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Abstract

Pre-trained language models induce dense
entity representations that offer strong per-
formance on entity-centric NLP tasks, but
such representations are not immediately inter-
pretable. This can be a barrier to model uptake
in important domains such as biomedicine.
There has been recent work on general in-
terpretable representation learning (Onoe and
Durrett, 2020), but these domain-agnostic rep-
resentations do not readily transfer to the im-
portant domain of biomedicine. In this paper,
we create a new entity type system and train-
ing set from a large corpus of biomedical texts
by mapping entities to concepts in a medical
ontology, and from these to Wikipedia pages
whose categories are our types. From this map-
ping we derive Biomedical Interpretable En-
tity Representations (BIERs), in which dimen-
sions correspond to fine-grained entity types,
and values are predicted probabilities that a
given entity is of the corresponding type. We
propose a novel method that exploits BIER’s
final sparse and intermediate dense representa-
tions to facilitate model and entity type debug-
ging. We show that BIERs achieve strong per-
formance in biomedical tasks including named
entity disambiguation and entity label classifi-
cation, and we provide error analysis to high-
light the utility of their interpretability, partic-
ularly in low-supervision settings. Finally, we
provide our induced 68K biomedical type sys-
tem, the corresponding 37 million triples of de-
rived data used to train BIER models and our
best performing model.

1 Introduction

In modern NLP systems, entities are embedded in
the same dense vector space as words using vec-
tors from pre-trained (masked) language models
(Devlin et al., 2019) that yield contextualized em-
beddings of tokens. These representations are used
as inputs for downstream models built for particular

tasks. One issue with such learned representations
is that we do not actually know what information
they encode. Recent work has shown that deep
pre-trained models implicitly learn factual knowl-
edge about entities (Petroni et al., 2019; Roberts
et al., 2020), but the embeddings that they provide
do not explicitly maintain representations of this
knowledge (i.e., the dimensions in learned represen-
tations have no a priori semantics); consequently,
are not directly interpretable. This has motivated
the design of knowledge probing tasks to measure a
factual knowledge implicit in embeddings (Petroni
et al., 2019; Poerner et al., 2019).

Recent work (Onoe and Durrett, 2020) has pro-
posed learning interpretable entity representations
using an entity typing model and corresponding
fine-grained type system that accepts an entity men-
tion and its context. The output represents a high-
dimensional sparse embedding whose values cor-
respond to the model’s (independently) predicted
probabilities that the entity possesses the respective
properties defined by the fine-grained type system.

This past work proposed general domain pre-
trained Transformer-based (Vaswani et al., 2017)
entity typing models trained on Wikipedia or the
ultra-fine entity typing system (Choi et al., 2018),
yielding 60k and 10k dimensional embeddings, re-
spectively, which can then be used directly in down-
stream tasks. Such representations can achieve
strong results without learning task specific rep-
resentations. Thus, in addition to providing inter-
pretability, such representations may be particularly
useful for tasks with limited supervision.

Such interpretable entity representations for text
can be valuable in domains such as biomedicine,
because they afford model transparency which may
help with model debugging, or simply to instill
confidence in model outputs. For example, if one
defines a linear layer on top of entity-type repre-
sentations, learned coefficients are interpretable as
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weights assigned to specific entity types. One could
debug an incorrect prediction by inspecting the
induced representation for potentially erroneous
types assigned to it. This sort of insight is par-
ticularly important in biomedical NLP, given the
potential sensitivity of the tasks in the domain, and
the high-level expertise of the ‘end-users’.

Motivated by these observations, we extend
(Onoe and Durrett, 2020) to learn sparse Biomedi-
cal Interpretable Entity Representations (BIERs) in
which values encode predicted probabilities of an
entity belonging to a type from a fine-grained entity
type system. Starting from a corpus of PubMed1

articles on cancer and drugs as our training data, we
induce an entity type system by mapping entities
in the articles to their associated UMLS concepts,
and then mapping the concepts to Wikipedia pages
whose categories we use as our types.

We show that learning a typing model on top
of such a system realizes strong performance on a
variety of biomedical tasks including named entity
disambiguation (NED) and entity label classifica-
tion using simple cosine similarity or Euclidean
distance based methods, and we provide an analy-
sis of the results from an interpretabilty perspective.
In addition, we propose a simple technique that fa-
cilitates debugging and provides a mechanism by
which to improve model performance by exploiting
both the proposed sparse interpretable type repre-
sentations and their internal underlying dense coun-
terparts. Finally, we introduce and release a new
medical-centric Wikipedia dataset based on (Rosen-
thal et al., 2019) for use in the task of biomedical
NED.

Our specific contributions2 are as follows:

• We create (and will release) a biomedical en-
tity typing system comprising Wikipedia Cate-
gories from pages mapped to UMLS concepts
linked to PubMed article entities and learn a
model that produces sparse entity representa-
tions in which dimensions are imbued with
known semantics. We show that these achieve
strong performance on biomedical NED and
entity label classification tasks.

• We conduct an interpretability analysis and
demonstrate a new debugging method that

1A repository of biomedical literature: http://www.
pubmed.gov/.

2Code and datasets available at http://github.
com/diegoolano/biomedical_interpretable_
entity_representations

CLS

Dot

Sig.
Embedding 
Model

mention context

Mention and Context
Encoder (PubMedBERT) 

1    2                        ……                  68,304 

68k Type
Embeddings 

Figure 1: Model architecture from (Onoe and Durrett,
2019) using our 68k biomedical entity type system. A
BERT based encoder embeds a mention and context
and the output entity embedding contains probabilities
for each type.

uses the proposed representation’s perfor-
mance on downstream tasks to gain insights
into the entity typing model and system.

• We release a medical literature centric
Wikipedia dataset for use in the task of
biomedical NED.

2 Background: Interpretable Entity
Model

We first review the interpretable entity model archi-
tecture we extend from (Onoe and Durrett, 2020).

Let s = (w1, ..., wN ) denote a sequence of in-
put context words, m = (wi, ..., wj) denote an
entity mention span in s, and t ∈ [0, 1]|T | denote
a vector whose values are predicted probabilities
corresponding to fine-grained entity types T from
a predefined type system with higher values identi-
fying types most pertaining to m and s .

Given a labeled dataset D =
{(m, s, t∗)(1), ..., (m, s, t∗)(k)} the objective
is to learn parameters θ of a function fθ that maps
the mention m and its context s to a vector t that
captures salient features of the entity mention
within its context. The basic idea is that the

http://www.pubmed.gov/
http://www.pubmed.gov/
http://github.com/diegoolano/biomedical_interpretable_entity_representations
http://github.com/diegoolano/biomedical_interpretable_entity_representations
http://github.com/diegoolano/biomedical_interpretable_entity_representations
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resultant entity embeddings t (wherein individual
dimensions have explicit semantics) can be used
as embeddings in downstream tasks, for example
by using basic similarity measures such as dot
products or cosine similarities.3

The simple model fθ that produces these em-
beddings is shown in Figure 1. First, a BERT-
based encoder (Devlin et al., 2019) maps inputs
m and s to an intermediate dense vector repre-
sentation. Specifically, the encoder takes as in-
put a token sequence formatted as x = [CLS]m
[SEP] s [SEP], where the mention m and con-
text s are segmented into WordPiece tokens (Wu
et al., 2016). The hidden vector output correspond-
ing to the [CLS] token can be treated as the inter-
mediate dense mention and context representation:
h[CLS] = BERTENCODER(x).

A type embedding layer then projects this inter-
mediate representation to a vector whose dimen-
sions correspond to the entity types T using a sin-
gle linear layer whose parameters may be viewed
as a matrix of type embeddings E ∈ R|T |×d, where
d is the dimension of the mention and context rep-
resentation h[CLS]. Finally, we apply a sigmoid
function to each unnormalized score in the vector
to obtain the predicted probabilities that form our
entity representation t (top of Figure 1). We ob-
tain these output probabilities t by multiplying E
by h[CLS], followed by an element-wise sigmoid
function: t = σ (E · h[CLS])

Following Choi et al. (2018), the training loss we
minimize is a sum of binary cross-entropy losses
over all entity types T over all training examples
D. That is, we treat each type prediction for each
example as an independent binary decision, with
shared parameters in the BERT encoder. Our loss
L is:

−
∑
i

∑
j

t∗ij · log(tij) + (1− t∗ij) · log(1− tij),

where i are the data indices, j are indices over
types, tij is the jth component of ti, and t∗ij is
the jth component of ti∗ that takes the value 1 if
the jth type applies to the current entity mention.
We fine-tune all parameters in BERT and the type
embedding matrix.

3Fine-tuning the representations would destroy their inter-
pretability.
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Figure 2: Biomedical Entity Type System and dataset
construction. Appendix Fig 4 contains example output.

3 Biomedical Interpretable Entity
Representations

Biomedical Entity Typing To train an inter-
pretable entity embedding model tailored specifi-
cally for biomedical tasks, we must first construct a
suitable biomedical entity type system and dataset.
PubMed indexes over 30 million biomedical cita-
tions across a wide range of topics. To curate a
topically focused set of literature, we first used the
PubTator tool (Wei et al., 2019) to query PubMed
for articles related to drugs used as treatment for
cancer; this yielded 461,404 unique citations (titles
and abstracts).4

We used an off the shelf NER tagger available in
SciSpacy (Neumann et al., 2019) to identify en-
tity spans within abstracts, and used the Entity
Linker component to link those entities to con-
cept unique IDs (CUIDs) within the Unified Medi-
cal Language System (UMLS) ontology5.

Next we had to decide on the specific entity type
system to use, i.e., the set of labels to attach to
entities, and chose Wikipedia as our knowledge
base. We used this general knowledge base instead
of a specialized ontology (for example, MeSH
or SNOWMED CT) primarily because it yielded
(many) more diverse entity types per mention, com-
paratively.

To connect UMLS concepts to Wikpedia pages

4We selected the topic of cancer because our work is mo-
tivated by a larger project aimed at finding existing evidence
that supports repurposing generic drugs for cancer.

5UMLS defines around 3 million concepts from a com-
bined 200 source ontologies. Concepts may be identified as
having one or more of 127 semantic types which can be used
to place them into groupings such as diseases or drugs.
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we use the mapping from Cuzzola et al. (2018),
which is accurate but incomplete: It provides ex-
act wikipage matches for 221,690 concepts and
“close matches” for 26,276 of them, out of a possi-
ble 3 million concepts in UMLS. For concepts for
which no exact or close match was found, we used
SLING (Ringgaard et al., 2017), a framework for
frame semantic parsing which allows for querying
and resolving wikipages given a search string (in
our case, mention surface forms). For high confi-
dence exact or close matches, we return the set of
categories found for their combined results. While
these results can be slightly noisy, they mostly lead
to satisfactory performance.

We filter the entity mentions that compose our
final set, as follows. If multiple concept CUIDs
are found for a given entity, we include the highest
scoring matches within two points of each other
provided they all exceed a minimum score thresh-
old of 0.8;6 Additionally, we only include results
that are linked to at least one concept CUID and
where an associated Wiki link was mapped to di-
rectly via Cuzzola et al. (2018) or via SLING. A
schematic of this process is shown in Figure 2. An
example working through the entity filtering pro-
cess is shown in the text of Appendix A. In the
end about 12.5% of the mappings from PubMed
mentions to Wikipedia categories come via SLING.

After processing, linking and filtering the cor-
pus of PubMed abstracts, we were able to extract
37,357,141 triples of the form (mention, context,
[list of categories]). This list of triples contains
68,304 unique categories which we use as the en-
tity type system for training BIERs. Appendix 8
contains a list of the top 100 entity types that ap-
pear over these articles and Appendix 5 shows a
histogram of entity types per mention. As one con-
tribution, we will release this set of derived triples.

To assess the quality of this dataset, we chose
500 triples at random and asked 4 experts (re-
searchers in biomedicine and ML) to score them on
a Likert scale from 1 (low) to 5 (high) for accuracy.
Experts assessed how well a PubMed mention from
a context sentence maps onto a Wikipedia URL. Av-
erage expert scores for the triples were [4.01, 4.13,
4.18, 4.20] (overall mean of 4.13) out of 5. The
Fleiss-Kappa score which measures inter-annotator
agreement was strong at .69. Additionally 77%
of scores are >= 4, and for 93% of the examples

6This is the default threshhold set in SciSpacy for con-
cept candidate inclusion.

at least 3/4 experts agree (73% have unanimous
agreement).

BIER entity typing model training and test re-
sults We split our derived dataset of biomedical
triples into train, validation, and test sets of sizes
31,340,000, 376,071, and 5,641,070, respectively.
For comparison, the total data size used by Onoe
and Durrett (2020) is 6.1 million and based on the
most popular categories of Wikipedia whereas ours
only uses categories on pages linked to UMLS.

We trained different BIER models using vari-
ants of BERT as an encoder for mentions and con-
texts. Specifically we considered BioBERT (Lee
et al., 2019), SciBERT (Beltagy et al., 2019) and
BLURB (Gu et al., 2020) (we will refer to this as
PubMedBERT), which constitute the current state
of the art for many biomedical tasks.We compute
entity typing macro F1 using development exam-
ples to check model convergence and use the hy-
perparameters from Onoe and Durrett (2020).

Debugging BIERs by combining dense and
sparse embeddings We propose a technique for
debugging using BIER representations that is in
part inspired by prior work that used interme-
diate layer representations of training examples
as additional features (Papernot and McDaniel,
2018). Specifically, we propose to debug BIER
performance on downstream tasks by examining
instances where dense and sparse representations
yield different outputs. For each example, BIER
models produce an intermediate dense h[CLS] and
interpretable sparse output embeddings t (red and
purple, respectively, in Figure 1). We will refer to
the two seperate models which use these dense and
sparse BIERs embeddings for downstream tasks as
BIERDense and BIERSparse respectively.

After performing inference initially, we gather
all test examples where the BIERDense makes
a correct prediction but BIERSparse does not
and we place their mention values into a set Z .
Additionally, as a diagnostic measure, we con-
sider an ‘oracle’ approach in which we use the
BIERDense prediction for all instances in Z , and
the BIERSparse output otherwise. The intuition
is that Z contains examples for which the interme-
diate dense embeddings better represent a mention-
context than the more interpretable sparse output
embeddings from the BIER model.

Because the sparse embeddings are interpretable,
this analysis affords fine-grained analysis of which
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Dataset Mentions Abstracts Type Sets

MedMentions 350K 4.3K-PubMed gold no
BIERs* 37M 460K-PubMed silver no
ClinWikiNED* 10K 35K-Wiki silver yes

Table 1: Comparison of BioMed Linked Datasets.
BIERs and ClinicalWikiNED datasets described in Sec-
tion 3 and 4.1 respectivtely

entity types lead to incorrect predictions by the
sparse model (but correct predictions using a dense
representation). This diagnostic can be used as
a benchmark for how well the model could have
done had the entity typing model’s output better
represented the mention-context, or if the model
had known to fallback to using the intermediate
dense embedding; the former case might be ame-
liorated via more supervised examples or changes
to the type system while the latter could motivate
a dynamic approach to making predictions that is
a function of model confidence. We show results
and analysis using these methods in Section 5.

4 Experimental Setup

To evaluate the utility of the proposed biomedical
entity representations, we use them for the tasks
of biomedical entity label classification (ELC) and
named entity disambiguation (NED). We highlight
that these models perform well even without fine-
tuning, which is critical in low- or zero-supervision
scenarios.

4.1 NED on Biomedical Wikipedia articles

The NED task connects entity mentions in text with
real world entities in a knowledge base by disam-
biguating the true entity from a list of candidates.
We consider the local resolution setting in which
each instance features a single entity mention span
in the input text and several possible candidates
with corresponding descriptions (e.g., the first para-
graph of their Wikipedia article).

NED dataset construction While there exist
multiple biomedical named entity recognition and
linking datasets (Mohan and Li, 2019; Basaldella
et al., 2020), we did not find much in the way of
publicly available biomedical NED corpora, and
we therefore constructed a new dataset, which we
will release for use by other researchers. The
dataset is based on the set of Wikipages used by
Rosenthal et al. (2019), as relevant medical litera-
ture which consists of 34,692 medically relevant

articles under the ‘Clinical Medicine’ category 7.
We used SLING8 to process these articles and were
able to retrieve around 1.5 million training exam-
ples (mention, context, [categories]) from them.

After obtaining these examples for each en-
tity mention we used the CrossWikis dictionary
(Spitkovsky and Chang, 2012) to try to gather be-
tween 3 to 5 challenging candidate entities for the
example. This range in terms of number of candi-
dates was selected because we wanted to include
salient biomedical terms that are difficult to dis-
ambiguate; setting a higher number of potential
candidates for use with CrossWikis largely gives
general and short “popular” candidates (i.e., those
that appear often in Wikipedia). This behavior
makes sense since many biomedical terms are quite
specific and usually only have a few high quality
alternative candidates to select from. Additionally,
we filter out redirect pages and pages that no longer
match the wiki version used to create CrossWikis.

This candidate generation and data content ac-
quisition step filters out considerably the number
of available examples. We additionally subsam-
ple the dataset to reduce the instances where the
“popular” candidate is the correct entity so as to
make the task more difficult and to allow for more
rare entities to appear in our set. After all the fil-
tering, our ClinicalWikiNED dataset consists of a
train/dev/test split of size 5332, 3730, and 800 re-
spectively. Table 1 shows a comparison of the two
datasets introduced in this paper with that of one
of the largest publicly available linked biomedical
datasets(Murty et al., 2018).

Using BIERs for NED Using the BIER
architecture, we first train a separate
WikiDescription model that takes as
input a wikipage title as its mention, its first
paragraph as the context, and outputs a sparse
embedding that predicts the page’s categories.
As training data, we use any Wikipedia page
that contains categories in our biomedical entity
type system. We use 2.5 million such (title,
descriptions, [categories]) as our training data,
and we check for model convergence on a small
development set. This model is used so that
candidate embedding dimensions will align with
our BIER mention-context embeddings.

For each mention m and context s in the test
set, we use a BIER model to induce a sparse rep-

7https://en.wikipedia.org/wiki/Category:Clinical medicine
8Based on a June 1, 2020 dump of English wikipedia.
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Test Acc.

Model Dot Prod Cosine Sim

BIER-PubMedBERT (ours) 80.1 84.0
BIER-SciBERT (ours) 76.4 77.3
BIER-BioBERT (ours) 71.9 75.9

Onoe and Durrett (2020) 63.6 69.8
Popular Prior 73.9 -
PubMedBERT (Gu et al., 2020) 77.6 -
SciBERT (Beltagy et al., 2019) 77.4 -
BioBERT (Lee et al., 2019) 77.9 -

Table 2: BIER zero shot test results vs Logistic Regres-
sion Baselines trained on task data for NED task

resentation t. We then go through each candi-
date ci for the current test example and use the
WikiDescription model to retrieve the candi-
date’s sparse output embedding tci . Finally, we
compute both the cosine similarity and dot product
of t with each candidate tci and predict the can-
didate ci that achieves the highest score for each
metric as the true one.

Baseline model for NED We use the EntEval
(Chen et al., 2019) framework for our experiments
and train a logistic regression classifier using a
feature vector composed of the mention-context
embedding x1 and current candidate wiki descrip-
tion embedding x2 from the set of candidates Cm
as a concatenation of x1, x2, element-wise product,
and absolute difference: [x1, x2, x1�x2, |x1−x2|].
Both x1 and x2 are obtained via BERT based mod-
els. Training minimizes binary log loss using all
negative examples. At test time, inference com-
bines this classifier result with the prior probability
of how frequently candidates occur in Wikipedia
as follows: arg maxc∈Cm

[pprior(c)+pclassifier(c)]
to obtain the final candidate prediction. Directly
using the most likely prior as predictions yields
an accuracy of 73.9%. We emphasize that these
baselines are fine-tuned on the task data while the
BIER models only do inference on the test set.

Results Table 2 shows the results of the NED
experiments. The biomedical BIER model affords
improvements over the prior general domain inter-
pretable model (Onoe and Durrett, 2020), showing
that the biomedical type system and training is
beneficial for this type of task. In addition, the
BIER models outperform the baselines without
fine-tuning on the training data.

4.2 ELC on Cancer Genetics data

For our entity label classification task we use the
Cancer Genetics dataset (Pyysalo et al., 2013)
which consists of 10,935 training, 3,634 dev, and
6,955 test examples from 300, 100, and 200 unique
PubMed articles, respectively.9 Given an article
title and abstract, mention, and the corresponding
entity label, the objective is to predict this label
from 16 available coarse labels (see Table 7 in the
Appendix for label distribution information).

To assess how well the learned BIER represen-
tations fare against comparable baselines, we per-
form a simple nearest neighbor classification tech-
nique using the proposed BIER model variants,
the general domain model from Onoe and Durrett
(2020), and non-BIER fine-tuned pre-trained lan-
guage models as standalone encoders.

We first induce dense embeddings for all train-
ing examples by passing the mention m and con-
text s through the encoders as [CLS]m [SEP] s
[SEP], and we store the resultant contextualized
[CLS] embedding h[CLS] as our dense embed-
ding. For the BIER and Onoe and Durrett (2020)
models we also save the final sparse entity embed-
ding t.

We iterate over the test examples and similarly
induce dense representations for these htest[CLS] and
(if applicable) sparse representations ttest. We find
their nearest neighbor (under either `2 distance or
dot product similarity) from the saved training set
of embeddings, and use its label as the prediction.
We use the FAISS semantic indexer (Johnson et al.,
2017) for storing embeddings and finding nearest
neighbors quickly. We are interested in evaluating
the off-the-shelf utility of learned representations,
and, as such, we do not train or fine-tune the models
in any of these cases; rather, training examples are
used only for nearest neighbor retrieval.

That said, for completeness we also performed
additional experiments in which we do fine-tune
models on the task data, with varying amounts of
supervision; we are interested especially in low-
supervision settings. For the fine-tuning experi-
ment, we add a linear layer on top of the best per-
forming BIER and baseline models, using cross
entropy loss as our objective and fine-tuning them
for 4 epochs on the training data before performing
inference. For the low supervision regime experi-
ment, we show how the best nearest neighbor and

9In our experiments we combine the train and dev sets into
a single training set.
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Test Acc.

L2 Dist Dot Prod

Model Dense Sparse Dense Sparse

BIER-PubMedBERT 85.5 86.8 88.2 87.5
BIER-SciBERT 70.8 77.0 72.8 76.8
BIER-BioBERT 83.4 85.9 85.6 86.8

Onoe and Durrett (2020) 63.9 55.1 60.0 59.9
PubMedBERT 77.3 - 69.3 -
SciBERT 74.4 - 75.2 -
BioBERT 67.6 - 59.6 -

Table 3: Test accuracy on Cancer Genetics data using
a nearest neighbor classifier (k=1) without fine-tuning
based on sparse output or intermediate dense embed-
dings using L2 or Dot Product distance metrics.

fine-tuned models perform when givenK examples
per class for K ∈ [5, 10, 25, 50, 75, 100, 200]

Results Table 3 shows the results for our first ex-
periment, in which we use untuned representations.
We observe that the baseline language model en-
codings all perform worse than the proposed BIER
sparse and dense models, with the exception of
SciBERT, which fares better than the sparse BIER
model based on SciBERT. Additionally, we see that
BERT and Onoe and Durrett (2020) (which is based
on BERT) both perform poorly in this biomedical
task compared to the other baselines.

Importantly, we notice that the sparse inter-
pretable embedding results for our top perform-
ing models (both BIER-PubMedBERT and BIER-
BioBERT) perform near the level of their dense,
non-interpretable counterparts. In the next section
we will look at some illustrative test examples cases
along with a simple technique to leverage both the
dense and sparse embeddings that a BIER model
can give to improve performance on the task and
gain insight into where the entity type model and
system may be underperforming.

Table 4 shows the results of our fine-tuning ex-
periment. Freezing the model and allowing only the
classification layer to learn weights doesn’t allow
enough capacity for either case, while fully fine-
tuning both models gives improved performance in
both models. However because the BIER model is
no longer tied in, the interpretability component of
our representations is eliminated, a limitation left
for future work.

Figure 3 shows BIER-PubMedBERT performs
better than the fine-tuned and non-interpretable
PubMedBERT model when there are fewer than
100 examples per class ( which is the case for 6 out

Test Acc.

Model Frozen Model Fine-Tuned

BIER-PubMedBERT (ours) 68.0 96.0
PubMedBERT 36.2 96.1

Table 4: Test results on Cancer Genetics task with fine
tuning on all data whether freezing the model or not.

Figure 3: Results for the entity label classification task
under varying amounts of supervision.

of the 16 test classes in the dataset as seen in table
7 in the appendix).

5 Debugging with BIERs

One of the claimed advantages of BIERs is their
ability to facilitate model debugging. In this section
we provide illustrative examples where the inter-
pretability of the underlying representations offers
insights into model behavior and suggests avenues
for improvements.

Entity Type and Mention Analysis We illus-
trate the debugging strategy proposed in the context
of entity label classification. Recall that this entails
inspecting test examples for which the dense model
yields a correct prediction, while the sparse variant
does not (implying that the former somehow better
represents the instance). We can inspect these cases
to understand what entity types are leading to such
behavior. Appendix Table 11 and 12 enumerate
such mentions and their most probable types. We
note the inclusion of many people’s names (e.g.,
“Anthony Campbell”, “Tony Walsh”) which have
been assigned at least some incorrect types in their
sparse representations. This highlights a general
failure mode of the model: It is assigning incor-
rect types to person names, which may be causing
downstream prediction errors. This is actionable
information, as we could remedy the issue via rules,
additional, targeted supervision or by down weight-
ing probabilities given to common erroneous types
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for these mentions.
To better characterize entity type errors, we

gather the set of the 20 most probable entity types
for all mentions incorrectly predicted by the BIER
sparse model and sort types by frequency. We do
the same for those predicted correctly. The result-
ing two lists share many of the same top popular
types, but looking at relative rankings and only
displaying those that are comparatively far apart10

reveals some interesting results. Tables 9 and 10
report entity types correlated with correct and incor-
rect predictions, respectively. We emphasize this
type of analysis is only possible due to the inter-
pretable nature of the proposed BIER embeddings.

As a final illustrative debugging example, we
consider a test example mention “thyroid car-
cinomas” with label “Cancer”, along with the
predictions made by the sparse model, “thyroid”
with the incorrect label “Organ”, and the dense
model,“esophageal carcinoma” with the correct la-
bel “Cancer”. We also retrieve the first correct
prediction from the nearest neighbors of the sparse
model embedding “medullary thyroid carcinoma”
which we refer to as the counterfactual sparse pre-
diction.11 We take the dot product of the mention-
context embedding with these three prediction’s
embeddings and inspect the top types which lead to
their selection in Figure 6 in Appendix C. Both the
incorrect sparse and correct counterfactual sparse
predictions, at the surface level are quite similar to
the test mention, but have lower scores for the en-
tity type ‘thyroid cancer’ compared with the dense
prediction which gives the correct label, but is se-
mantically less similar to the test mention than the
counterfactual sparse prediction. Additionally, the
noisy type “rtt” erroneously plays more of a role in
the sparse model predictions as well.

Diagnosing task results In analyzing errors
made by the highest performing BIER dense and
sparse nearest neighbor models for the entity label
classification task, we noticed that while there was
high concurrence for correct predictions (i.e., of
the 88% true predictions made by the dense model
overall, the sparse model agreed with the predic-
tion 95% of the time), the cases where the model
predictions disagreed, but where one of them still
predicted the true label, were quite varied. In other

10We chose to highlight entity types that are farther than 50
rankings apart to have a small set to display.

11Had the mention under consideration instead mapped to
this sparse representation, the prediction would have been
different, and correct.

Test Acc.

Task Dense Sparse Combined ∆

NED 84.0 81.0 91.7 +7.7
ELC 87.5 88.2 91.9 +3.7

Table 5: Results for both tasks showing improvements
that could have been achieved by combining intermedi-
ate dense and interpretable sparse output embeddings
generated by the same BIER-PubMedBERT model.

words, the sparse model gave many correct results
on test cases when the dense model gave incorrect
ones and vice versa. Applying the diagnostic tech-
nique from Section 3, we see the classifier’s overall
performance could have improved from 88.2 to
91.9 had the model known when to utilize its inter-
mediate dense representation over its sparse output.

Similarly we applied the diagnostic technique to
the NED task and leave more details in Appendix B.
Incorporating mentions that the dense dot product
BIER model handles better than the cosine simi-
larity based sparse one does would have given an
improvement from our prior accuracy of 84.0 to
91.7. Table 5 shows the possible improvement in
task accuracies for both tasks.

6 Related Work

In this work we have introduced a predefined fine-
grained biomedical type system comprising 68k
types, explicitly tied to PubMed. Instead of using
a fixed type system, Raiman and Raiman (2018)
seek to dynamically learn a 100 dimensional type
system from a much larger general domain type
system in order to optimally disambiguate entities.

Aside from work on biomedical NLP and enti-
ties specifically, there exists a line of work on in-
terpretable word embeddings (Subramanian et al.,
2017; Faruqui et al., 2015). A common approach
here is to identify the groups of words most as-
sociated with vector components globally, some-
what akin to topic models. This differs from our
approach, which is based on an external type sys-
tem and provides immediate, instance-level inter-
pretable probabilities for each entity type. Hu et al.
(2020) proposes transforming dense to sparse rep-
resentations independent of entity typing.

Another related line of work tests a models’ abil-
ity to induce syntactic or type information by the
measuring accuracy of a probe (Peters et al., 2018;
Hewitt and Manning, 2019; Hewitt and Liang,
2019). There is significant uncertainty about how
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to calibrate such post-hoc probing results (Voita
and Titov, 2020) whereas our model’s representa-
tions are directly interpretable.

While many interesting biomedical entity repre-
sentation and linking task oriented works (Murty
et al., 2018; Vashishth et al., 2020; Mondal et al.,
2019; Sung et al., 2020; Liu et al., 2020) leverage
PubMed or UMLS for semantic type, entity syn-
onym, or self alignment purposes, our work is the
first to incorporate interpretable embeddings that
are linked to a biomedical entity type system.

7 Conclusions

We have introduced a new biomedical entity typ-
ing system and training set from a large corpus
of biomedical texts. We will release this dataset,
which comprises 37 million derived triples. Ex-
ploiting this data, we proposed Biomedical Inter-
pretable Entity Representations (BIERs), in which
dimensions correspond to fine-grained entity types,
and values are predicted probabilities that a given
entity is of the corresponding type.

Using two downstream biomedical tasks, we
showed that BIER representations yield predictive
performance that is competitive with dense (unin-
terpretable) representations, and that such repre-
sentations are particularly beneficial in zero-shot
or low-supervision settings. We also demonstrated
that BIER representations can facilitate meaningful
model debugging both at the mention and entity
type level.
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Figure 4: Example from derived Biomedical Dataset

A BIER system level specifics

To better illustrate the process of which mentions
are retained during our filtering process, Table 6
shows the 6 concepts associated with an exam-
ple mention of ”phase II clinical trial” found in
a PubMed article. We see all 6 concepts score
higher than our minimum threshold and we use
the two highest scoring matches that are within
2 points of each other: CUIDs C0282460 and
C1096779. the former C0282460 has a WikiPedia
data item Q7180990 that corresponds to the page
“wiki/Phases of clinical research” whose associ-
ated categories are “Clinical research”, “Design
of experiments”, “Life sciences”, “industry”. The
second result C1096779 has no direct WikiPedia
match and the results we get from SLING include
“Clinical trial”, “Scientific control”, “Medicine”,
“Topical medication”, “Observational study”, “Lit-
erature”. Hence for this mention and context from a
PubMed abstract, we are able to extract a (mention,
context, list of types) triple of the form (“phase II
clinical trial”, context, [“Clinical research”, “De-
sign of experiments”, “Life sciences” industry”,
“Clinical trial”, “Scientific control”, “Medicine” ....
]].

CUID Concept Name Score DBPedia

C0282460 Phase 2 Clinical Trials 0.9999 Q7180990
C1096779 Clinical Trial, Phase II 0.9999 none
C0282461 Phase 3 Clinical Trials 0.9496 Q7180990
C0920321 Phase I Clinical Trials 0.8707 Q7180990
C1096780 Clinical Trial, Phase III 0.8635 none
C0282462 Phase 4 Clinical Trials 0.8208 Q7180990

Table 6: Using an NER tagger we find 6 associated con-
cepts in UMLS for the mention “phase II clinical trial”
in a context sentence “Unraveling the molecular mech-
anism of BNC105, a phase II clinical trial vascular dis-
rupting agent, provides insights into drug design.”

Label Train + Dev
Set % ( raw )

Test Set
% ( raw )

Gene or gene product 36.98 ( 5388 ) 36.23 ( 2520 )
Cell 17.32 ( 2524 ) 15.15 ( 1054 )
Cancer 11.52 ( 1679 ) 13.30 ( 925 )
Simple chemical 10.59 ( 1543 ) 10.45 ( 727 )
Organism 8.63 ( 1258 ) 7.81 ( 543 )
Multi-tissue structure 3.80 ( 554 ) 4.36 ( 303 )
Tissue 2.77 ( 403 ) 2.73 ( 190 )
Cellular component 2.67 ( 389 ) 2.59 (180 )
Organ 1.82 ( 265 ) 2.24 ( 156 )
Organism substance 1.24 ( 181 ) 1.47 ( 102 )
Pathological formation 0.96 ( 140 ) 1.28 ( 89 )
Amino acid 0.50 ( 73 ) 0.89 ( 62 )
Immaterial anatomical

entity 0.49 ( 71 ) 0.45 ( 31 )

Organism subdivision 0.40 ( 59 ) 0.56 ( 39 )
Anatomical system 0.16 ( 24 ) 0.24 ( 17 )
Developing anatomical

structure 0.12 ( 18 ) 0.24 ( 17 )

Table 7: Cancer Genetics Dataset Label Distribution

Figure 5: Entity Types per mention on Training set for
BIER

B NED diagnostic details

For the NED task we used the BIER’s sparse em-
beddings of test mentions in their contexts and took
cosine similarity with a separate BIER model’s
sparse embeddings of candidate wiki descriptions
to make our predictions. To use the diagnostic tech-
nique we first get task predictions using the dense
embeddings from the BIER models which gives
results of 81 and 79.25 percent test accuracy us-
ing dot product and cosine similarity respectively.
Although the prior sparse cosine similarity BIER
model in this case gave a higher 84.0 percent test
accuracy, using the diagnostic technique in this
case by incorporating mentions the dense dot prod-
uct BIER model handles better would have given
an improvement in accuracy from 84.0 to 91.65.
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1-25 26-50 51-75 76-100

term w.h.o. essential medicines test (assessment) causality
ingredient psychosis drug discovery hydroxyl
disease scientific method receptor (biochemistry) adverse effect
cell (biology) oncology observational study diagnosis
rtt enzyme immunology physiology
protein human body molecular biology chemotherapy
gene psychotherapy abnormality (behavior) hepatotoxins
human medicine radioactive decay molecule
neoplasm grammatical modifier derivative (chemistry) phenotype
cancer tissue (biology) chemistry cell biology
therapy treatment and control groups health policy concepts in metaphysics
medical terminology scientific method amine concepts in epistemology
measurement coagulation peptide apoptosis
patient chemical reaction pharmaceutical sciences procedural law
chemical compound philosophy of science antigen science
surgery calcium in biology biology genetic code
nitrous oxide enzyme inhibitor algorithm empiricism
pharmaceutical drug medicinal chemistry texas family
acid research mental disorder thailand
articles containing video clips metabolism statistical hypothesis testing liver
malignancy taxonomy (biology) catalysis medical mnemonics
time cell growth allele dosage form
prothrombin time blood methyl group immune system
cognition syndrome infectious causes of cancer amino acid
drug sewage treatment database beta sheet

Table 8: Top 100 most frequent types from Biomedical Entity Type System

Incorrect
rank Entity Type Correct

rank
Relative

difference

20 tongue 76 56
24 anatomy 160 136
29 protein domain 112 83
34 organ (anatomy) 107 73
35 gland 205 170
38 phosphatase 140 102
43 surgery 120 77
46 circulatory system 293 247
50 squamous-cell carcin 111 61
51 nephron 142 91
60 anatomical terms 169 109
61 kidney 284 223
62 cancer cell 213 151
70 activator (genetics) 179 109
71 drug 192 121
74 breast cancer 127 53
75 locus (genetics) 206 131
77 cancer staging 256 179
79 signal transduction 233 154
81 multiprotein complex 132 51
82 endometrium 200 118
83 mouth 200 117
84 cell anatomy 272 188
90 molecular biology 200 110
93 rare cancers 200 107
95 website 161 66
96 cell cycle 200 104
97 gene expression 178 81
98 hydroxyl 221 123
99 oral sex 200 101

Table 9: Entity Types more associated with erro-
neous predictions

Incorrect
rank Entity Type Correct

rank
Rel
diff

23 syndrome 244 221
34 abnormality (behavior) 270 236
35 elementary particle 128 93
42 apoptosis 200 158
51 congenital disorder 200 149
53 transformation (genetics) 275 222
54 measurement 109 55
55 human cells 147 92
56 immune system disorders 200 144
57 paraneoplastic syndromes 200 143
58 code 154 96
59 battery (electricity) 200 141
61 virus 222 161
63 chemistry 281 218
66 calcium in biology 209 143
71 thymus 200 129
72 medical terminology 190 118
73 cell biology 297 224
74 recombinant dna 10 64
76 tongue 20 56
79 protein kinase 164 85
80 drama 200 120
85 tumor suppressor gene 14 71
86 patient 200 114
87 specialty (medicine) 234 147
90 growth hormone 200 110
91 taxonomy (biology) 238 147
93 t cells 228 135
94 childhood 200 106
95 aging-related proteins 200 105
96 network affiliate 200 104
97 blood tests 200 103
98 protein a 200 102

Table 10: Entity Types more associated with correct
predictions
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Mention Sparse embedding top types that do worse than dense counterparts

albinism, disease, animal coat colors, heredity, dermatologic terminology,albinism articles containing video clips, hair, skin, pigment, nitrous oxide
tooth, lung anatomy, mouth, pulmonary alveolus, human mouth anatomy, dental caries,alveolar ridge periodontology, parts of tooth, mandible, leaf
surgery, anastomosis, evolutionary biology, digestive system, angiology, anatomy, lawsuit,anastomosis combat, organ (anatomy), surgical anastomosis
carl linnaeus, ingredient, human, taxa named by carl linnaeus, flora of asia,
world health organization essential medicines, coordination complex,anthony campbell
western european countries, extract, asteraceae genera
peripheral nervous system disorders, autonomic nervous system, disease, nervous system,autonomic neuropathy peripheral neuropathy, functional group, heredity, mental disorder, nerve
skin conditions resulting from physical factors, lesion, fluid, frostbite, radiation health effects,bleb disease, source code, nitrous oxide, skin, hematology
cell (biology), cell culture, medical terminology, oncology, cancer, precancerous condition,cancer cells large cell, human, protein, standard operating procedure
mitochondria, programmed cell death, death, cell (biology), cellular senescence, cognition,cell death apoptosis, tgf beta signaling pathway, nuclear receptor, survival rate
plasma cell, small intestine, mood disorder, b-cell lymphoma, lymphocytic leukemia,chronic lymphocytic

leukemia bioaccumulation, bone marrow, grading (tumors), lymphatic system, lymphoblast
ionizing radiation, assumption, units of measurement, comics by steve ditko, cell (biology),cosmological constant grammatical modifier, quantity, blood plasma, industrial gases, litre
organic reactions, gene expression, posttranslational modification, rna, transcription (genetics),demethylation molecular genetics, epigenetics, therapy, demethylation, molecular biology
wine regions of south africa, suburbs of cape town, astronomical unitdissociation constant elementary particle, rat, medical terminology, gene, units of measurement, furans
endoscopy, bicycle, diagnostic gastroenterology, physical examination, gastroenterology,endoscope microphone, video camera, israeli inventions, pencil, 21st-century inventions
finger, conditions of the skin appendages, articles containing video clips, disease, toe,fingering nitrous oxide, hand, keratin, reflex, fingers
female, causes of death, fly, metrorrhagia, disease, articles containing video clips,flirting conditions of the skin appendages, etiology, dog, homology (biology)
tongue, anatomical terms of location, ganglion, mandible, midbrain, organ (anatomy),geniculate cell nucleus, cerebral cortex, lobe (anatomy), middle ear
kidney, tongue, connective tissue, epithelium, gene, cell membrane, nitrous oxide,glomerulus organ (anatomy), nephrology, derivative (chemistry)
hemoglobins, respiratory physiology, hemoglobin, geography, equilibrium chemistry, cancer,guy davis race and ethnicity in the united states census, geographic coordinate system, texas
infant, infant feeding, child, milk, formula, dosage form, foods, breast milk,infant formula preterm birth, chemistry
bowel obstruction, human gastrointestinal tract, large intestine, invagination, disease,intussusception morphology (biology), colorectal cancer, nitrous oxide, deconstruction, thrombosis
isomerism, stereochemistry, metabolism, 1827 introductions, laboratory techniques,isomerization transgender, chemistry, organic chemistry, isomerases, flora of california
ingredient, rtt, mesylate, abbvie inc. brands, anti-inflammatory, orphan drugs, acid,mescaline methyl group, carbamates, amine
epigenetics, posttranslational modification, amino acid, protein, methylation, acid,methylation organic reactions, amine, antigen, ingredient

Table 11: NED examples where dense BIER embeddings outperforms sparse (interpretable) BIER representations.
Mentions start with [A-M].
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Mention Sparse embedding top types that do worse than dense counterparts

n400 antigen, cancer, gene, protein, units of measurement, ratio, allele, human, time, nucleolus
acne vulgaris, topical medication, ingredient, functional group, route of administration, peroxides,peroxides chemical reaction, glandular and epithelial neoplasia, functional groups, pharmaceutical drug
nutrition, fatty acids, acid, lipids, ester, protein, ingredient, food science,polyunsaturated

fatty acids neuronal ceroid lipofuscinosis, lipid
endopeptidase, enzyme inhibitor, biosynthesis, protease, chemical compound, receptor antagonist,protease inhibitors peptide, moa, hiv, hiv-1 protease
psychology, substance dependence, substance abuse, emotion, mental disorder, dependent territories,psychological

dependence governance of the british empire, mental and behavioural disorders, crown dependencies, british islands
abnormal psychology, abnormality (behavior), nitrous oxide, pathology, disease, behavioural sciences,psychopathy psychosis, mental and behavioural disorders, mental disorder, affect (psychology)
technology, natural resource, segmental resection, plant anatomy, plant physiology, surgical suture,resection surgery, plant morphology, morphology (biology), amputation
epithelioid cell, etiology, chilblains, disease, nitrous oxide, kalashnikov derivatives, sarcoidosis,sarcoidosis organ (anatomy), 5.56×45mm nato assault rifles, carbines
tongue, ear canal, vestibular system, auditory system, eustachian tube, canal (anatomy),semicircular canals auditory system, crystal structure, vestibulocochlear nerve, cranial cavity
sequence, bioinformatics, psychosis, psychoanalysis, dna, scientific method, nucleic acid sequence,sequence analysis physical examination, dna sequencing, algorithm
race and ethnicity in the united states census, adult, flora of asia, carl linnaeus, human,tony walsh french-speaking countries, flora of north america, hemoglobins, women, coagulation system
united states, united states federal executive departments, management, police, public health,
united states department of defense, united states department of health and human services agencies,

united states
department of

agriculture regulators of biotechnology products, 1889 establishments in the united states
ventricle (heart), zoning, ventricular system, ventricular system, brain, developmental neuroscience,ventricular zone tongue, urban planning, anatomical terms of location, bone
psychological testing, psychiatric assessment, connective/soft tissue tumors and sarcomas,wechsler adult

intelligence scale nitrous oxide, psychiatric diagnosis, medical scales, level of measurement, adult, childhood
yin and yang, qi, alternative medicine, taoist cosmology, chinese martial arts terminology,yang xiong chinese philosophy, plants used in traditional chinese medicine, gene, qigong, trees of china

Table 12: NED examples where dense BIER embeddings outperform sparse BIER representations. Mentions start
with [N-Z].

PMID: PMID-10385711
context: The presence of activating TSH-R mutations has also been

demonstrated in differentiated thyroid carcinomas.
At present, the percentage of such a modification is low,
unless referred to selected series of tumors.

mention: thyroid carcinomas
label: Cancer 

Sparse NN model pred Dense NN model pred
Counterfactual 
Sparse NN model pred

thyroid 
(label: Organ)

esophageal carcinomas 
(label: Cancer)

medullary thyroid carcinoma 
(label: Cancer)

Types Types Types
('gland', 0.99965), ('thyroid cancer', 0.99994), ('cancer', 0.99994),
('thyroid', 0.99932), ('squamous-cell_carcinoma', 0.9998), ('rtt', 0.99964),
('rtt', 0.999), ('thyroid', 0.99925), ('nitrous_oxide', 0.99907),
('head_and_neck_cancer', 0.99093), ('cancer', 0.99133), ('esophagus', 0.00159),
('neck', 0.97243), ('gland', 0.99039), ('endocrine diseases', 0.00013),
('head_and_neck_anatomy', 0.93763), ('nitrous_oxide', 0.01965), ('pancreatic_cancer', 1e-04),
('head', 0.86131), ('pancreatic_cancer', 0.00152), ('gland', 4e-05),
('squamous-cell_carcinoma', 0.0024), ('neck', 0.00023), ('squamous-cell_carcinoma', 2e-05),
('ingredient', 0.00078), ('thyroid_neoplasm', 0.00019), ('neck', 2e-05),
('thyroid disease', 0.00047), ('rtt', 0.00014), ('thyroid cancer', 1e-05),
('nitrous_oxide', 0.00034), ('endocrine diseases', 2e-05), ('head_and_neck_anatomy', 1e-05),
('thyroid cancer', 0.0003), ('head', 1e-05), ('gastrointestinal cancer', 1e-05),
('endocrine diseases', 0.00019), ('malignancy', 1e-05), ('head_and_neck_cancer', 0.0),

Figure 6: Analysis Example for ELC task


