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Abstract
Automated Term Extraction (ATE), even
though well-investigated, continues to be a
challenging task. Approaches conventionally
extract terms on corpus or document level and
the benefits of neural models still remain un-
derexplored with very few exceptions. We in-
troduce three transformer-based term extrac-
tion models operating on sentence level: a lan-
guage model for token classification, one for
sequence classification, and an innovative use
of Neural Machine Translation (NMT), which
learns to reduce sentences to terms. All three
models are trained and tested on the dataset of
the ATE challenge TermEval 2020 in English,
French, and Dutch across four specialized do-
mains. The two best performing approaches
are also evaluated on the ACL RD-TEC 2.0
dataset. Our models outperform previous base-
lines, one of which is BERT-based, by a sub-
stantial margin, with the token-classifier lan-
guage model performing best.

1 Introduction

Automated Term Extraction (ATE) aims at extract-
ing terms, i.e., single- or multi-word sequences,
from domain-specific text. ATE plays a role in
many NLP tasks, such as information extraction,
knowledge graph learning, and text summariza-
tion. In a corpus-level setting, methods range
from frequency-based to utilizing Wikipedia links,
where no single method has been found to perform
consistently best across domains in English (As-
trakhantsev, 2018). In document-level ATE, Key-
ConceptRelatedness (Astrakhantsev, 2014), which
relies on keyphrase extraction and semantic related-
ness, outperforms other methods (Šajatović et al.,
2019). The use of neural networks in these methods
is mostly limited to generating embeddings.

A first use of BERT-based language models is
documented by Hazem et al. (2020), the winning
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system of the recent ATE challenge TermEval 2020
(Rigouts Terryn et al., 2020) and the baseline for
the proposed approaches. Inspired by this first
success of transformer-based models, we compare
two variations of the multilingual pretrained lan-
guage model XLM-RoBERTa (XLM-R) (Conneau
et al., 2020) with an innovative use of the multi-
lingual pretrained NMT model mBART (Liu et al.,
2020) on the Annotated Corpora for Term Extrac-
tion Research (ACTER) dataset (Rigouts Terryn
et al., 2019) utilized in TermEval 2020 as well as
on the ACL RD-TEC 2.0 dataset (QasemiZadeh
and Schumann, 2016). Since masked language and
NMT models take sentences as input, the proposed
ATE methods operate on sentence level. In spite
of this reduced context of sentence input rather
than documents or corpora, the models achieve F1
scores of up to 69.8% on ACTER, strongly outper-
forming the previous baseline of 48.1% .

An XLM-R-based sequence classifier relies on
positive (term) and negative (non-term) samples,
which are generated based on all n-grams up to a
length of six of a given sentence. A second XLM-
R-based token classifier decides for each word in
a sequence whether it can be considered (part of)
a term. Since the second model operates with-
out upfront n-gram generation and only processes
each sentence once, it is considerably more time-
efficient than the first. Finally, the pretrained NMT
model mBART is adapted to transform input sen-
tences to sequences of comma-separated terms, an
approach inspired by NMT-based ontology learn-
ing (Petrucci et al., 2018).

Analyses of results reveal interesting insights
into the performance of the different input process-
ing strategies and transformer-based models, in-
cluding their ability to handle multi-word terms,
training time required, and a comparison between
baseline monolingual and multilingual language
models in ATE. To achieve sentence-level ATE
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the ACTER dataset had to be preprocessed align-
ing terms with their occurrences in sentences,
which we made publicly available together with
our source code.1

In summary, our main contributions are: (i) We
show that transformer-based models can be suc-
cessfully applied to ATE across three languages
and five domains, without the need for text pre-
processing or feature extraction; (ii) We show that
ATE can be performed successfully on sentence
level; (iii) We conduct robust experiments to show
that our models outperform competitive baselines;
(iv) We investigate the models’ abilities to handle
single- and multi-word terms, distinct term types,
and differences in performance depending on train
and test language combinations.

2 Related Work

An initial classification of ATE methods into sta-
tistical, linguistic or hybrid (e.g. by Kageura and
Umino (1996)) has recently been refined by As-
trakhantsev (2018) to methods based on term oc-
currence frequencies (e.g. C/NC-value Frantzi
et al., 2000), occurrence contexts (e.g. Bordea et al.,
2013), domain-specific corpora combined with gen-
eral language corpora (e.g. Weirdness (Ahmad
et al., 1999)), topic modeling (e.g. Li et al., 2013),
and those utilizing Wikipedia. Methods are ad-
ditionally categorized by the type of context, i.e.,
corpus-level (e.g. Zhang et al., 2008; Astrakhant-
sev, 2018) and document-level (e.g. Šajatović et al.,
2019) settings.

These classifications cannot easily accommodate
recent neural ATE methods that generally oper-
ate on sentence level. An approach most closely
related and our baseline by Hazem et al. (2020)
utilized RoBERTa (Liu et al., 2019) for English
and CamemBERT (Martin et al., 2020) for French
and won the TermEval 2020 challenge. In their
work, pretrained language models clearly outper-
formed a classification method based on a vari-
ety of features, such as statistical descriptors and
the domain-specificity measure termhood (Kageura
and Umino, 1996). A recently published approach
(Rokas et al., 2020) relies on LSTM, GRU and
BERT embeddings and achieves high F1 scores
for ATE of Lithuanian terms in the cybersecurity
domain. Several approaches build on word embed-

1https://github.com/Text2TCS/
Term-Extraction-With-Language-Models
and https://github.com/Text2TCS/
mBART-termextraction

dings to perform ATE on specific domains, such
as medicine (e.g. Bay et al., 2020), or to sepa-
rate general-language from domain-specific embed-
dings (Hätty et al., 2020). In contrast, our models
perform ATE on four domains and in three lan-
guages utilizing a pretrained language and a pre-
trained NMT model. Extracting terms is also vi-
tal to learning expressive ontologies from text, for
which Petrucci et al. (2018) train an NMT model to
transform sentences to Description Logic formulas,
an idea that inspired our NMT-based ATE model.

3 Language Models and NMT

Neural Language Models, which create contextu-
alized language representations, were responsible
for many of the recent improvements in NLP. Such
models acquire rich contextualized language rep-
resentations in a pretraining stage in which they
learn to predict a masked word in a sentence, a
task for which large amounts of training data are
readily available. The thereby learned representa-
tions can be reused for various downstream tasks in
the so-called fine-tuning stage, where task-specific
layers are added on top of the pretrained language
model. One of the most popular language models
is BERT (Devlin et al., 2019), utilizing the trans-
former architecture (Vaswani et al., 2017). XLM-R
(Conneau et al., 2020) is a multilingual variant
of BERT, which was pretrained in 100 languages
using 2.5 terabytes of Common Crawl data. More-
over, it makes use of the improved training routine
introduced by RoBERTa (Liu et al., 2019).

Despite the widespread use of neural language
models for NLP, adoption of such self-supervised
pretraining approaches in NMT has only recently
started to gain traction. NMT is traditionally
performed with sequence-to-sequence encoder-
decoder models that generate a target language
output sequence based on a source language input
sequence. Conventional language models trained
on predicting masked words from a sequence, such
as BERT, have only recently been incorporated
into NMT (Zhu et al., 2020). A very interesting
alternative is to pretrain an NMT transformer ar-
chitecture, as done by Lewis et al. (2020) in form
of a Bidirectional and Autoregressive Transformer
(BART) (Lewis et al., 2020). This is achieved by
combining a bidirectional encoder similar to that
of BERT with an autoregressive decoder, as seen
in GPT (Radford et al., 2018). Thereby, contex-
tualized language representations are trained and

https://github.com/Text2TCS/Term-Extraction-With-Language-Models
https://github.com/Text2TCS/Term-Extraction-With-Language-Models
https://github.com/Text2TCS/mBART-termextraction
https://github.com/Text2TCS/mBART-termextraction
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a model that is proficient in text generation and
translation is created. Liu et al. (2020) applied
the BART architecture to large-scale monolingual
corpora across 25 languages, creating multilingual
BART (mBART) that can be directly fine-tuned for
machine translation (MT).

4 Dataset

In order to compare to a strong baseline, we train
and test on the ACTER dataset (Rigouts Terryn
et al., 2019) utilized in the recent TermEval 2020
challenge. The domains wind energy and corrup-
tion represent the training set, dressage (equitation)
the validation set, and heart failure the hold-out
test set, for which the count of words and unique
gold standard terms including named entities for
English, French and Dutch are presented in Table 1.

In the ACTER dataset, words were labeled
as specific, common, and out-of-domain (OOD)
terms, and named entities (NE). Specific terms
are understood by domain experts, while common
terms might also be additionally understood by
laypersons. OOD terms might be specific to a dif-
ferent domain, but used in the domain at hand, e.g.
statistical terms in the medical domain.

Since the time of the challenge the dataset has
undergone some minor updates, that is, unicode
encoding, dash and quote normalization.2 We be-
lieve that these minor normalization changes do
not significantly impact comparability to TermEval
results, which is confirmed by the fact that our most
similar model to the baseline, the sequence classi-
fier, achieves comparable results. Furthermore, the
ACTER dataset provides terms as a single list for
all documents in a domain. However, we required
inline sentence-level term annotation, which we
generated. In rare cases, this generation of inline
annotations might have lead to erroneous results
for single-word terms. For instance, the term “gain”
as in “private gain” lead to the verb “gain” as in
“gain acceptance” to be erroneously annotated in
the corruption domain. We manually analyzed 300
inline annotated sentences and since the above ex-
ample was the only error found, we consider this a
negligible issue.

The fully inline annotated dataset ACL RD-TEC
2.0 (henceforth ACLR2) dataset provides cleaner
training and test data and could therefore poten-
tially further boost model performance as we show

2This normalized version 1.4 is available at https://
github.com/AylaRT/ACTER

ACTER Train Val Test
Wordsen 97,145 51,470 45,788
Termsen 2,708 1,575 2,585
Wordsfr 106,792 53,316 46,751
Termsfr 2,185 1,183 2,423
Wordsnl 96,887 50,882 47,888
Termsnl 2,540 1,546 2,257
ACLR2 Train Val Test
Wordsan.1 11,473 3,846 4,032
Termsan.1 1,306 420 477
Wordsan.2 16,939 5,757 5,441
Termsan.2 1,743 583 673

Table 1: Train, validation, and test split by word count
and term count per language/annotator

in Section 7.2. The ACLR2 dataset provides a to-
tal of 471 inline human annotated abstract texts
from articles in the ACL Anthology Reference Cor-
pus. As shown in the split of numbers in Table 1,
two separate annotations by two human experts are
provided. Since no official train/val/test split is pro-
vided, we chose to split the ACLR2 dataset with a
60/20/20 split per annotator. In contrast to the AC-
TER dataset, ACLR2 is only available in English
and exclusively covers scientific abstracts in the do-
main of computational linguistics. In terms of base-
line, previous work generally reported precision at
k top terms extracted (P@k) (Zhang et al., 2018b)
or F1 on Recoverable True Positives (F1@RTP)
(Zhang et al., 2018a), due to the necessity to de-
fine an arbitrary cut-off point with traditional ATE
methods. In another work attempting ATE with
neural networks, due to the lack of an official data
split and a restriction to domain specific terms, F1
scores are reported on arbitrary parts of the dataset
(Kucza et al., 2018).

5 Neural Language Model-based ATE

We introduce two possible architectures for ATE
based on the multilingual language model XLM-R.
For the experiments we use the base-size model ver-
sion in form of the implementation made available
by the transformers library (Wolf et al., 2019).

5.1 Sequence Classifier

As with the winning approach of TermEval 2020
(Hazem et al., 2020), our first architecture utilizes
language models for binary sequence classification
by using a fully connected layer to classify the rep-
resentation of the special classification token <s>,

https://github.com/AylaRT/ACTER
https://github.com/AylaRT/ACTER
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which encoded by XLM-R carries information re-
garding the whole input sequence. Instead of using
language specific models, however, we make use
of the multilingual model XLM-R, which enables
the use of a single model for all languages and has
the ability to generalize to unseen languages.

The model receives pairs consisting of a term
candidate and a context sentence in which the can-
didate appears as input as exemplified in Table 2.
Term candidates are created by producing all pos-
sible n-grams of a given sentence. Due to perfor-
mance reasons and the term length distribution in
the dataset (mostly <5 words), n-grams were only
created up to a length of 6 words. For instance,
given the input sentence “We meta-analyzed mor-
tality using random-effect models” a positive sam-
ple, i.e., one labeled as term, is “random-effect
models. We meta-analyzed mortality using random-
effect models”, while a negative sample is “mor-
tality using. We meta-analyzed mortality using
random-effect models”. For training the model,
we undersample the negative samples so that their
amount matches the amount of positive samples to
compare to Hazem et al. (2020). For the evaluation
on the validation and test set we use all possible
n-grams for each input sentence, thus, creating a set
of extracted terms which we can evaluate against
the gold standard. The model was trained for 4
epochs with a batch size of 32 using the Adam
optimizer with a learning rate of 2e-5.

5.2 Token Classifier

The second architecture we use for experimenta-
tion classifies each token of an input sentence sepa-
rately, utilizing the same fully connected layer for
all tokens after they have been processed by XLM-
R. This leads to a significant reduction in training
and inference time as each sentence has to be only
processed once by XLM-R. This type of architec-
ture is usually utilized in tasks like Named Entity
Recognition (NER) (Devlin et al., 2019), where
each word of a sequence needs to be classified.

The input provided to the model now simply con-
sists of the sentences of the document which we
want to process. The model then assigns each input
token one of three possible output labels: “B-T” for
the beginning of a term, “T” for the continuation of
a term, and “n” in the case the token is not part of
a term. For instance, the input sentence “We meta-
analyzed mortality using random-effect models.”
would be labeled as ‘n’, ‘B-T’, ‘B-T’, ‘n’, ‘B-T’,

‘T’, ‘n’, with the last label annotating the punctua-
tion at the end of the sentence.3 Table 2 compares
this input and output pattern with the other two
methods. Since XLM-R’s tokenizer is a Sentence-
Piece tokenizer that splits the input into tokens on a
subword level, the output labels obtained from the
model are also subwords and have to be matched
to the original words of the sentence afterwards.
For training we used the Adam optimizer with a
learning rate of 2e-5. Moreover, we used a batch
size of 8 evaluating the model every 100 steps to
be able to load the best model at the end.

6 NMT-based ATE

As a third experiment, we present a novel approach
to ATE building on a recent sequence-to-sequence
denoising auto-encoder model trained for NMT.
We chose the recent and robust mBART model
trained on the Common Crawl corpus in 25 lan-
guages (mBART25) (Liu et al., 2020) available in
the Fairseq library (Ott et al., 2019).

6.1 Data Preprocessing for NMT-based ATE

Since we construct the downstream task of ATE
as an MT task, we required parallel text data for
supervised fine-tuning of mBART. We opted for
a sentence-level approach, which specifically re-
quires sentence-aligned parallel data. Sentence
tokenization was performed with the Punkt tok-
enizer of NLTK and terms were inline annotated
with the flashtext algorithm (Singh, 2017). For the
ACLR2 dataset, individual sentences and the terms
within were extracted with an XML parser. In or-
der to distinguish single- and multi-word terms in
the model’s output sequence, a separator between
terms or a unifying character between components
of multi-word terms was required. Preliminary test-
ing showed that using a semicolon surrounded by
white-spaces ( ; ) as separator would achieve the
same final F1 score as using more complex sepa-
rators like a tag (for example <term>). Notably
using an underscore (w w) to connect the individ-
ual constituents of a term (w) lowered the score of
the output significantly, that is, F1 performance of
the best model was 5.3% lower on average across
all test languages when compared to utilizing semi-
colons. Irrespective of the separator, the model
would at times add or omit a white-space between
separator and term, which had the effect that the

3The separation of “meta-analyzed” and “mortality” as
distinct terms corresponds to the gold standard.
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Model Input Example Output Example
Sequence
Classifier

random-effect models. We meta-
analyzed mortality using random-effect
models

Term

Token
Classifier

We meta-analyzed mortality using
random-effect models

[’n’, ’B-T’, ’B-T’, ’n’, ’B-T’, ’T’, ’n’]

NMT We meta-analyzed mortality using
random-effect models

meta-analyzed ; mortality ; random-
effects models

Table 2: Input and output examples for all three transformer-based models

term would not be considered in the evaluation.
This was remedied in the process of extracting in-
dividual terms from the output sequence and the
results reported in Section 7 are with unwanted
white-spaces removed. Tokenization during train-
ing was performed with SentencePiece (Kudo and
Richardson, 2018) and data was binarized with the
fairseq-preprocess CLI tool.

6.2 NMT Model Fine-Tuning

The pretrained mBART model was fine-tuned with
the preprocessed data described in Section 6.1. In-
put to the encoder model was a given sentence, such
as “Codes of conduct forbid corruption, irrespec-
tive of its intended purpose.”, while the decoder
would be shown the expected term labels, such
as “codes of conduct ; corruption”. No language-
specific tags were added to input or output, which
is compared to the other methods in Table 2. For
faster and more memory-efficient training we used
automated mixed precision training of Fairseq with
the Fused Adam Optimizer of the NVIDIA Apex
PyTorch extensions.4 We fine-tuned a separate
model for each language of the dataset and a sin-
gle model with all languages combined. Following
the original publication of the pretrained model,
each model was fine-tuned with 0.3 dropout, 0.2 la-
bel smoothing, 2500 warm-up steps and a learning
rate of 3e-5. Furthermore, we opted for a dynamic
batch size by limiting the maximum tokens per
batch to 768, while updating the gradients every 4
steps (more details in Section 7.4).

While preliminary testing showed faster conver-
gence and slightly higher final scores with higher
tokens per batch, availability of the V100 GPU was
not guaranteed and therefore training hyperparame-
ters had to be adjusted to also run on an RTX2080Ti
GPU, which limited the maximum tokens per GPU
to 768. Model performance was evaluated every

4https://github.com/NVIDIA/apex

full epoch. Results were generated using the stan-
dard generation parameters of Fairseq.

7 Results

This section first presents the results on ACTER
including an analysis per language (combination)
and the results on ACLR2, then details the term
length and type behavior of the models, and fi-
nally compares their training time efficiency. We
additionally report on the validation performance
of the best performing token classifier in Table 4,
which shows some performance differences to the
test domain, especially with French as training and
validation language. For further comparability we
also provide precision, recall and F1 scores at k top
terms of 15 methods offered by the term extraction
toolkit ATR4S, which implements a large range of
existing ATE methods, in Appendix A.

7.1 Results on ACTER

To compare our results to the strongest participant
of TermEval 2020, we report precision, recall and
F1 scores in Table 3. These metrics are calculated
on the basis of the available annotation in the origi-
nal ACTER dataset, where we opted for the more
comprehensive list of terms including named en-
tities. All three models are evaluated on differ-
ent combinations of training and test languages as
shown in Table 3, where the heart failure domain is
the hold-out test set as done for the SOTA baseline.
The overall best results are marked in bold for each
test language, while the best results of each model
(if not bold) are highlighted in italics.

The overall best result for our approaches was
an F1 score of 69.8%, which could be achieved
by training the token classifier model on English
and testing it on Dutch. With the exact same set-
tings as the baseline (Hazem et al., 2020) that is
based on RoBERTa (Liu et al., 2019) for English
as training and test language, the token classifier

https://github.com/NVIDIA/apex
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Training Test Sequence Classifier Token Classifier NMT Previous SOTA
Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

EN EN 30.9 84.0 45.2 54.9 62.2 58.3 45.7 63.5 53.2 34.8 70.9 46.7
FR EN 31.1 79.5 44.7 56.7 36.2 44.2 50.0 59.3 54.2
NL EN 22.3 91.1 35.9 55.3 61.8 58.3 48.3 64.3 55.2
ALL EN 31.4 85.8 46.0 54.4 58.2 56.2 50.2 61.6 55.3
EN FR 34.6 79.0 48.1 65.4 51.4 57.6 48.8 61.3 54.4
FR FR 32.2 80.2 46.0 68.7 43.0 52.9 52.7 59.6 55.9 44.2 51.5 48.1
NL FR 26.1 84.7 40.0 62.3 48.5 54.5 54.3 60.9 57.4
ALL FR 33.2 78.9 46.7 62.7 49.4 55.3 55.0 60.4 57.6
EN NL 42.8 89.8 58.0 67.9 71.7 69.8 48.8 63.9 55.4
FR NL 41.3 87.6 56.1 69.2 55.2 61.4 56.2 63.4 59.6
NL NL 32.7 94.1 48.5 71.4 67.8 69.6 60.6 70.7 65.2 18.9 18.6 18.7
ALL NL 40.4 91.5 56.0 70.0 65.8 67.8 60.6 70.0 64.9

Table 3: Test set results represented by training and test languages of the ACTER heart failure domain and in
comparison to the state-of-the-art (SOTA) results from TermEval 2020.

Training EN Val FR Val NL Val
EN (ACTER) 55.6 45.3 60.5
FR (ACTER) 41.9 33.6 49.6
NL (ACTER) 54.6 47.7 57.8
ALL (ACTER) 50.0 40.4 51.5
ACLR2 An.1 75.5 / /
ACLR2 An.2 79.3 / /

Table 4: Validation performance of token classifier on
dressage domain of the ACTER dataset and 20% vali-
dation data of the ACLR2 dataset.

achieves an 11.6% higher F1 score and the NMT
model an improvement of 6.5% on the F1 score.
The sequence classifier struggles with precision
and cannot outperform the baseline in this setting.
Best performance for English as test language can
be achieved by the token classifier trained on Dutch
and by the NMT model trained on all languages.

When testing on French, the sequence classi-
fier is on par with the F1 baseline (Hazem et al.,
2020) building on CamemBERT (Martin et al.,
2020), while the token classifier outperforms it by
9.5% and the NMT model obtains an additional
7.8%. Best performance on French as a test lan-
guage is achieved by the token classifier when
trained on English and by the NMT model when
trained on all languages again. The baseline for
Dutch is provided by a bidirectional LSTM with
GLOVE.5 With Dutch as a test language, the se-
quence and token classifier achieve their best result

5No system description paper was submitted for this ap-
proach after participation in the challenge.

when trained on English, the NMT model when
trained on Dutch.

A significant result is the substantial improve-
ment of precision of the token classifier and NMT
model over the baseline, even though the recall for
English as test language lags behind. For French,
the recall could be improved with the NMT model
and matched by the token classifier when trained
on English. Interestingly, the sequence classifier
achieves a remarkable improvement on recall, how-
ever, lags behind on precision for all settings.

This can be explained by the fact that we perform
undersampling of the negative samples to match
the number of positive samples, a strategy adopted
from Hazem et al. (2020) to obtain comparable
results. If undersampling is reduced, the precision
and recall scores are more balanced and closer to
the performance of the token classifier, however,
training time is considerably increased. Another
reason for the higher number of extracted phrases
by the sequence classifier compared to the other
models is that it can extract multi-word terms as
well as words which are part of these multi-word
terms separately, since both are used as input in the
form of potential term candidate n-grams.

All three models show remarkable zero-shot
transfer learning capabilities, i.e., they are trained
on one language and show strong test scores on an-
other. This is especially true for the token classifier,
where models trained on a single language often
outperform those trained on all three languages.
This transfer learning ability across languages can
also be observed in the overall highest F1 scores
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for the English test set, which was achieved by a
model trained on Dutch, and for the French test set,
which was achieved by a model trained on English.

7.2 Results on ACLR2
In addition to evaluating our models on the AC-
TER dataset, we compared the two best perform-
ing architectures, i.e., the token classifier and the
NMT model, on the ACLR2 dataset. Both models
achieve similar test scores as reported in Table 5
and higher than the scores achieved on the ACTER
dataset. As with the ACTER dataset, we addition-
ally report validation performance of the best per-
forming token classifier model in Table 4, which is
in line with the test performance.

Data Token Classifier NMT
Prec Rec F1 Prec Rec F1

An.1 74.4 77.2 75.8 73.2 77.2 75.2
An.2 80.1 79.3. 80.0 79.4 80.7 80.0

Table 5: Test set results of token classifier on data from
Annotator 1 and 2 of the ACLR2 dataset.

7.3 Term-based Analysis
A qualitative analysis of the lists of false positives
and false negatives based on the ACTER dataset
demonstrated that all models handle acronyms
well. This may be due to the text type in AC-
TER, which is partially based on scientific abstracts
that frequently introduce acronyms in brackets. If
acronyms are part of the term, e.g. “LV strain
rate”, there was a high number of false negatives in
both models. Moreover, false negatives occurred
in all models if a term included a proper name and
an apostrophe, e.g. “Chaga’s disease” or “Cron-
bach’s α”, or frequently if it included a figure,
e.g. “p38alpha” or “6-min walk test”. In addition,
named entities that included version numbers or
consisted of multiple words often resulted in false
negatives, e.g. “Self-Care of Heart Failure Index
Version 6.2”, “Multicenter Automatic Defibrilla-
tor Implantation Trial-Cardiac Resynchronization
Therapy”. In the token classifier and NMT model,
the class of named entities of cities, e.g. “New
York” and “Seattle”, were frequently not identified
as terms. False negatives also occurred in all mod-
els if it was a particularly long multi-word term,
e.g. “resynchronization reverses remodeling in sys-
tolic left ventricular dysfunction”. A tendency by
the token classifier to split longer terms could be
observed, e.g. splitting adjectives and nouns.

To quantitatively evaluate how well the different
model types handled terms of different lengths, we
computed the F1 scores individually for terms of
a specific length, based on the terms in the AC-
TER test set. The results in Table 6 were com-
puted using the best model of each method, i.e.,
the model trained in English for the token and the
sequence classifier and the model trained on all
language for the NMT model. We can see that
the scores of all models decrease with term length.
Secondly, we observer that for English and Dutch
the token classifier has the strongest results for
all term lengths. However, for French the token
classifier scores strongly decrease for multi-word
terms, even though it is still the best model for
unigrams. This is due to a very low recall, e.g.
for 4-grams and higher the token classifier recalls
only 7% of all French terms. The NMT model
shows more consistency between languages, thus,
performing strongest for French multi-word terms.
As already the case with the overall scores the se-
quence classifier shows the highest recall values
for both single-word and multi-word terms, how-
ever, lagging behind in precision, which leads to
an overall lower F1 score.

Furthermore, based on the ACTER term type
annotation (see Section 4), we could compare the
types of terms extracted by the individual models.
As can be seen in Fig. 1, the models all achieve
a very similar distribution of extracted term types
when compared to the gold test set distribution. We
can observe, however, that the sequence classifier
showed a slight tendency to extract more common
and OOD terms and noticeably less NEs than the
other models. All models tended to extract more
specific terms, with the token classifier and the
NMT model interestingly extracting comparatively
few OOD terms.

Figure 1: Distribution of term types across languages
in the models’ true positives and the ACTER gold test
dataset.
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Term Length Sequence Classifier (F1) Token Classifier (F1) NMT (F1)
EN FR NL EN FR NL EN FR NL

Unigram 61.6 61.2 68.0 63.3 69.1 73.8 61.7 61.8 70.4
Bigram 38.0 41.0 39.8 55.9 43.0 58.4 52.2 57.6 56.3
Trigram 37.0 35.4 40.4 55.4 31.3 49.1 51.6 52.4 47.7
≥ 4-gram 32.2 22.6 30.3 44.3 12.2 42.9 43.4 33.4 38.8

Table 6: F1 Scores based on different term lengths using the overall best model for each method on the ACTER
dataset. In bold the best scores per row for each language.

7.4 Training Time Efficiency

Looking at the epochs required to reach the best
score on the ACTER validation set, we can ob-
serve that in most cases the token classifier model
requires not even a single training epoch. Train-
ing with the English dataset required 300 steps
with a full epoch consisting of 432 steps. The
model trained on French was the only model with
its best performance being reached during the sec-
ond epoch after 700 steps while a full epoch con-
sists of 437 steps. The model trained on Dutch
performed best after 400 steps while one epoch
takes 553 steps. The multilingual model converged
the quickest needing only 200 steps whereas a full
epoch consists of 1,421 steps. The token classifier
models trained on the ACLR2 dataset need more
epochs and achieve their highest scores after 3 and
5 epochs respectively. However, due to the lower
training set size of the ACLR2 corpus, this also
corresponds to less than 500 steps, thus, being sim-
ilar with the training times reported for the models
trained on the ACTER data. In comparison, the
sequence classifier achieved its best performances
on the ACTER validation set after 4 epochs of train-
ing.

The NMT model also required several epochs
to reach the best performance. Initially, all models
were trained for 80 epochs, with the model hav-
ing the lowest validation loss being loaded at the
end. The models trained on monolingual data ben-
efited from longer training compared to the models
trained on the combined multilingual data. For
completeness, we report the training epochs, label
smoothed cross entropy loss, and log perplexity
on the validation set for the best models. For the
English dataset the reported score was achieved
at epoch 49 with a loss of 5.82 and perplexity of
3.94. For the French dataset peak performance was
reached at epoch 40, with a loss of 5.82 and per-
plexity of 3.78. Like the French model, the Dutch
model achieved its best performance at epoch 40

Model Train Time Val Time GPU
Seq. 19 44 P100
Tok. 9 1 P100
NMT 49 2 V100

Table 7: Training/validation times in minutes on the
English ACTER data and GPUs used.

having a loss of 5.69 and a perplexity of 3.37.
When trained on one language, model performance
was observed to drop for unseen languages when
training beyond the best validation score. For in-
stance, while the English model at epoch 49 ob-
tained F1 scores of 53.2%, 54.4%, 55.4% for the
English, French, and Dutch test data respectively,
at epoch 80 these scores were at 53.6%, 50.6% and
52.1% respectively, gaining little for English and
losing for unseen languages. Finally, for the multi-
lingual dataset the model reached the reported peak
performance already at epoch 22 as it trains on a
lot more data per single epoch. Loss and perplexity
were at 5.50 and 2.89 respectively. The training
and validation times as well as the used GPUs are
reported in Table 7. Training times denotes the full
training time over all epochs without any valida-
tions. Validation time denotes the time for a single
validation. The token classifier is the most efficient.

8 Discussion

Although the ACLR2 dataset is smaller in size than
the ACTER dataset, the resulting F1 scores are
considerably higher. Apart from the fact that it
only covers a single domain, ACLR2 already pro-
vides inline annotations and more consistent term
annotations, which seems to facilitate learning the
task. Inconsistencies in the ACTER annotations
were mainly noted when analyzing false positives
of the models. For instance, “patient” is considered
a common term in the heart-failure domain, but
“serum” is not annotated at all, although in our view
it would also qualify as common term.
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We also noted that more training data does not
necessarily increase model performance. As indi-
cated by the training times on the ACTER dataset,
the token classifier achieved its best evaluation
scores long before training for a whole epoch, i.e.,
having seen only a small fraction of the available
data before reaching its strongest performance.

In this paper we compare the performance of a
pretrained monolingual language model baseline
with pretrained multilingual language models. Pre-
vious work indicates that monolingual language
models like RoBERTa or CamemBERT outperform
multilingual language models on tasks posed in a
single language (Rönnqvist et al., 2019). The dif-
ference increases the higher the complexity of the
given task but is negligible on simple tasks that
mostly rely on syntactic features. Since in our
case the multilingual model XLM-R in form of a
sequence classifier performs very similar to the se-
quence classifier-based RoBERTa model winning
TermEval 2020, it indicates that successful ATE
does not require very strong language understand-
ing but corresponds more to simpler tasks relying
mostly on syntactic features. Nevertheless, the
remarkable zero-shot transfer learning of the mul-
tilingual models fine-tuned on a single language
would also suggest that the multilingual pretraining
might aid the model in defining what a term is, as
highly domain-specific terms might be similar be-
tween languages tested, e.g. rooted in Latin. In the
NMT output analysis, we found that the knowledge
transfer between languages could cause curious
side-effects, where at times terms are predicted by
the model in a semi-translated way. For instance,
when training on English the model would at times
invent “toxicity cardiaque ” for the French test set
instead of extracting “toxicité cardiaque”.

Besides stronger performance, the NMT model
as well as the token classifier have a higher poten-
tial to better handle the possible extension of the
term extraction task to include discontinuous en-
tities, which, however, are so far not annotated in
the datasets we used. An example of a discontinu-
ous entity can be found in the expression “left and
right ventricular failure”, where “right ventricular
failure” but also “left ventricular failure” are terms,
the latter not being continuous in the original ex-
pression. While the NMT model does not require
any special adaptations to deal with such an addi-
tion, the sequence classifier would have to consider
many more n-gram combinations leading again to

even higher training and inference times per sen-
tence. To consider discontinuous entities with the
token classifiers labels, the annotation and training
process would have to be adapted to a multi-label
token classification, e.g. the above phrase would
be labeled as [B-T, n, n, T, T] and [n, n, B-T, T,
T]. Since in the first label “ventricular” and “fail-
ure” are labeled as “T” they still clearly belong to
the word “left” labeled as “B-T”, which could be
considered in a post processing step.

9 Conclusion

In this paper, we adapt and evaluate three
transformer-based models on the task of ATE,
building on pretrained multilingual language and
NMT models. In this evaluation, these multilin-
gual models outperform a baseline of monolingual
language models and show remarkable zero-shot
abilities. A token classification strategy building on
a language model achieved the best performance,
however, the NMT-based model seemed to be able
to handle multi-word expressions more consistently
across languages and not lag far behind in per-
formance. One aspect that became very clear is
a prevalence for quality over quantity when fine-
tuning pretrained models to the task of ATE.

Recently, both NMT and masked language mod-
els show a trend towards increased input sequence
capacity. Thus, it would be interesting to evalu-
ate the impact of context length on the proposed
models by testing with more domain context than
only single sentences. Furthermore, to test the abil-
ity of the token classifier and the NMT model to
handle discontinuous terms, such as elliptical ex-
pressions, a dataset containing and annotating such
terms would be interesting.
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Impact Statement

Automatically extracting domain-specific terms
across domains and languages with high accuracy
provides a valuable means to reduce time and re-
source effort in creating terminological resources.
Such resources are important to ensure termino-
logical consistency in specialized communication,
such as communication between different groups
in times of crisis, and to avoid misunderstandings.

From a technological perspective, we introduce
multilingual pretrained language models to the field
of Automated Term Extraction (ATE) with detailed
tests on three different transformer-based models
across four domains and three languages. Since
these models support considerably more languages
than tested, the approach can be transferred to other
languages. This transfer capability has been tested
by training in a specific language and then testing
models in another language. Transfer capabilities
extend to domains, since we trained and validated
on three domains and achieved results strongly out-
performing previous approaches on a previously un-
seen test domain. Up to this point, such flexibility
has been achieved by statistical approaches, how-
ever, with considerably lower results in precision
and recall. In contrast to previous ATE methods
performing on corpora, our models extract terms
on sentence level. This makes ATE more flexible
since neither large domain-specific nor reference
corpora are required.

From a societal perspective, terminological in-
consistencies are a major source of misunderstand-
ing in the communication among experts, between
experts and laypersons, and between laypersons
in reference to a specialized domain. This issue
can be mitigated by publishing agreed upon desig-
nations for real-world phenomena in a specialized
domain that can be consulted for domain-specific
communication. However, manually preparing a
collection of natural language terms is extremely
human resource- and time-intensive. We reduce
this workload for governmental institutions, pri-
vate and public organizations, and private persons
by providing a method to automate the detection
of such domain-specific terms in natural language
texts across languages and domains.

In terms of risk, such a highly flexible solution
to automated term extraction fully depends on the
quality of the input text. Misleading, erroneous, or
biased contents will inevitably be propagated to the
resulting terminologies. Relying on terminologies

extracted from such problematic contents can nega-
tively impact specialized communication or conclu-
sions drawn from it. Thus, it is of vital importance
for any user of this approach to mitigate the uncer-
tainty of the reliability of extracted terms by only
considering high-quality and reliable sources in the
term extraction process and have domain experts
carefully review the outcome prior to utilizing it
in communication. We cannot guarantee that in
a real-life setting all important terms have been
extracted and all extracted terms are indeed cen-
tral to the domain at hand. Furthermore, training
neural network models is a process known to leave
an environmental footprint, which we try to miti-
gate by fine-tuning pretrained models. Fine-tuning
is less resource- and time-intensive than training
from scratch, but still requires high-performance
computing clusters.
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A Appendix

For further comparability, we provide results of
15 prior term extraction methods provided by the
ATR4S toolkit (Astrakhantsev, 2018). All methods
provided by ATR4S are re-ranking methods based
on a previous term candidate extraction process.

Table A1 shows the results of ATR4S on the
ACTER heart-failure domain in English. While
some methods achieve good precision, most meth-
ods show precision scores below our best models,
even at only 100 terms extracted. Increasing the
manually specified amount of k terms to extract
results in a decrease of precision in favor of recall.
The scores of the different methods level out to-
wards the maximum of 2,000 terms extracted. The
best F1 score is achieved by the DomainPertinence
method at 2,000 terms extracted with an F1 score
of 30.32%.

Table A2 shows the results of ATR4S on our
ACLR2 test splits. One major drawback of prior
methods is the required corpus size. The small test
set in ACLR2 does not provide enough data for
many of the statistical approaches or in fact the re-
ranking to be effective at all after a certain amount
of terms extracted. For the smaller Annotator 1
test set, we can observe virtually identical scores
between all methods from 300 extracted terms on-
wards. For Annotator 2, this phenomena can be
observed at 400 extracted terms. Best overall re-
sults are an F1 score of 21.83% for Weirdness at
200 terms extracted on the Annotator 1 test set
and and F1 Score of 18.28% for Weirdness, PU
and DomainPertinence at 300 terms extracted on
the Annotator 2 test set. In comparison, our best
models achieve an F1 score of over 75% for both
Annotators.
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ACTER: heart-failure EN (ATR4S)
Method Top 100 Top 500 Top 1000 Top 2000

Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1
AvgTermFrequency 55.0 2.13 4.1 41.4 8.01 13.42 35.2 13.62 19.64 30.8 23.83 26.87
Basic 48.0 1.86 3.58 36.0 6.96 11.67 32.9 12.73 18.35 29.7 22.98 25.91
ComboBasic 48.0 1.86 3.58 36.0 6.96 11.67 31.9 12.34 17.8 29.7 22.98 25.91
CValue 54.0 2.09 4.02 39.6 7.66 12.84 33.7 13.04 18.8 32.1 24.84 28.0
DomainPertinence 58.0 2.24 4.32 46.8 9.05 15.17 35.8 13.85 19.97 34.75 26.89 30.32
KeyConceptRelatedness 81.0 3.13 6.03 59.4 11.49 19.25 42.5 16.44 23.71 31.1 24.06 27.13
LinkProbability 83.0 3.21 6.18 73.0 14.12 23.66 52.8 20.43 29.46 31.85 24.64 27.79
NovelTopicModel 49.0 1.9 3.65 39.8 7.7 12.9 34.9 13.5 19.47 29.95 23.17 26.13
PostRankDC 31.0 1.2 2.31 37.6 7.27 12.19 35.0 13.54 19.53 30.3 23.44 26.43
PU 61.0 2.36 4.54 46.2 8.94 14.98 38.3 14.82 21.37 34.65 26.81 30.23
Relevance 52.0 2.01 3.87 47.0 9.09 15.24 37.6 14.55 20.98 34.45 26.65 30.05
ResidualIDF 54.0 2.09 4.02 41.4 8.01 13.42 32.6 12.61 18.19 31.0 23.98 27.04
TotalTFIDF 31.0 1.2 2.31 39.8 7.7 12.9 36.7 14.2 20.47 31.05 24.02 27.09
Voting 62.0 2.4 4.62 57.0 11.03 18.48 48.7 18.84 27.17 34.5 26.69 30.1
Weirdness 31.0 1.2 2.31 38.0 7.35 12.32 37.4 14.47 20.86 31.65 24.49 27.61

Table A1: Precision, recall and F1 @ top k terms extracted of prior methods (ATR4S) on the English heart-failure
domain texts of ACTER. Best three results per top k marked in bold.

ACL RD-TEC 2.0: Annotator 1 (ATR4S)
Method Top 100 Top 200 Top 300 Top 400

Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1
AvgTermFrequency 36.0 7.53 12.46 29.0 12.13 17.11 28.73 16.53 20.98 28.73 16.53 20.98
Basic 40.0 8.37 13.84 36.0 15.06 21.24 28.73 16.53 20.98 28.73 16.53 20.98
ComboBasic 40.0 8.37 13.84 36.0 15.06 21.24 28.73 16.53 20.98 28.73 16.53 20.98
CValue 47.0 9.83 16.26 34.5 14.44 20.35 28.73 16.53 20.98 28.73 16.53 20.98
DomainPertinence 46.0 9.62 15.92 35.5 14.85 20.94 28.73 16.53 20.98 28.73 16.53 20.98
KeyConceptRelatedness 38.0 7.95 13.15 28.0 11.72 16.52 28.73 16.53 20.98 28.73 16.53 20.98
LinkProbability 40.0 8.37 13.84 29.0 12.13 17.11 28.73 16.53 20.98 28.73 16.53 20.98
NovelTopicModel 42.0 8.79 14.53 34.0 14.23 20.06 28.73 16.53 20.98 28.73 16.53 20.98
PostRankDC 43.0 9.0 14.88 36.0 15.06 21.24 28.73 16.53 20.98 28.73 16.53 20.98
PU 43.0 9.0 14.88 33.5 14.02 19.76 28.73 16.53 20.98 28.73 16.53 20.98
Relevance 46.0 9.62 15.92 35.5 14.85 20.94 28.73 16.53 20.98 28.73 16.53 20.98
ResidualIDF 36.0 7.53 12.46 29.0 12.13 17.11 28.73 16.53 20.98 28.73 16.53 20.98
TotalTFIDF 23.0 4.81 7.96 23.5 9.83 13.86 28.73 16.53 20.98 28.73 16.53 20.98
Voting 47.0 9.83 16.26 32.0 13.39 18.88 28.73 16.53 20.98 28.73 16.53 20.98
Weirdness 38.0 7.95 13.15 37.0 15.48 21.83 28.73 16.53 20.98 28.73 16.53 20.98

ACL RD-TEC 2.0: Annotator 2 (ATR4S)
Method Top 100 Top 200 Top 300 Top 400

Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1
AvgTermFrequency 36.0 5.34 9.3 28.0 8.31 12.81 26.33 11.72 16.22 27.44 13.35 17.96
Basic 40.0 5.93 10.34 34.5 10.24 15.79 27.67 12.31 17.04 27.44 13.35 17.96
ComboBasic 40.0 5.93 10.34 34.5 10.24 15.79 27.67 12.31 17.04 27.44 13.35 17.96
CValue 44.0 6.53 11.37 34.0 10.09 15.56 29.0 12.91 17.86 27.44 13.35 17.96
DomainPertinence 38.0 5.64 9.82 37.0 10.98 16.93 29.67 13.2 18.28 27.44 13.35 17.96
KeyConceptRelatedness 35.0 5.19 9.04 31.0 9.2 14.19 27.33 12.17 16.84 27.44 13.35 17.96
LinkProbability 39.0 5.79 10.08 30.0 8.9 13.73 27.67 12.31 17.04 27.44 13.35 17.96
NovelTopicModel 39.0 5.79 10.08 34.5 10.24 15.79 27.67 12.31 17.04 27.44 13.35 17.96
PostRankDC 42.0 6.23 10.85 34.5 10.24 15.79 27.67 12.31 17.04 27.44 13.35 17.96
PU 42.0 6.23 10.85 34.0 10.09 15.56 28.0 12.46 17.25 27.44 13.35 17.96
Relevance 38.0 5.64 9.82 37.0 10.98 16.93 29.67 13.2 18.28 27.44 13.35 17.96
ResidualIDF 36.0 5.34 9.3 28.0 8.31 12.81 26.67 11.87 16.43 27.44 13.35 17.96
TotalTFIDF 19.0 2.82 4.91 24.0 7.12 10.98 26.33 11.72 16.22 27.44 13.35 17.96
Voting 46.0 6.82 11.89 36.0 10.68 16.48 29.0 12.91 17.86 27.44 13.35 17.96
Weirdness 38.0 5.64 9.82 29.5 8.75 13.5 29.67 13.2 18.28 27.44 13.35 17.96

Table A2: Precision, recall and F1 @ top k terms extracted of prior methods (ATR4S) on test split of ACLR2. Best
result per top k marked in bold.




