
on Laptop Review, and BioBERT (Lee et al., 2019)
on NCBI-Disease and BC5CDR as inputs to our
model and the Fuzzy-LSTM-CRF.

Our weak supervision pipeline has two steps:
Step 1) First it learns the latent labels of the train-
ing data using weak labels and tokens, so the
learned data can be used as annotated training data
to train NER classifiers. We measure model per-
formance in this step through evaluating the micro-
entity precision, recall, and F1 scores of the learned
latent labels against the ground truth labels. Table
2 (upper) displays these results and shows that the
proposed DWS method creates training labels with
an F1 score of 1.65% higher than the nearest com-
paring model on CoNLL2003 and F1 scores within
0.1% and 0.03% of the best comparative approach
on BC5CDR and NCBI-Disease, respectively. Ad-
ditionally, DWS is outperformed by an F1 score of
0.58% on LaptopReview but this is expected since
the dataset only contains 43 tokens where the weak
labelers disagree. This is likely far too little for
DWS to learn robust deep representations for the
accuracies of each weak labeler.

Step 2) Using the learned labels as training labels,
we train classifiers and apply the trained classifiers
on test data. We train the same classifier mentioned
in Safranchik et al. (2020) on the weakly labeled
training data obtained by each algorithm on all
benchmark datasets. We also keep the test data
identical per each dataset and report the obtained
performance on test data using micro-entity preci-
sion, recall, and F1 score. According to the results
displayed in Table 2 (lower), the proposed DWS
outperforms the next best model by an F1 score
of 3.95% on CoNLL2003, which is arguably the
hardest dataset given the analysis in Section 5.1.
Additionally, DWS outperforms the closest com-
petitor on NCBI-Disease by an F1 score of 0.83%,
and achieves the second best performance on both
BC5CDR and LaptopReview.

The purpose of reporting performance separately
in two steps is to clearly demonstrate the improve-
ment of performance obtained by weak supervi-
sion alone, which only compares the quality of
learned annotations with true labels in Step 1. To
our understandings, this is important because in
practice, model selection and quality control of
weak supervision should also focus on the quality
of learned annotations. The second step, after the
training data is automatically annotated, focuses on
the bias-variance problem in a supervised scenario
and the main goal is to select the best classifier to
generalize well on unseen data.

5.3 Performance vs Entropy of Weak Labels

As previously discussed, comparing F1 scores
alone across weak supervision approaches with-
out knowing the difficulties of the problem could
drive misleading conclusions. For example, if the
weak labels provided for a dataset are highly cor-
related, it becomes a trivial problem to denoise
them - meaning algorithms will have indistinguish-
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Step 1

Model CoNLL2003 BC5CDR NCBI-Disease LaptopReview
P R F1 P R F1 P R F1 P R F1

Majority Vote 71.11 69.98 70.54 86.19 83.52 84.83 74.78 63.42 68.63 67.09 60.88 63.83
Snorkel 68.45 72.23 70.28 81.66 80.63 81.26 77.33 65.05 70.66 67.57 61.01 64.12
HMM1* 73.15 72.09 72.62 89.72 70.25 78.80 80.27 41.25 54.50 67.88 59.52 63.43
HMM2* N/A N/A N/A 85.73 83.96 84.84 77.76 63.69 70.03 68.09 61.46 64.61
Fuzzy-LSTM-CRF** 74.92 74.02 74.46 88.17 83.38 85.71 80.97 64.99 72.11 68.57 60.57 64.34
DWS (ours) 75.58 76.65 76.11 87.47 83.84 85.61 79.78 65.74 72.08 68.06 60.45 64.03

Step 2

Model CoNLL2003 BC5CDR NCBI-Disease LaptopReview
P R F1 P R F1 P R F1 P R F1

Majority Vote 71.51 71.71 71.60 82.40 82.06 82.23 70.98 71.72 71.31 65.79 59.57 62.51
Unweighted Vote 68.00 69.67 68.82 83.0 81.86 82.43 77.32 73.59 75.39 66.61 58.90 62.51
Snorkel 72.68 71.70 72.18 80.23 84.35 82.24 71.10 76.00 73.41 64.09 63.09 63.54
HMM1* 70.78 70.28 70.53 81.27 73.90 77.39 78.63 51.00 61.82 66.29 56.21 60.80
HMM2* NA NA NA 80.21 84.30 82.21 72.21 70.54 71.34 66.17 59.94 62.86
Fuzzy-LSTM-CRF** 72.32 71.05 71.68 83.36 82.70 83.03 78.67 70.77 74.50 69.42 57.77 63.05
DWS (ours) 76.96 75.32 76.13 84.15 81.88 82.99 78.60 74.01 76.22 69.08 58.75 63.44

Table 2: Step 1: Training set results of the training labels produced by the weak supervision models. Step 2: Test
set results of discriminators trained on the label predictions of the weakly supervised NER algorithms. All of the
results in both tables are the average scores over 5 runs of each model using different random seeds.
* HMM1 is from Lison et al. (2020) and HMM2 is the Hidden Markov Model from Safranchik et al. (2020) without
‘linking’ rules. Note that we attempted to train HMM2 on CoNLL2003 but ran out of memory when using 64GB
of RAM.
** We use our own implementation for the Fuzzy-LSTM-CRF. The results differ from Shang et al. (2018) since
different weak labelers are used.

able F1 scores. To more clearly differentiate the
performance of algorithms, we can calculate how
their performance scales with the difficulty of the
denoising task. Intuitively, we expect that better
algorithms should be more robust to challenging de-
noising tasks. To demonstrate this, we first bucket
tokens in the weakly labeled CoNLL2003 training
dataset based on the level of disagreement among
their weak labels, which can be thought of as the
difficulty of denoising them, and then plot the dif-
ferences in average token F1 scores between DWS
and the comparative models in each bucket. To
quantify the ‘disagreement’ of the weak labelers on
a token, we use the entropy of the distribution of
their non-abstained votes. To gain further insight
into the strengths and weaknesses of each model,
we group entropy and F1 calculations by 3 differ-
ent class types: Token Position, Positioned Class,
Unpositioned Class. These are described in Sec-
tion 5.1. The results are plotted in Figure 3.

Figure 3 shows the improvement in F1 score ob-
tained by DWS over other comparing methods at
several different levels of entropy. The left figure
shows that as entropy increases, generally the im-
provement of performance on unpositioned classes
also increases. The middle figure shows that our
model does not have much of an advantage in re-
solving disagreements over the position each token
has within an entity (ie B,I,L,U), and that Fuzzy-

LSTM-CRF is actually significantly better at high
entropy levels. Most importantly though, when
both types of disagreement are combined in Figure
3 (right), the advantage of DWS becomes very sig-
nificant as the gaps in performance between itself
and others are steadily increasing functions.

5.4 Ablation Studies

To better understand the importance of each com-
ponent in DWS, we study how the performance
of DWS on CoNLL2003 is affected by removing
some design functions in DWS. Specifics of the
experiments are as follows:
No Penalty: Sets the penalty given to illegal class
transitions (defined in Section 4.4) to 0. Without
this illegal class transition penalty, validation and
test F1 scores drop by 1.27% and 2.34% respec-
tively.
No Penalty No CRF: In addition to removing
the penalty for illegal tag transitions as explained
above, we treat the true tags as conditionally inde-
pendent by replacing the CRF in P (Y |X) with a
token-wise softmax. Such changes result in lower-
ing the test F1 score by 8.77%. This experiment
helps to highlight the importance of modeling se-
quential dependencies since without it, the perfor-
mance is lower than even majority voting.
No Warm Start: Warm starting by initializing the
hard EM procedure with majority votes is helpful
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Figure 3: Each plot contains 95% confidence intervals on the difference in mean token F1 scores between DWS
and comparing models in each bucket. These were calculated using the results from 5 randomized runs for each
model. When the entropy is large, there is a lot of disagreement; when it’s zero, the weak labelers all agree on the
same class.

Model CoNLL2003
Dev Precision Dev Recall Dev F1 Test Precision Test Recall Test F1

DWS 79.13 77.36 78.23 76.96 75.32 76.13
DWS (No Penalty) 77.92 76.02 76.96 74.35 73.25 73.79
DWS (No Penalty or Crf) 72.88 69.54 71.16 69.56 65.30 67.36
DWS (No Warm Start) 77.39 76.77 77.07 73.43 73.40 73.41

Table 3: Validation and test set results of a discriminator trained on the label predictions of each model listed in
the table. The micro-entity precision, recall, and F1 scores are averaged over 5 random seeds.

to achieve better performance compared to random
initialization. After iterating hard EM for the same
epochs, warm start boosts validation and test F1
scores by 1.16% and 2.72% respectively, compared
to random initialization. The results of each abla-
tion are reported in Table 3.

6 Discussion

In Section 5.1 we showed that the amount of dis-
agreement between the weak labelers varied sub-
stantially between datasets. This insight is impor-
tant when interpreting the effectiveness of a weak
supervision model because on datasets containing
very little disagreement, we wouldn’t expect to be
able to learn anything much different than majority
voting. As the number of contradictions between
the weak labeler votes increases, for the most part
so does the amount of information to help gauge
the accuracies of the weak labelers and surpass ma-
jority voting. This means that we would roughly
expect a good algorithm to have its greatest per-
formance advantage on CoNLL2003 followed by
NCBI-Disease and BC5CDR, and lastly LaptopRe-
view which did not contain many weak labeler dis-
agreements. The results in Section 5.2 show that
as we would hope, our method has the largest per-
formance advantage on CoNLL2003 and retains
strong results on the remaining datasets which have
fewer disagreements.

In Section 5.3 (‘Performance vs Entropy’), we
more concretely show that the F1 score advantage
of DWS over the other models when using posi-
tioned labels increases with respect to the amount
of contradiction information. These advantages
may be attributable to the learned proficiency rep-
resentations of weak labelers that help discriminate
noisy labels provided by labeling functions with
low proficiencies.

Experiments in Section 5.3 also show that DWS
is very effective at resolving disagreements on un-
positioned classes but is more mediocre at denois-
ing disagreements on the entity positioning. These
results suggest that the ideal model to use in a prac-
tical scenario likely depends on the amount of each
type of disagreement in the given weakly labeled
dataset.

7 Conclusion

In this paper we introduced a novel method (DWS)
for weakly supervised NER which learns context-
dependent proficiency for labeling sources while
also modeling sequential dependencies among
weak labels, inputs, and true labels. The pro-
posed approach integrates representation learning
and graphical models within the weak supervision
setting, and obtains better performance on public
benchmark datasets than recently introduced ap-
proaches. The proposed method is quite generic
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and can be applied to other sequential learning
tasks in NLP or other modalities such as image
analysis/computer vision by adopting various pre-
trained domain-specific models to embed the input
sequence.
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2017. Swellshark: A generative model for biomedi-
cal named entity recognition without labeled data.

Daniel Y. Fu, Mayee F. Chen, Frederic Sala, Sarah M.
Hooper, Kayvon Fatahalian, and Christopher Ré.
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pendency structures for weak supervision models.
In Proceedings of the 36th International Confer-
ence on Machine Learning, ICML 2019, 9-15 June
2019, Long Beach, California, USA, volume 97 of
Proceedings of Machine Learning Research, pages
6418–6427. PMLR.

Paroma Varma, Frederic Sala, Shiori Sagawa, Ja-
son Alan Fries, Daniel Y. Fu, Saelig Khattar, Ash-
wini Ramamoorthy, Ke Xiao, Kayvon Fatahalian,
James Priest, and Christopher Ré. 2019b. Multi-
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A Appendix

A.1 Derivations
The details for efficiently computing Y ′ in step 1
of the hard EM algorithm as mentioned in Section
4.4 are as follows:

Y ′ = arg max
Yc∈EN

(
log(P (L, Yc|X ))

)
(15)

= arg max
Yc∈EN

(
log(P (Yc|X ))+ (16)

N∑
i=1

m∑
j=1

log(P (li,j |X , yc,i))
)

= arg max
Yc∈EN

(
log(

eC(X,Yc)

K
)+ (17)

N∑
i=1

m∑
j=1

log
(
P (li,j |X , yc,i)

))

= arg max
Yc∈EN

( N∑
i=1

si,yc,i +

N−1∑
k=1

T [yc,k, yc,k+1]+

N∑
i=1

m∑
j=1

log(P (li,j |X, yc,i))
)

= arg max
Yc∈EN

( N∑
i=1

s′i,yc,i +

N−1∑
k=1

T [yc,k, yc,k+1]
)

(18)

where s′i,yc,i = si,yc,i +

m∑
j=1

log
(
P (li,j |X, yc,i)

)
where K is a normalizing constant and C is the
function defined in equation 10.

A.2 Graphical Model of DWS
We illustrate the exact graphical model of DWS
in Figure 4, where the structure is similar to the
Input/Output HMM(IOHMM) proposed by (Ben-
gio and Frasconi, 1996). In IOHMM, transitions
from latent variables yi−1 to yi are directional, and
analytical solutions are available based on factor-
izations of the sequence marginal likelihood. Here
in our approach, similar analytical solutions could
be derived as a partially directed model (e.g., CRF)
without the need of parameterized distributions of
input embeddings zi. However, hybrid approaches
that integrate neural networks with graphical mod-
els to enable efficient and scalable model training
are preferred (Bourlard and Wellekens, 1990; Ben-
gio et al., 1992; Bengio and Frasconi, 1996; Li and
Shum, 2006).

A.3 Weak Supervision Model Architecture /
Training Details

Weak Supervision Model Architectures:
DWS and the Fuzzy-LSTM-CRF used a one layer
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Figure 4: The input sequence X = {x1, ..., xN} is transformed to a series of contextual embeddings {z1, ..., zN}
using a pre-trained BERT model followed by a BiLSTM. The conditional dependencies between input token em-
beddings zi, latent NE tags yi, and weak labels {li,jmj=1} are modeled as functions of linear products between
labeler representation θj and token embeddings zi as formulated in equation 8. The dependencies between latent
tags yi−1, yi are represented as an undirected graph through a CRF.

bidirectional LSTM with hidden size 768 to obtain
the contextual token embeddings with dimension
768. The inputs to the BiLSTM were contextual
word embeddings from RoBERTa (Liu et al., 2019)
on CoNLL2003, uncased BERT on Laptop Review,
and BioBERT (Lee et al., 2019) on NCBI-Disease
and BC5CDR. These variants of BERT (Devlin
et al., 2019) were not fine-tuned during training.
Additionally, the class embeddings have dimension
768.

Training Details DWS: The optimizer used was
RMSProp with learning rate 0.001. The model
parameters were chosen to be those that gave the
best micro-entity F1 score on the validation set
over 10 random restarts of 5 epochs each. The
batch sizes used were 32 for LaptopReview, 128
for NCBI-Disease, 256 for CoNLL2003, and 512
for BC5CDR. We defined the batch size by the
number of tokens with at least 1 weak vote. Ad-
ditionally, the illegal transition penalty was -2 for
LaptopReview and -10 for the remaining datasets.
Lastly, we used 1 warm-up epoch on majority vote
labels and a dropout probability of 0.1 in the BiL-
STM. These hyperparameters were chosen through
manual tuning on the validation set.

Training Details Fuzzy-LSTM-CRF: The opti-
mizer used was RMSProp with learning rate 0.01.
The model parameters were chosen to be those
that gave the best micro-entity F1 score on the val-
idation set over 5 random restarts of 10 epochs
each since it converged more slowly than DWS
and had less variance among the random restarts.

The best batch sizes were found to be the same as
DWS. Lastly, the dropout probability in the BiL-
STM was 0.1. The learning rate was chosen from
{0.0001, 0.0005, 0.001, 0.01, 0.02}, the batch size
was chosen from {32, 64, 128, 256, 512, 1024},
and the dropout was chosen from {0, 0.1, 0.2, 0.4}.

Training Details of Other Comparing Models:
We used the same priors for the HMM1 model as
were used in Lison et al. (2020) on CoNLL2003.
For the remaining datasets the priors were tuned
the on the validation sets. Additionally, we tried
running the HMM from Safranchik et al. (2020)
on CoNLL2003 but ran out of memory when us-
ing 64GB of RAM even when reducing the batch
size to 1 and using unpositioned classes rather
than BILU positioned classes (reduces number of
classes by a factor of 4).

To improve the performance of majority vote and
unweighted vote on CoNLL2003, which has many
very noisy labels, we predicted ‘No Entity’ with
probability 1 when there were less than T votes
which was a tuned hyperparameter. The best value
of T was found to be 5 for both methods and was
chosen from {1, 5, 10}.

A.4 Discriminator Model Architecture /
Training Details

The architecture of the discriminator was the same
as used in Safranchik et al. (2020) which consisted
of a 2 layer BiLSTM with 200 dimensional embed-
dings along with a CRF as the output layer. The
model used both word embeddings from a variant
of BERT and character embeddings from a CNN
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as input. Additionally, we used their noise aware
loss function.


