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Abstract

Transformers have been shown to emulate log-
ical deduction over natural language theories
(logical rules expressed in natural language),
reliably assigning true/false labels to candi-
date implications. However, their ability to
generate implications of a theory has not yet
been demonstrated, and methods for recon-
structing proofs of answers are imperfect. In
this work we show that a generative model,
called ProofWriter, can reliably generate both
implications of a theory and the natural lan-
guage proofs that support them. In particular,
iterating a 1-step implication generator results
in proofs that are highly reliable, and represent
actual model decisions (rather than post-hoc
rationalizations). On the RuleTaker dataset,
the accuracy of ProofWriter’s proofs exceed
previous methods by +9% absolute, and in a
way that generalizes to proof depths unseen in
training and on out-of-domain problems. We
also show that generative techniques can per-
form a type of abduction with high precision:
Given a theory and an unprovable conclusion,
identify a missing fact that allows the conclu-
sion to be proved, along with a proof. These re-
sults significantly improve the viability of neu-
ral methods for systematically reasoning over
natural language.1

1 Introduction

A fundamental goal for AI, dating back to its
earliest years, is automated reasoning: the abil-
ity to draw valid conclusions from explicitly pro-
vided knowledge (McCarthy, 1959). However, ap-
proaches relying on expressing knowledge in a
formal representation language have sometimes
proved challenging (Musen and Van der Lei, 1988).
Recent work on RuleTaker (Clark et al., 2020)
demonstrated a modern approach to this goal, in
which transformers emulate deductive reasoning

1Datasets available at https://allenai.org/data/proofwriter

Figure 1: Given facts, rules, and a question all ex-
pressed in natural language, ProofWriter answers the
question and generates a proof of the answer.

over statements expressed in natural language, by
reliably assigning true/false labels to candidate im-
plications. However, simply assigning true/false
labels is limiting. For practical purposes, systems
should also generate proofs of those labels, so that
their conclusions can be verified and a human-
understandable rationale be produced.

Recent work on PRover, by Saha et al. (2020),
provided first results towards this goal, assembling
proofs by first classifying which facts, rules, and
connections should be in the proof tree then using
an Integer Linear Programming (ILP) module to
enforce consistency constraints. However, the gen-
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Figure 2: ProofWriter iteratively generates 1-step im-
plications and their proofs, and adds implications back
into into the context for deeper reasoning. The step-
wise proof fragments are assembled into full proofs of
N-hop conclusions.

erated proofs were imperfect, and there were no
guarantees that the model “believed” the proofs that
it was reciting, i.e., that its QA module would agree
with the steps shown in the proof. In this paper,
we adopt a different approach, based on generation
rather than classification. Our system, ProofWriter,
generates proofs such as that shown in Figure 1 by
iteratively generating 1-hop inferences and their
(simple) proofs, adding implications back into the
context for deeper reasoning, and assembling more
complex proofs from the 1-hop fragments (Fig-
ure 2). As the accuracy of 1-hop inference is highly
reliable, the accuracy of deeper inference and their
proofs is also high. This results in proofs that sub-
stantially exceed the earlier method’s accuracy, and
also reflect the model’s internal decisions, rather
than a post-hoc rationalization (i.e., is a “faithful”
proof (Subramanian et al., 2020)).

The generative approach also affords two other
new capabilities. First, ProofWriter generates im-
plications that logically follow from a NL (natural
language) theory, allowing enumeration of conse-
quences (rather than only assigning truth values to
pre-conjectured hypotheses). Second, we demon-
strate (a constrained form of) abduction: Given a
theory and an unprovable conclusion, identify a
missing fact (if any) that allows the conclusion to
be proved when added to the theory, plus its proof.

We evaluate our work on a collection of natural
language reasoning datasets, including the Rule-

Taker datasets as well as several new variants. We
achieve state-of-the-art results in proof generation,
and strong new baselines for implication enumera-
tion and abduction over natural language theories.
Our contributions are thus:

1. A new method for proof generation for logical
reasoning over natural language, that obtains
state-of-the-art results and is faithful to the
model’s internal decisions.

2. A method and baseline results for generating
logical implications of statements in NL.

3. A method and baseline results for performing
abduction over natural language statements.

4. New datasets to promote further research.
These results significantly improve the viability of
neural methods for formal reasoning over language.

2 Related Work

Our work builds on the RuleTaker line of research,
in which transformers learn to emulate a deductive
reasoning algorithm (Clark et al., 2020). Unlike
other approaches to reasoning such as parsing to a
formal language (Kamath and Das, 2019), imple-
menting a reasoning algorithm with neural compo-
nents (Weber et al., 2019; Rocktäschel and Riedel,
2017), or SAT solving (Selsam et al., 2019), these
transformers emulate reasoning over language di-
rectly, bypassing a formal representation.

PRover (Saha et al., 2020), mentioned earlier,
was the first system to also produce proofs in
this context, although its post hoc approach meant
that proofs did not necessarily represent the ac-
tual model decisions. Gontier et al. (2020) also
explored the generation of answers and proofs, but
in the context of rule induction with (≈ 10) fixed
rules to induce. In contrast, ProofWriter generates
proofs from explicit NL rules (which may differ
for each problem). Similarly, formal theorem prov-
ing has explored proving mathematical theorems
from fixed, fundamental axioms, e.g., (Polu and
Sutskever, 2020; Wang and Deng, 2020), while
ProofWriter performs inference with differing sets
of rules expressed in natural language.

Our work is also distinct from the large body
of work on rationales and explanation. Work on
rationales aims to identify sentences (or phrases)
that caused a model to make a particular decision,
but without an explanation of why that rationale led
to the answer (the model’s reasoning is opaque),
e.g., (DeYoung et al., 2019; Narang et al., 2020).
Similarly, work on explanations has sought to gen-
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Proof (and Answer) CQ→ AP Given theory C and hypothesis fact Q, determine Q’s truth A and proof P (if any)
Enumeration C → I1, ..., In Given C, generate all implications Ii that logically follow.
Abduction CQ→ fm Given C and an unprovable fact Q, identify a new fact fm that, when added to C,

would make Q true.

Table 1: The three tasks that ProofWriter performs.

erate human-style justifications, which again are
typically supporting evidence rather than a fully-
formed line of reasoning, and without explicit
reasoning rules (Camburu et al., 2018; Jhamtani
and Clark, 2020; Inoue et al., 2020). In contrast,
ProofWriter produces a deductive chain of reason-
ing from what is known to what is concluded, using
a transformer retrained to reason systematically.

3 Approach

3.1 Definitions
Let:

• C be a theory, a set of English sentences C
consisting of facts F and rules R, each ex-
pressing a logical fact or rule in English. (We
also refer to C as the context).

• Q be a question, a hypothesis fact in English
whose truth is to be determined based solely
on the information in C.

• A be an answer, where A ∈ {True, False}
(if reasoning using a closed-world assump-
tion) or A ∈ {True, False, Unknown}
(open-world assumption).

• P be a proof, described shortly.
• I be an implication, a fact that logically fol-

lows from C.

We define three tasks (also see Table 1):
1. proof (inc. QA): CQ → AP : Given C and

hypothesis fact Q, what is the truth A and
proof P (if any) of Q?

2. enumeration: C → I1, ..., In: Which Ii fol-
low from C?

3. abduction(restricted form) CQ→ fm: Which
extra fact fm will make Q true given C?

We reuse (and add to) the RuleTaker datasets for
our work, which include all five elements above.
An example of a RuleTaker theory (facts and rules),
a query, and a proof generated by ProofWriter are
shown in Figure 1. Facts and rules are English
statements, and implications are English statements
that logically follow from those facts and rules.
The original datasets were generated from synthetic
logic programs and their implications, using natural
language patterns to produce the English forms.

3.2 Semantics

Following prior work, we adopt the semantics of
Datalog (Ceri et al., 1989): A fact is true if it is ei-
ther known (i.e., explicitly stated in the context C),
or (recursively) is the conclusion of a rule whose
conditions are true (is “supported”). For handling
negation, we use two alternative Datalog semantics:
The first, following prior work, makes the closed-
world assumption (CWA) and uses negation as fail-
ure (NAF), so that any fact not provable is assumed
false. Under this semantics, negated facts and neg-
ative rule conclusions are not allowed (redundant
under the CWA). The second makes an open-world
assumption (OWA), and does allow negative facts
and rule conclusions. Under this semantics, a third
truth value Unknown is also possible.

3.3 Proof Representation

We define a proof P of a fact fq as a directed
acyclic graph (N,E) with nodes n ∈ N and (di-
rected, untyped) edges e ∈ E. Each node in P is
either a fact f (a ground literal) or a rule r (a logi-
cal implication), expressed in English. Each edge
in the proof either connects a fact to a rule, denot-
ing that the fact helps satisfy the rule’s condition,
or connects a rule to a fact, denoting that the fact
follows from the instantiated rule. Thus nodes in
any branch of the proof will alternate between facts
and rules. Note this definition differs from (and
is richer than) that in PRover, where intermediate
conclusions were not part of the proof.

Facts in the proof are one of three types: known
facts fi ∈ F , negated facts fnaf that cannot be
proven (false under negation-as-failure (NAF)), and
facts fconc that are the conclusions of rules. fi and
fnaf are leaf nodes of the proof, while the fconc
are intermediate nodes within the proof. Note that
fnaf and fconc are by definition not in F . Example
proofs are shown in Figures 1 and 3.

3.4 Proof Encoding

As we wish to generate proofs, we need to encode
P as a linear structure that can be output by a gen-
erative model. Facts and rules in the context are
explicitly labeled with identifiers (fact1, ..., rule1,
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Figure 3: An example proof that includes a negated
(negation-as-failure) fact.

...) that the proof can refer to, see Figures 1 and 3.2

Then, in the linear proof, rule nodes are denoted
by their identifier (rule1, ...), while fact nodes are
denoted by three types of identifiers: fact1, fact2, ...
for facts in the context; naf1, naf2, ... for facts not
in the context and assumed false; and conc1, conc2,
... for facts concluded by rules. To decode the naf*
and conc* identifiers (which by definition are not
in the context), an additional sequence of the form
“with conc1: sentence1. conc2: sentence2. ...” is
appended to the proof.

To linearize the proof in a format convenient for
a generative model, we conjoin rules and their con-
clusions using a “%” symbol, express conjunctive
rule conditions with a “&” symbol, and use “#” to
denote the inverse implication (“←”). We then ex-
press the tree using Polish notation. E.g., the proof
tree “((fact1 & fact2) → rule1 → conc1)” (i.e.,
fact1 and fact2 satisfy rule1, concluding conc1)
would be expressed “# rule1%conc1 & fact1 fact2”.
Thus the 3-step proof from Figure 1 is encoded:

# rule18%conc1 & fact5 # rule12%conc2
# rule11%conc3 fact16 ; with conc1:
Charlie is quiet. ; conc2: Charlie is
young. ; conc3: Charlie is kind.

If the question is a known fact, the “depth 0 proof”
is simply the fact itself (e.g., fact1). If no proof
exists, the symbol “None” is used.

3.5 Models
The ProofWriter models are built on top of the
text-to-text pretrained T5 transformer (Raffel et al.,
2020) (T5-11B). We use different textual prompts
for the different tasks. For the task of generating
an answer and a proof, the input to the model is

2In practice we name these sent1, sent2, ... without a
fact/rule distinction, but for expository purposes it is helpful
to use different identifiers.

of the form: “ $question$ = question ; $context$
= theory-sentences”, for example: “$question$ =
Erin is big. ; $context$ = sent1: Erin is young.
sent2: If ...” The output is of the form: “$an-
swer$ = True/False/Unknown : $proof$ = proof ;”,
where proof is encoded as described in Section 3.4.
For training instances where multiple outputs are
valid, we select a single one at random (for mul-
tiple proofs, we select among the shortest proofs).
Appendix D lists the hyperperameters and gives
input/output examples for each task.

3.6 Task 1: Proof Generation

We evaluate two methods of proof generation:
All-At-Once: We train a model to generate the full

proof and answer in one go (theory + question
→ answer + proof).

Iterative: We first train a model to generate a sin-
gle 1-step implication (theory→ implication
+ 1-step-proof), where the implication follows
from a single rule application. Then at test
time, we apply this model iteratively, adding
each implication to the theory and repeating
until no more implications can be found (i.e.,
exhaustive forward-chaining). The proof for
any given implication can then be assembled
from the 1-step-proof fragments (Figure 2).

3.6.1 All-At-Once ProofWriter (“All”)
The All-At-Once model is trained directly on
CQ→ AP examples in the datasets (P = “None”
if there is no proof of Q). Section 3.5 describes the
i/o format, and Appendix D.1 shows an example.

3.6.2 Iterative ProofWriter (“Iter”)
Training: To train the Iterative model, for each
theory C in the training data, we create an aug-
mented set of training examples with one sequence
of iteratively inferred facts in turn, each using C
plus the previously inferred facts. For example, if
theory C1 implies I1, I2, and I3, then we create
four training examples C1 → I1, C1 ∪ {I1} → I2,
C1 ∪ {I1, I2} → I3, and C1 ∪ {I1, I2, I3} →
“None”. The order of adding the Ii is random but
constrained such that if a later implication depends
on an earlier one, the earlier one must be inferred
first. For example, if the proof of I3 depends on
I2 (determined by inspecting the gold proofs), I2
must be in the context before I3 is inferred. This
ensures that all example inferences are depth 1 (i.e.,
a single rule application). An example input/output
for one step is shown in Appendix D.2.
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Testing: To answer and provide the proof for a
particular question/implication, the model gener-
ates all implications and their proofs by iteratively
applying the model until no more implications (the
implication “None”) is generated. It then looks for
the question among them. If found, the answer is
True with the proof given. The model also looks
for the negation of the question3 and its proof. If
found, the answer is False with the proof given.
Otherwise, there is no proof (proof = “None”) and
the answer is False (for positive questions, CWA),
True (for negative questions, CWA), or Unknown
(any question, OWA).

3.7 Task 2: Implication Enumeration

A second desirable reasoning skill is enumerating
implications of a theory (rather than just assign
True/False to a hypothesis). This capability is im-
portant for practical application of the technology.
In fact, the Iterative ProofWriter already does this
by design, a substantial advantage. To evaluate this
(later), we compare this with an “all at once” strat-
egy of generating all implications as a single output
string, analogous to the All-At-Once strategy for
generating the full proof as a single string. For
training this All-At-Once enumerator, and testing
both, we gather the list of all implications Ii of each
theory C in the train/test data. Each train/test exam-
ple is of then of the form: given C, predict all the
Ii. An example input/output is in Appendix D.3.

3.8 Task 3: Abduction (Single Fact)

A third desirable reasoning skill is abduction over
natural language theories, again made possible by
generative models. Abduction has previously been
studied extensively in formal logic, e.g., (Konolige,
1997), and in NLP, e.g., (Hobbs et al., 1993; Bha-
gavatula et al., 2020). Here we evaluate whether a
generative approach can combine logic and NLP,
performing logical abduction over natural language
knowledge. We do this for a restricted form of ab-
duction, namely single-fact abduction: Given a
theory C and a possible implication Q not prov-
able from C, identify a new fact fm (other than the
trivial Q itself) such that C ∪ {fm} implies Q.

We restrict this task to the OWA (open-world)
setting where questions can naturally have un-
known truth values. To train and test an abductive

3To negate a question, a model can be trained for this
straightforward task. Here, as our question language is simple,
a simple regex to add/remove a “not” suffices.

model over our datasets, we create an abductive ver-
sion as follows: For each theory C in the train/test
data, for each unprovable fact Q, identify all alter-
native “missing facts” factM that, when added to
C, make Q True. To do this, recall that each NL
theory was originally generated from a formal one
Cformal in a formal representation language (Data-
log). We first exhaustively enumerate all possible
Qformal and factMformal in the formal language
(this is feasible as the space of predicates and in-
dividuals is small), then use a theorem prover to
test if Cformal ∪ {factMformal} implies Qformal

for all pairs (factMformal, Qformal). For each
success, we generate the NL equivalents Q and
factM using simple NL generation templates. We
then collect the alternative factMs for each Q.
The abduction task is then, given C and Q, identify
the set of all alternative factMs, i.e.:

C,Q→ factM1, ..., factMi

If there is no single factM that can be added to
make Q true, then the symbol “None” is output.

4 Datasets

We now evaluate ProofWriter on these three tasks.
We use the original RuleTaker D* datasets (Clark
et al., 2020), plus we create two new variants: The
first (CWA) is similar to the original except it fixes
some minor inconsistencies concerning negation
(details in Appendix A.2). The second (OWA) is
also similar to the original, except reasoning uses
an open-world assumption.

We denote these as D*(orig), D*(CWA), and
D*(OWA). Each example in each dataset con-
tains a theory C, a question Q, the answer A
(True/False/Unknown), and all possible proofs
P1, ..., Pn for that answer (if provable).4 Each the-
ory is also accompanied with all possible proofs of
all possible implications, as auxiliary annotations.

The D* datasets comprise five datasets, named
D0, D1, D2, D3, D5, each containing 100k ques-
tions. In each dataset, theories and questions are
expressed in templated English (e.g., Figure 1),
questions can be positive or negated facts (e.g.,
“Charlie is not quiet?”), and answers are equally di-
vided into True/False (and Unknown, for the OWA
versions). Each dataset contains questions whose
answers require reasoning up to depths D (D = 0,
1, 2, 3, 5). Thus, for example, all questions in D0

4The domain is small enough that all proofs can be enumer-
ated. However, there still can be a large number, e.g., some
D5 questions have over 3000 possible proofs.
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Answer Proof
Depth # qns PRover ProofWriter PRover ProofWriter
0 6299 100 100 98.4 99.6
1 4434 99.0 99.1 93.1 98.7
2 2915 98.8 98.6 84.8 97.3
3 2396 99.1 98.5 80.5 94.4
4 2134 98.8 98.7 72.4 91.0
5 2003 99.3 99.3 65.1 86.4
All 20192 99.3 99.2 87.1 96.2

Table 2: [Task 1: Proof Generation] Systems trained
and tested on D5(orig), showing the breakdown by
depth of proof required to answer each question.
ProofWriter generates significantly more correct proofs
for all depths, achieving a new SOTA on this task.

are lookup questions, requiring no inference. Each
dataset is split 70/10/20 into train/dev/test.

To test generalization, we also use two other
datasets from the original RuleTaker work:
Birds-Electricity: These 6 test-only datasets use
small, real-world theories written by hand (one per
dataset) to test out-of-distribution model perfor-
mance. Details are in Appendix A.3.
ParaRules: This dataset contains 40k questions
against 2k theories expressed in paraphrased nat-
ural language, obtained through crowdsourcing.
This dataset tests transfer to more natural expres-
sions of knowledge. Details are in Appendix A.4.

5 Experiments and Results

5.1 Task 1: Proof Generation (Comparison
with Prior Work)

First, we compare ProofWriter’s ability to gener-
ate proofs with PRover, the current state-of-the-art.
We evaluate both answer accuracy and proof cor-
rectness. For proof correctness, for a fair compari-
son, we ignore the intermediate conclusion nodes
(which PRover does not generate). We then use
the same strict scoring metric as in PRover (called
FA or Full Accuracy in the PRover paper): the
proof graph must exactly match a gold proof (i.e.,
be perfectly correct); otherwise, the proof scores 0.

5.1.1 Generating Answers and Proofs
We use the same IID (independent, identically dis-
tributed) data used for PRover (train/test on dataset
D5(orig)). The results are in Table 2, showing accu-
racies for questions requiring increasingly deeper
depths of reasoning to answer. The ProofWriter’s
results are for the All-At-Once model. (The Itera-
tive model scores are almost identical, see later Ta-
ble 4.) While answer accuracy is almost perfect for
both systems, ProofWriter generates substantially

Answer Proof

PRover ProofWriter PRover ProofWriter
Test # qns All Iter All Iter
Birds1 40 95.0 100 95.0 92.5 100 95.0
Birds2 40 95.0 100 95.0 95.0 100 95.0
Elec1 162 100 96.9 100 95.1 96.9 100
Elec2 180 100 98.9 100 91.7 98.9 100
Elec3 624 89.7 92.0 95.5 71.8 92.0 95.5
Elec4 4224 84.8 83.3 97.1 80.6 82.0 97.1
All 5270 86.5 85.5 97.0 80.5 84.5 97.0

Table 3: [Task 1: Proof Generation] Training on D5,
test on Birds-Electricity. Both ProofWriter versions
(“All” for All-At-Once, “Iter” for Iterative) outperform
PRover overall in both answer and proof correctness.
The Iterative model is also significantly more robust.

more correct proofs (last line, +9% absolute), and
without the complexity of PRover’s heuristic as-
sembly of proof graphs using ILP.

5.1.2 Performance on OOD Rulesets
We compared ProofWriter’s and PRover’s ability
to generalize to the hand-authored Birds-Electricity
rulesets, zero shot. These rulesets are out-of-
domain (OOD), as their English is not templated
and is stylistically different to the training data.
We compare the PRover and All-At-Once (“All”)
ProofWriter models trained on D5, plus the Iter-
ative ProofWriter (“Iter”) trained on D0-D3 theo-
ries. The models do not see any Birds-Electricity
examples during training. The results in Table 3
show that ProofWriter’s proof generation transfers
well zero-shot to these hand-authored datasets, with
84.5% proof correctness for All-At-Once, and 97%
for the Iterative ProofWriter, indicating better out-
of-domain generalization for the Iterative version.
Both ProofWriter models significantly outperform
PRover (80.5%).

We also find ProofWriter obtains more correct
proofs (+3%) than PRover on the ParaRules dataset.
Details are in Appendix B.1.

5.2 Task 1: Proof Generation (All-At-Once
vs. Iterative)

Second, we compare our two approaches to proof
generation, All-At-Once vs. Iterative, in more de-
tail. We show that although they have almost iden-
tical performance for proofs with depths seen in
training, the Iterative model generalizes better
to proofs of longer depths than seen in training.
For these comparisons, we use the new D*(CWA)
datasets (which fix some minor errors in D*(orig)),
and also the D*(OWA) datasets to explore perfor-
mance in an open-world setting.
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Answer Proof
CWA OWA CWA OWA

Depth All Iter All Iter All Iter All Iter
N/A 99.0 99.7 99.4 99.9 99.0 99.7 99.4 99.9
0 100 100 100 100 100 100 100 100
1 99.9 99.8 100 99.3 99.6 95.4 99.7 97.8
2 99.9 99.5 99.9 99.7 98.3 91.7 98.6 97.3
3 100 99.7 100 99.2 95.8 90.4 96.9 97.1
4 100 99.7 99.9 99.1 93.1 88.9 94.8 96.5
5 99.9 98.9 100 98.8 89.3 87.8 91.4 86.4
All 99.6 99.7 99.7 99.6 97.2 95.4 98.0 97.6

Table 4: [Task 1] Comparison of All-At-Once (“All”)
vs. Iterative (“Iter”) ProofWriter models, trained on
D5 and D0-D3 respectively, and tested on D5.

5.2.1 Comparison (IID Test Set)
We train the All-At-Once model on D5 (train), and
the Iterative model using the method described in
Section 3.6.2, using the (∼ 5k) theories from D3
(train) plus ∼ 20% of the D0-D2 (train) theories.5

We then test both models on D5 (test). We mea-
sure both answer and proof accuracies, and also
break down the results by proof depth (using “N/A”
as the proof depth for questions that are not prov-
able). The D5 test set has 2k questions at each
proof depth, plus 8k unprovable questions (proof =
“None”, depth = “N/A’).6

The results are shown in Table 4, and show that
both ProofWriter versions have similar, high
proof correctness (95%+) on the test set, even
though some proofs are highly complex.

5.2.2 Generalization to Unseen Depths
We also wish to see how well the models can gener-
ate proofs at depths unseen during training. To do
this, we train an All-At-Once model on D3, and use
the same Iterative model as earlier (trained on itera-
tive examples from theories up to depth 3). We test
on D5. As D5 contains problems at greater depths
than those seen during training, we can observe the
models’ ability to generalize. We compare with
both the CWA and OWA versions of our datasets.

The results are shown in Table 5. As can be
seen, the All-At-Once model has quite poor gen-
eralization for generating longer proofs than seen
in training, while the Iterative model is more ro-
bust (red box).

5We include D0-D2 theories to have more examples of the-
ories with fewer conclusions. The derivative iterative training
data is included in our dataset release.

6Note this breakdown is slightly different from the one in
Table 2 where the depth used the original RuleTaker anno-
tations which included a depth for questions without proofs,
based on the deepest proof search that fails. We retained that
convention in Table 2 for best comparison with PRover.

Table 5: [Task 1] Comparison of the All-At-Once vs.
Iterative ProofWriter models, trained on D3 and tested
on D5. While scores are mostly similar throughout, the
iterative model generalizes substantially better to gen-
erate proofs of depths unseen during training (red box).

Figure 4: [Task 1] All-At-Once proofs can be verified
by checking each step as a separate QA query.

5.3 Verifying All-At-Once Proofs

Proofs from the Iterative ProofWriter have an ad-
ditional desirable property: each proof step is one
that the model explicitly took during the iteration,
i.e., the model “believes” the step. In contrast,
the All-At-Once proofs are a post hoc generated
string of symbols, and may not reflect steps that
ProofWriter would actually make. However, be-
cause proofs include intermediate conclusions, we
can alleviate this concern by verifying individual
steps in the All-At-Once proofs. For example, if a
generated proof step states that fact2 + fact3 + rule4
implies conc1, we can simply ask ProofWriter in
QA mode if this is true (Figure 4). Given the al-
most perfect performance for such simple depth 1
questions in QA mode (with no distractor facts or
rules), the ability to verify a correct proof corre-
sponds to the accuracy of correctly generating the
correct intermediate conclusions conc* in the first
place. (Note that an unverified proof is not nec-
essarily wrong, rather cannot be verified as right).
OWA proofs can be fully verified in this way. For
CWA theories with NAFs, the verification is only
partial as NAFs are presumed negative statements
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Verified Proofs
CWA OWA

Train on: Train on:
Depth D3 D5 D3 D5
N/A 99.6 99.0 99.4 99.4
0 100 100 100 100
1 99.8 99.6 99.7 99.7
2 98.2 98.3 98.6 98.6
3 93.2 95.8 94.3 96.8
4 66.7 92.9 66.1 94.6
5 13.8 89.3 16.4 90.8
All 87.2 97.2 87.9 97.9

Table 6: [Task 1: Proof Generation] The All-At-Once
model’s ability to verify its proofs. For proofs within
depths seen during training, almost all correct proofs
(Tables 5 and 4, columns 5 and 7) can be verified. How-
ever, for proofs at unseen depths, the proportion that
can be verified drops rapidly (trained on D3, test on
depths 4,5). In contrast, Iterative ProofWriter’s proofs
are always verified, by definition of its algorithm.

which require the full theory to verify.
We measured the percentage of correct, verified

proofs, shown in Table 6. Provided proofs are
within the depths seen during training, almost all
correct proofs can be verified. However, at depths
deeper than seen at training, the proportion that
can be verified drops rapidly. In contrast, the Iter-
ative ProofWriter’s proofs are always verified, as
by definition they are assembled from single step
inferences that the model actually took.

5.4 Task 2: Implication Enumeration

Third, we evaluate ProofWriter’s performance on
a new task, namely enumerating implications of
a theory (rather than just assign True/False to a
hypothesis). We compare the All-At-Once and
Iterative strategies as described in Section 3.7.

To train All-At-Once, and test both, we created
an enumerative dataset of C → {I1, ..., In} exam-
ples (Section 3.7). For this we sample theories
C in the D0-D3 datasets and gather the list of all
implications Ii for each theory C. We call this enu-
merative dataset D3+Enum. We similarly create
a D5-Enum dataset from theories in (only) D5 to
test OOD conclusion generation. We create CWA
and OWA versions of both.

We train All-At-Once on D3-Enum (train), then
test both models on D3-Enum (test) and D5-Enum
(test). For metrics, we measure F1 scores by com-
paring the individual predicted implications with
the gold Ii, as well as the exact-match correct-
ness of the predicted set of implications {I1, ..., In}
(one point if the set exactly matches the gold, bar
ordering, zero otherwise). The results are shown in

F1 Accuracy
Enum CWA OWA CWA OWA
Test All Iter All Iter All Iter All Iter
D3+ 98.9 99.8 99.4 99.6 92.5 98.8 95.5 99.0
D5 94.5 99.5 94.8 99.4 44.6 93.9 48.9 94.8

Table 7: [Task 2: Enumeration] Iterative ProofWriter
is better at generating all implications than an All-At-
Once strategy. (All-At-Once is trained on D3+Enum,
Iterative ProofWriter is the same model as earlier.)

Test: Count F1 Acc
D3-Ab 7067 97.4 94.5
D5-Ab 7181 97.3 93.5

Table 8: [Task 3: Abduction] Given a theory C and an
unprovable conclusion Q, predict all alternative facts
that, when added to C, make Q provable.

Table 7, and show that the Iterative ProofWriter
is better at implication enumeration than the
simple All-At-Once strategy. In particular, the All-
At-Once strategy struggles for problems at depths
unseen in training (second row), although it does
well on its own test set despite the complicated un-
ordered output it has to generate (up to 16 different
implications in D3, 21 in D5).

5.5 Task 3: Abduction (Single Fact)

Fourth and finally, we evaluate performance on
a second new task, namely abduction over nat-
ural language theories, again made possible by
generative models. Analogous to implication enu-
meration, we create a derivative abductive dataset
of C,Q→ factM1, ..., factMi examples, where
C ∪ {factMi} results in Q becoming provable as
described in Section 3.8. We create such D*-Ab
datasets from the D*(OWA) datasets.

5.5.1 Results (IID)
We trained a model on D3-Ab (train), and then
tested on both D3-Ab (test) and D5-Ab (test). We
evaluate the results by comparing the predicted
and gold factMs, measuring both F1 and “perfect
match” Accuracy (1 when F1=1, 0 otherwise). The
results are shown in Table 8, and indicate that the
model performs well overall (85%+ scores). We
also broke down the recall of factMs by proof
depth required to prove Q given C and factM .
This is shown in Table 9, indicating that it is harder
to identify a factM that completes a deeper proof.
The similarity of D3-Ab and D5-Ab scores sug-
gests that D5-Ab is not out-of-domain for this task:
Although depths for provable D5 facts are deeper
than D3, this task concerns unprovable facts, which
may not be distributed differently to D3-Ab.
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Gold Proof Test on D3-Ab Test on D5-Ab
Depth # Gold Acc (recall) # Gold Acc (recall)
N/A 2155 97.73 2170 97.74
1 4813 98.46 4731 98.73
2 1719 96.22 1986 96.17
3 688 90.26 915 92.79
4 153 75.82 330 82.73
5 19 36.84 96 78.13

Table 9: [Task 3: Abduction] Recall of abduced facts
by proof depth. The data suggests that it is harder to
identify a factM that completes a deeper proof.

5.5.2 Generalization to New Tasks
To assess out-of-domain generalization, we also
evaluate how well the trained abductive model
performs on an abductive version of the Birds-
Electricity(OWA) theories, zero-shot (created us-
ing the same approach, Section 3.8). We find that
ProofWriter has perfect zero-shot performance for
the simple Birds rulebases, but progressively re-
duced performance for the Electricity theories as
they get more complex (dropping to 64% F1, 62%
Accuracy for one rulebase), indicating that the ab-
ductive task is only partly solved (Appendix B.2).

6 Discussion

6.1 All-At-Once vs. Iterative Strategies
While the All-At-Once approach to proof genera-
tion is simple, efficient, and effective, it does not
generalize as well to proofs of greater depth than
seen at training. In contrast, the Iterative approach
is robust to generalization. Even though errors at
each iteration accumulate, the reliability of 1-step
inference is so high that such error accumulations
remain small. The Iterative architecture, namely a
simple model embedded in a recursive loop (rather
than single seq2seq model), illustrates how trans-
formers can be used in a “scale-invariant” way,
i.e., performance is largely unchanged by the scale
(here reasoning depth) of the problem. In addition,
as proofs are built from actual inference steps taken
by the model, they are by definition “faithful” to
the model’s inference steps, rather than being a
post hoc rationalization.

However, there are also some drawbacks to the
Iterative approach: First, it is inefficient and un-
guided, proving everything possible and only then
looking for the answer and proof for a particu-
lar question. In fact, this is a limitation of un-
constrained forward-chaining in general, hence es-
tablished techniques for guiding forward-chaining
could be applied, e.g., a best-first expansion strat-
egy, or using a backward-chaining strategy instead

(which would similarly need to be controlled). Sec-
ond, as the theory grows by one fact per iteration,
there is a risk of exceeding the transformer’s input
token limit (512 tokens by default), hence limiting
the size of theories that can be handled. For larger
theories, a retrieval mechanism might be needed to
manage the facts and rules available to the reasoner.

6.2 Abduction and Implicit Knowledge

Recently, LeapOfThought (Talmor et al., 2020)
showed that RuleTaker-like models could be re-
trained to reason with a combination of explicit
and implicit knowledge, rather than requiring all
rules to be stated explicitly (the implicit knowledge
coming from the latent knowledge acquired dur-
ing pretraining (Petroni et al., 2019)). Now, given
an abductive capability such as the one we have
presented, we have a mechanism for materializing
the implicit knowledge used to answer a question,
and hence generating the full proof of its answer:
Given a LeapOfThought conclusion, first abduce
the “missing” (implicit) fact(s) required for an ex-
plicit proof, then use ProofWriter to generate that
proof. This is a significant step forward to help
understand a model’s decisions when both implicit
and explicit knowledge has been used.

7 Summary and Conclusion

While it is remarkable that transformers can learn to
systematically reason over language, such methods
will have limited impact if they cannot also explain
their answers. In this work, we showed the first
application of generative techniques to this task,
and demonstrated how proofs, implication enumer-
ations, and abductive inferences can be generated,
exceeding the prior state-of-the-art in proof gener-
ation by +9% (absolute). In addition, the Iterative
ProofWriter robustly generalizes to deeper proofs
and more varied language than seen in training,
and produces proofs that reflect (i.e., are faithful to)
the model’s actual inference decisions. Finally, the
abductive capability offers the potential for gener-
ating proofs when both explicit and implicit knowl-
edge are used, by materializing the implicit knowl-
edge needed to complete the proof. Together, these
significantly improve the viability of neural meth-
ods for systematically reasoning over language in
practical settings. The ProofWriter datasets are
available at https://allenai.org/data/proofwriter

Acknowledgements: We thank Google for provid-
ing the TPUs for conducting experiments.
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Appendix: ProofWriter: Generating Implications, Proofs,
and Abductive Statements over Natural Language

A Datasets: Additional Details

A.1 Statistics
Some overall statistics for the updated RuleTaker
CWA and OWA datasets are in Table 10. The
number of implications per theory can reach 20
and above, and the proof depths go up to 10, even
though the proof depths of the associated questions
are limited to the dataset depth (e.g., depth 3 for
D3).

# impl depth
Dataset # th # qns min/mean/max max
CWA:
D0 27020 100002 0/1.0/18 8
D1 12965 100012 1/1.9/17 6
D2 9138 100014 2/3.3/18 5
D3 7067 100024 3/5.1/16 7
D5 4935 100030 5/9.8/21 10
Birds/Elec 140 5270 0/2.0/6 4
ParaRules 2403 40022 3/4.3/14 5
OWA:
D0 26978 100000 0/0.8/18 5
D1 12933 100014 1/1.7/14 6
D2 9033 100010 2/3.1/14 5
D3 6940 100036 3/4.8/16 6
D5 4752 100030 5/9.1/21 10
Birds/Elec 140 5270 0/1.2/6 3
ParaRules 2403 40022 3/4.3/14 5

Table 10: Statistics for the CWA and OWA datasets,
giving the number of theories, questions and implica-
tions per theory. Note that the maximum implication
proof depth can go higher than the maximum proof
depth for the included questions (e.g., for D5 the maxi-
mum questions depth is 5, but there are implications up
to depth 10 which are include in the enumeration task).

Table 11 describes overall statistics for the datasets
for Task 3: Abduction. Each abduction question
can have zero or more missing facts as answer, and
the proof depths can go up to 11.

# missing max
facts proof

Dataset # th # qns min/mean/max depth
D0-Ab 18011 85705 0/0.8/15 6
D1-Ab 10448 49808 0/0.8/12 7
D2-Ab 7092 37245 0/0.9/11 6
D3-Ab 5633 34915 0/1.1/11 8
D5-Ab 4362 35213 0/1.2/9 11
Birds-Electricity-Ab 140 3940 0/0.24/4 4

Table 11: Statistics for the Abduction datasets, giving
the number of theories, abduction questions, number of
missing facts per question and maximum proof depth.

A.2 Repairs to the RuleTaker Datasets

The original RuleTaker theories were intended to
be full Datalog theories, but contained three occa-
sional violations in the with-negation theories:

1. Some theories contained negated facts (e.g.,
“Bob is not red”) and/or rules with negated
conclusions. Such statements are redundant
under a CWA, and not allowed according to
formal Datalog specifications.

2. Some theories included rules with a free vari-
able in a negated condition (e.g., “If someone
is not blue then Bob is happy.”). Such rules
are not allowed according to formal Datalog
specifications, as the possible groundings of
the variable require meta-information about
the theory as a whole.

3. A bug in the stratification checker led to a few
theories being included that were not stratifi-
able, and hence may have multiple, valid truth
assignments for their facts.

As a result, the theories were regenerated (with
the same distribution over number of facts, rules,
condition, etc.) to create the D*(CWA) datasets,
avoiding these issues.

The D*(OWA) datasets are similar to the
D*(orig) datasets, but evaluated without a CWA,
i.e., negation-as-failure (NAF) is replaced with hard
negation. The theories with negation were again re-
generated to ensure they were stratifiable (to avoid
negation cycles), but they still retain negated facts
and rule conclusions. The truth values of the ques-
tions were recomputed using an OWA, resulting in
answers True/False/Unknown.

A.3 The Birds-Electricity Datasets

The RuleTaker “birds” rulebase is a well-known
logic problem illustrating the use of “abnormal-
ity” predicates (McCarthy, 1984),7, and converted
into English by hand. The dataset contains a sin-
gle theory of six rules (e.g., “If someone is a bird
and wounded then they are abnormal.”) and seven
facts (e.g., “Bill is wounded”), and forty questions
against this theory (i.e., 40 test examples total).
Birds1 and Birds2 differ solely in the English word-
ing (e.g., “Bill is flying” vs. “Bill can fly”).

7https://www.doc.ic.ac.uk/∼mjs/teaching/KnowledgeRep491/
ExtendedLP 491-2x1.pdf, p5
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Answer Proof
# qns PRover ProofWriter PRover ProofWriter

D=0 2968 99.7 99.9 99.4 99.9
1 2406 98.6 99.3 97.3 99.3
2 1443 98.2 98.3 88.7 97.7
3 1036 96.5 98.2 89.9 96.5
4 142 88.0 91.5 76.1 83.1
All 8008 98.4 99.1 95.1 98.5

Table 12: [Task 1: Proof Generation] Train on D3
+ ParaRules, test on (only) ParaRules. Both systems
demonstrate robustness to more complex linguistic ex-
pressions in the theories, with ProofWriter obtaining
3% higher proof correctness.

The four RuleTaker “electricity” datasets contain
examples of reasoning about toy electrical cicuits
using a small set of general rules about circuits.
Examples in each dataset are built using a fixed
set of general rules per dataset, ranging from five
rules (Elec1) to twelve rules (Elec4). Each example
in these datasets contains the general rules, plus
between two and five facts describing a particular
circuit, with a set of questions about the circuit,
e.g., Q: “The light bulb is glowing?” A: True.

A.4 The ParaRules Dataset

The RuleTaker “ParaRules” dataset contains 40k
questions against 2k theories expressed in para-
phrased natural language, obtained by having
crowdworkers rephrase the templated English facts
and rules from sampled original theories into more
varied natural language. For example, “Bob is cold.”
might be rephrased “In the snow sits Bob, crying
from being cold”; or “Alan is round. Alan is blue.
Alan is kind.” might be rephrased “Alan, who is
round and also kind, tends to be rather blue”; or “If
someone is kind then they are young.” might be
rephrased “A kind person will certainly be young.”.
While the previous datasets contain synthetic lan-
guage, ParaRules tests the models’ ability to reason
over more human-like paraphrased language.

B Additional Results

B.1 Results on the OOD ParaRules Dataset

We also test the robustness of ProofWriter’s proof
generation to theories that use more varied natural
language, summarized in Section 5.1.2. Following
(Clark et al., 2020) and (Saha et al., 2020), we train
on the combined training partitions of D3(orig) and
ParaRules, then test on the ParaRules test parti-
tion. The results in Table 12 show that PRover and
ProofWriter (All-At-Once) are robust to more com-

Test Dataset: # qns F1 Acc
Birds1-Ab 14 100.00 100.00
Birds2-Ab 14 100.00 100.00
Elec1-Ab 114 89.47 89.47
Elec2-Ab 126 90.25 88.89
Elec3-Ab 456 81.79 76.32
Elec4-Ab 3216 85.77 83.99
All 3940 85.66 83.53

Table 13: [Task 3: Abduction] Zero-shot scores of the
D3-Ab model on the Birds-Electricity-Ab rulebases.

plex natural language in the input, with ProofWriter
obtaining 3% higher proof correctness.

B.2 Abduction: Generalization to New Tasks

Section 5.5.2 summarized the results of testing
abductive reasoning on abductive versions of the
Birds-Electricity(OWA) theories. The detailed re-
sults are shown in Table 13, showing perfect zero-
shot performance for the simple Birds rulebases,
but progressively reduced performance for the Elec-
tricity theories as they get more complex. This indi-
cates that the abductive task remains only partially
solved by our generative model.

C Results with T5-large

In the main part of the paper we trained ProofWriter
starting from the largest available T5-11B model
(11 billion parameters). If we instead use the more
manageable T5-large model (770 million parame-
ters), the scores generally go down, but typically
by a small amount.

In Tables 14 and 15 we show two examples of
this, for the All-At-Once and Iterative ProofWriter
models respectively, when training on the D3
dataset and evaluating on D5. We see the T5-large
model is a bit worse on higher depth proof accuracy
in the All-At-Once model, but is otherwise quite
competitive.

D Hyperparameters and I/O Examples

We fine-tune the models on the training set using
the default hyperparameters (including the Adafac-
tor optimizer) in the T5 library.8 We use the largest
T5-11B model for the main results, fine-tuned for
40k steps (batch size 8), selecting the checkpoint
with highest validation score (usually the final step).
See Appendix C for results using the smaller T5-
large.

8https://github.com/google-research/text-to-text-transfer-
transformer
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Answer Proof
CWA OWA CWA OWA

Depth large 11B large 11B large 11B large 11B
N/A 98.4 99.6 97.4 99.4 98.4 99.6 97.4 99.4
0 100 100 100 100 100 100 100 100
1 100 99.9 99.9 99.9 99.4 99.7 99.3 99.8
2 99.8 99.4 99.7 99.8 97.5 98.2 97.6 98.8
3 100 99.2 99.7 99.8 90.4 93.4 91.2 94.5
4 98.9 95.4 99.5 99.3 38.6 69.9 46.9 71.4
5 92.3 72.9 98.9 93.7 12.4 27.4 24.4 35.1
All 98.4 96.6 98.7 99.0 83.4 88.9 85.6 90.2

¡

Table 14: [Task 1] Comparing T5-large vs T5-11B for
the All-At-Once models trained on D3 and evaluated
on D5. T5-large is actually a bit ahead of T5-11B on
answer accuracy (for CWA), although the proof correct-
ness is noticeably higher with T5-11B.

Answer Proof
CWA OWA CWA OWA

Depth large 11B large 11B large 11B large 11B
N/A 99.0 99.7 99.2 99.9 99.0 99.7 99.2 99.9
0 100 100 100 100 100 100 100 100
1 98.8 99.8 99.1 99.3 95.0 95.4 97.5 97.8
2 98.3 99.5 98.9 99.7 91.0 91.7 96.4 97.3
3 98.6 99.7 98.4 99.2 89.0 90.4 95.5 97.1
4 98.0 99.7 97.5 99.1 86.3 88.9 93.4 96.5
5 97.7 98.9 96.5 98.8 85.4 87.8 82.3 86.4
All 98.7 99.7 98.8 99.6 94.4 95.4 96.4 97.6

Table 15: [Task 1] Comparing T5-large vs T5-11B for
the Iterative ProofWriter trained on D0-D3 and evalu-
ated on D5. T5-11B is systematically slightly better.

For all tasks in this paper, the model input and
output are plain textual strings in a certain format.
The format is slightly more verbose than strictly
necessary, as it is compatible with a more general
framework combining different views of the task.
This is not typically an issue, although there are
a few cases where the iterative model reaches the
default 512 token limit of T5 when adding impli-
cations to the theory. We now show input/output
examples for proof generation (All-At-Once and
(one step of) the Iterative approaches), implication
generation (All-At-Once approach; Iterative impli-
cation generation is a side-effect of Iterative proof
generation), and abduction.

D.1 All-At-Once Proof Generation
In this task we are given a theory and question, and
need to produce an answer (True/False/Unknown)
and proof with intermediates.
INPUT: $answer$ ; $proof$ ; $question$ = The lion is not
nice? ; $context$ = sent1: The tiger chases the lion. sent2:
The lion is not big. sent3: If something visits the dog and it is
kind then it visits the mouse. sent4: The dog chases the lion.
sent5: If something is big then it visits the dog. sent6: The
tiger eats the dog. sent7: If something visits the tiger and the
tiger is not red then it is not nice. sent8: If something chases

the dog then it is not red. sent9: The mouse does not chase the
tiger. sent10: If something visits the mouse then the mouse is
red. sent11: The tiger visits the lion. sent12: The tiger does
not eat the mouse. sent13: The mouse is nice. sent14: The
lion does not eat the tiger. sent15: If the tiger visits the dog
and the dog is not big then the dog chases the mouse. sent16:
The lion visits the tiger. sent17: If something chases the lion
and it visits the dog then it chases the dog. sent18: The dog
is nice. sent19: If something chases the lion then it is big.
sent20: If something eats the lion then it is not cold.
OUTPUT: $answer$ = True ; $proof$ = # sent7@int1 &
sent16 # sent8@int2 # sent17@int3 & sent1 # sent5@int4 #
sent19@int5 sent1 ; with int1: The lion is not nice. ; int2: The
tiger is not red. ; int3: The tiger chases the dog. ; int4: The
tiger visits the dog. ; int5: The tiger is big.

If we translate back from Polish Notation, this
proof corresponds to ((sent16 & ((((sent1 & ((sent1
→ sent19→ int5)→ sent5→ int4))→ sent17→
int3))→ sent8→ int2))→ sent7→ int1)

D.2 Iterative Proof Generation (one step)

In this task we ask the model to generate one valid
implication of the theory with proof of depth 1. If
no such implication exists, instead generate ”None”
as the answer.
INPUT: $answer$ ; $proof$ ; $question$ = What is one single-
hop inference? ; $context$ = sent1: If something eats the
cow and it is big then the cow sees the bald eagle. sent2:
If something likes the bald eagle then it is rough. sent3: If
something eats the dog then it likes the cow. sent4: Big things
are young. sent5: If something likes the cow then it eats the
cow. sent6: If something sees the bald eagle then the bald
eagle eats the cow. sent7: If something likes the bald eagle
then the bald eagle is kind. sent8: If something sees the bald
eagle then the bald eagle eats the dog. sent9: The bald eagle
eats the cow. sent10: The bald eagle sees the dog. sent11: The
dog is big. sent12: The cow likes the bald eagle. sent13: The
bald eagle is young. sent14: The dog sees the cow. sent15:
The bald eagle is kind. sent16: The dog is young. sent17:
The bald eagle sees the cow. sent18: The bald eagle is rough.
sent19: The cow eats the bald eagle. sent20: The dog is cold.
sent21: The dog likes the cow. sent22: The dog eats the bald
eagle. sent23: The dog eats the cow. sent24: The bald eagle
likes the dog. sent25: The bald eagle likes the cow. sent26:
The cow sees the bald eagle. sent27: The cow sees the dog.
OUTPUT: $answer$ = The cow is rough. ; $proof$ = # sent2
sent12

During evaluation time, we would then take this
output and append it to the theory as ”sent28: The
cow is rough.” and repeat the question. If a sub-
sequent proof then references ”sent28”, we know
already that this was derived using the proof ”#
sent2 sent12”.

D.3 All-At-Once Implication Enumeration

In this task we ask the model to simply output all
valid implications of a theory, without generations
proofs in this case.
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INPUT: $answer$ ; $proof$ ; $question$ = What are all the
inferences? ; $context$ = sent1: The tiger chases the lion.
sent2: The lion is not big. sent3: If something visits the dog
and it is kind then it visits the mouse. sent4: The dog chases
the lion. sent5: If something is big then it visits the dog. sent6:
The tiger eats the dog. sent7: If something visits the tiger and
the tiger is not red then it is not nice. sent8: If something
chases the dog then it is not red. sent9: The mouse does not
chase the tiger. sent10: If something visits the mouse then
the mouse is red. sent11: The tiger visits the lion. sent12:
The tiger does not eat the mouse. sent13: The mouse is nice.
sent14: The lion does not eat the tiger. sent15: If the tiger
visits the dog and the dog is not big then the dog chases the
mouse. sent16: The lion visits the tiger. sent17: If something
chases the lion and it visits the dog then it chases the dog.
sent18: The dog is nice. sent19: If something chases the lion
then it is big. sent20: If something eats the lion then it is not
cold.
OUTPUT: $answer$ = The dog is big. The tiger is big. The
dog visits the dog. The tiger visits the dog. The dog chases
the dog. The tiger chases the dog. The dog is not red. The
tiger is not red. The lion is not nice.

This particular theory has 9 valid implications,
around average for D5 theories. (The number of
implications can be as high as 21).

D.4 Iterative Implication Enumeration
Iterative implication generation is a side-effect of
Iterative proof generation, hence the input/output
(one step) is the same as in Appendix D.2.

D.5 Abduction
In this task we ask the model to output all alterna-
tive missing facts, separated by a comma, that can
be (separately) added to a theory so as to prove the
given implication to be True.
INPUT: $answer$ ; $question$ = Dave is rough. ; $context$
= triple1: Anne is white. triple2: Charlie is young. triple3:
Dave is round. triple4: Erin is quiet. rule1: If someone is
rough and young then they are blue. rule2: Rough, white
people are smart. rule3: All smart people are rough. rule4:
All white people are smart. rule5: If someone is young then
they are smart. rule6: All smart people are rough.
OUTPUT: $answer$ = Dave is young. , Dave is smart.

This particular abduction question has 2 alterna-
tive missing facts. Any one of them when added to
the input theory is sufficient to prove the implica-
tion ‘Dave is rough’.


