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Abstract

Multiple studies have shown that Transform-
ers are remarkably robust to pruning. Con-
trary to this received wisdom, we demon-
strate that pre-trained Transformer encoders
are surprisingly fragile to the removal of a
very small number of features in the layer out-
puts (<0.0001% of model weights). In case
of BERT and other pre-trained encoder Trans-
formers, the affected component is the scal-
ing factors and biases in the LayerNorm. The
outliers are high-magnitude normalization pa-
rameters that emerge early in pre-training and
show up consistently in the same dimensional
position throughout the model. We show that
disabling them significantly degrades both the
MLM loss and the downstream task perfor-
mance. This effect is observed across sev-
eral BERT-family models and other popular
pre-trained Transformer architectures, includ-
ing BART, XLNet and ELECTRA; we also
show a similar effect in GPT-2.

1 Introduction

Pre-trained Transformer-based models (Vaswani
et al., 2017) have become widely popular in a
variety of NLP applications. Multiple studies of
BERT-family models (Devlin et al., 2019) showed
that Transformers are remarkably robust to prun-
ing (Gordon et al., 2020; Prasanna et al., 2020;
Chen et al., 2020; Michel et al., 2019). This work
presents a different and unexpected result: it is pos-
sible to dramatically disrupt the performance of
BERT and other Transformer-based architectures
by modifying very few weights (less than 0.0001%
for BERT).

In particular, we show that there is a very small
number of outlier dimensions that regularly appear
in the same position in the pre-trained encoder lay-
ers of a given Transformer model. We demonstrate

* Authors contributed equally to this work.
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that this effect holds for different Transformer-
family architectures, including multiple variants
of BERT, as well as ELECTRA (Clark et al., 2020),
BART (Lewis et al., 2020), and XLNet (Yang
etal., 2019). A similar phenomenon is also present
in the decoder layers of GPT-2 (Radford et al.).
When these dimensions are disabled throughout
the model in the concluding transformation of each
layer, they can drastically reduce the overall model
performance. With the exception of GPT-2, the
last transformation in each layer of these models
is normalization (LayerNorm), which is what we
mainly focus on in this study.
The contributions of this work are as follows:

* We identify certain outlier dimensions in
Transformer layer outputs and show that they
play a crucial role in both language modeling
and downstream task performance. Disabling
the weights for these output dimensions drasti-
cally degrades performance (up to 44 points).

* We show that this effect holds for the encoder
layers of six different models of the BERT
family, as well as other popular pre-trained
Transformer-based models including ELEC-
TRA, BART, and XLNet. In GPT-2, a similar
phenomenon is observed in the output dense
transformation of the decoder layers.

* We demonstrate that outlier weights emerge
gradually and begin to emerge early in pre-
training, causing abnormal spikes at select
dimensions in the output embedding vectors.

To our knowledge, this is the first work to estab-
lish the presence of very few regular outliers in the
output Transformer representations and their impor-
tance for the model performance. It is not clear why
these features emerge, but the final transformations
clearly play a larger role in the Transformer lay-
ers than is usually assumed, and this needs further
investigation.
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Figure 1: Transformer encoder layer, adapted from
(Vaswani et al., 2017).
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This paper is organized as follows. After a
brief overview of related work (§2), we introduce
the methodology for defining, locating, and dis-
abling the BERT outlier weights in §3. In §4.1
and §4.2, we quantify the effect of disabling these
weights both in pre-training and in downstream
tasks. In §4.3, we demonstrate that other Trans-
formers (BART, ELECTRA, XLNet, and GPT-
2) also exhibit similar behavior. §5.1 evaluates
magnitude- and position-based criteria for identi-
fying the outlier dimensions and compares them
with our proposed criteria. In §5.2, we replicate the
outlier effect in a BERT model during pretraining
and study its dynamics.

2 Related work

Transformer layer outputs. At a high level,
Transformer encoder layers consist of multi-head
self-attention followed by a dense layer Vaswani
et al. (2017). Most contemporary Transformers use
normalization to improve the speed and stability of
training.

Usually, the outputs of both self-attention and
linear layers undergo the layer normalization trans-
formation (LayerNorm, Ba et al. (2016)). Each
LayerNorm transformation is parameterized by a
separate set of learned weights (scaling factors and
biases). Xiong et al. (2020) refer to this configura-
tion as post-LN. In the pre-LN variant adopted by
the GPT-2 model, LayerNorm is applied prior to
the self-attention or linear transformations instead.

We will refer to the outputs of the final trans-
formation in the encoder layer as features and the
parameters of this transformation as weights. The
final transformation is LayerNorm for all models
considered in this study except GPT-2, where the
last component is a MLP.

Like other normalization techniques, Layer-

Norm operates in two steps. For a given input
x; of the ¢-th layer with a hidden dimension m,
LayerNorm computes mean and variance across
the features:

m
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The inputs are then normalized and a learnable
scale-shift transformation is applied to produce the
normalized output embedding:
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where v € R™ and § € R™ are trainable parame-
ters referred to as scaling factor and bias (shift).
So far there have been few studies of normal-
ization strategies in Transformer architectures and
they focused mostly on the description of the train-
ing process. Xiong et al. (2020) show that the loca-
tion of LayerNorm in Transformer affects the gra-
dient flow and demonstrate the need of the warmup
stage. Nguyen and Salazar (2019) inject multiple
normalization blocks in specific network submod-
ules to improve model performance. More recently,
LayerNorm alternatives have been proposed and
shown to have better gradient propagation through
the network (Xu et al., 2019; Shen et al., 2020).

Eij = =70 +8  (2)

Overparametrization. After the initial reports
of redundancy in the BERT model (Michel et al.,
2019; Kovaleva et al., 2019), compressing Trans-
formers quickly became a subfield of its own (Jiao
et al., 2020; Zafrir et al., 2019; Fan et al., 2019;
Guo et al., 2020). See overviews by Ganesh et al.
(2020) and Rogers et al. (2020).

Pruning is a class of methods for model com-
pression which involves setting some of its weights
to zeros with minimal performance loss. Much
pruning work focuses on compression for the sake
of efficiency, but it is also used for model analysis,
and that is our goal as well. The most common
approach is selecting the weights to be pruned by
magnitude (Han et al., 2015).

Some of the recent findings are that the lottery
ticket hypothesis (Frankle and Carbin, 2019) holds
for BERT: its largest weights do form subnetworks
that can be retrained alone to reach the perfor-
mance close to that of the full model (Prasanna
et al., 2020; Chen et al., 2020; Gordon et al., 2020).
In structured pruning, the best subnets of BERT’s
heads and MLPs (selected by importance scores)
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do not quite reach the full model performance,
but the worst ones are still much better than the
worst magnitude-based subnets (Prasanna et al.,
2020), presumably because they retain a lot of high-
magnitude weights.

3 Outlier weights in BERT models

In this section, we introduce the methodology for
identifying outlier dimensions and describe our
method for disabling these outlier features.

3.1 Identification

To identify the outlier weights in BERT-like mod-
els, we consider all the output components in each
encoder layer. We compute the mean and standard
deviation of the bias and scaling factors of the out-
put LayerNorm. We identify the dimensions where
both of these weights are at least 3¢ from the mean.
Figure 2 illustrates this heuristic. Further, we select
the dimensions where this is consistently the case
for at least half of the model layers. We refer to
these dimensions as outliers.

The described heuristic was used to identify the
outlier dimensions in four out of six BERT models
we considered: BERT-base, BERT-medium, BERT-
small and mBERT.! For BERT-large, the deepest
model we considered, the frequency constraint was
relaxed to 1/3 of the layers. In RoBERTa (Liu et al.,
2019), the distribution of the scaling factors was
a little different from BERTS, and we relaxed the
standard deviation constraint down to 2 sigmas to
detect the outliers. In Section 10.1 of Appendix,
we report positions of outlier weights identified for
all models.

3.2 Disabling

To quantify the effect of the outlier weights on
BERT, we disable them and examine how this
affects model performance. We set the outlier
weights to zeros across all layers and report model
performance on a) masked language modeling and
b) downstream GLUE tasks (Wang et al., 2018).
Since different model components may affect
performance, we also looked at all the parameter

'BERT-medium and BERT-small come from the
official Google repository (https://github.com/
google-research/bert), and the other models
from the HuggingFace (https://github.com/
huggingface/transformers). Interestingly, we
discover that the checkpoints of the same BERT-base
configuration provided by different repositories (Huggingface
vs. Google) have the outliers in different locations; the
outliers also have different values: positive vs. negative.
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Figure 2: Simplified illustration of our approach to dis-
abling LayerNorm weights. We consistently set the out-
lier weights v and 3 of the output LayerNorm to zeroes,
which results in masking of the corresponding features
in the output vectors. We repeat the procedure for all
of the Transformer layers of the encoder.

vectors and matrices in BERT that have the same
dimensionality as the output embeddings. These
included key, query and value transformations?,
output LayerNorm, attention LayerNorm, and input
embedding layers. In order to examine the effect
of these components on model performance, we
masked the identified outlier weights of a given
component simultaneously across all layers at the
same dimensional position. When working with the
matrices, we set to zeros the entire row of weights
corresponding to the outlier positions across all
Transformer layers. Similarly, for LayerNorm, we
set the scaling factor and the bias at the outlier
position across all Transformer layers to zero. In
both cases, this results in “masking” of the output
vector’s feature at the specified dimension after a
forward pass through that layer.

Although the same dimensions repeatedly show
up as outliers across different model components,
in the preliminary experiments, we found that dis-
abling the weights of the input embedding layers
and of the linear layers produced no significant
change in performance or in the output embedding
space, so we did not pursue this direction further.
However, the outlier weights of the output Lay-
erNorm had an unexpectedly large effect on the
model, and this is what we focus on in most of our
experiments.

3.3 Visualization

As an example, let us consider the two outlier
dimensions that the above method identifies for
BERT-base-uncased model: 308 * and 381. Fig-

2To find outliers in weight matrices, we compute the L;
norm for each row. The total number of rows is the same as
the dimensionality of the layer output embedding (e.g. 768 for
BERT-base). From this distribution of row-norms, we select
those row indices for which the magnitude is 3o away from
the mean of the distribution.

3 All dimensions in the paper are zero-indexed.
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Figure 3: Outlier LayerNorm features 308, 381 in
BERT-base-uncased (randomly sampled input).

ure 3 shows a heatmap of the output embedding of
each layer (one pixel per row) for a random pas-
sage from WikiText (Merity et al., 2016). Since
the output embeddings are produced by Layer-
Norm, the outlier dimensions with unusually high
or low-magnitude weights should be visible in the
heatmap.

As seen in Figure 3, dimension 308 consistently
produces high-magnitude weights in the output em-
beddings in most BERT layers; feature 381 shows
visibly high values in layers 7-10. The magnitude
of a given feature depends both on the LayerNorm
scaling factor and the bias (Equation 2). We find
that both contribute to the outlier effect, to various
degrees in different layers. See Table 13 in the
Appendix for statistics on all scaling factors and
biases in BERT-base.

Features that show high magnitude throughout
the model are expected to distort the resulting em-
bedding space. In a brief experiment, we found that
the vector representations of up to 95% of the input
tokens from the WikiText corpus have abnormally
high magnitudes at the dimensions corresponding
to the outlier weights we identified. We found that
this embedding distortion is not attributable to the
input embedding layer (Layer 0). We did this by
manually setting select embedding weights of the
three channels of the input embedding layer (token,
token type, and position) to zero (along with the
weights of the following normalization layer).

The fact that the embedding distribution we ob-
served is not uniform is in line with observations
by Ethayarajh (2019) who concluded that BERT
embeddings are highly anisotropic and form a cone-
like shape in the hidden space. The outlier weights
we identify are likely the cause of this, since after
they are removed, the embedding space becomes
relatively uniform.

Ghostbusters was [released] on June 8 , [1984] ,
to critical [acclaim] and became a cultural phe-
nomenon . It was well [received] for its deft
blend of comedy, [action] , and horror , and Mur-
ray ’ s performance was [repeatedly] singled out
for praise .

Ghostbusters was [

Input

] on June 8, [1986] ,
to critical [ ] and became a cultural phe-
nomenon . It was well [ ] for its deft
blend of comedy, [ 1, and horror , and Mur-
ray ’ s performance was [often] singled out for
praise .

Ghostbusters was [

RoBERTa

] on June 8, [1986] ,
to critical [ ] and became a cultural phe-
nomenon . It was well [ ] for its deft
blend of comedy, [ ], and horror , and Mur-
ray ’ s performance was [particularly] singled
out for praise .

{ lock was [never] on June 8 , [</s>] , to rely
[.] and . It was well [known] for its acker of
comedy , [dinner], and horror , and Murray ’ s
was [ever] , </s> </s>)

Random

Outliers

Table 1: Input masked tokens (blue) are given in brack-
ets. RoBERTa correctly reconstructs 4 out of 6 masked
tokens (green), and fills in plausible (brown) predic-
tions for the remaining 2 tokens. ROBERTa with 2 ran-
domly disabled LayerNorm dimensions works almost
the same as the base model. However, RoOBERTa with
2 outlier LayerNorm dimensions makes incorrect and
implausible (red) predictions, and changes the hidden
token states significantly enough to map the unmasked
input tokens to other, often non-sensical words. In this
example, we do not show the special tokenizer tokens.

4 Effects of Disabling Outlier Weights

In this section, we consider the effects of disabling
outlier weights in BERT on language modeling
(§4.1) and on downstream tasks (§4.2). We also
investigate whether other Transformers exhibit a
similar phenomenon (§4.3).

4.1 Masked Language Modeling

Our key finding is that disabling the outlier di-
mensions significantly degrades the quality of the
language model, even though fewer than 0.001%
weights of the model are affected. Table 1 shows
a sample output before and after the LayerNorm
outliers are disabled in RoOBERTa*. It is clear that
the quality of the language model degrades dramati-
cally, while disabling an equal number of randomly
selected non-outliers has almost no effect.

To quantify this effect, we measure the cross-
entropy loss before and after disabling each dimen-
sion of the LayerNorm on at a time. We do this
on the validation subset of the WikiText corpus

“More sample outputs are given in the Appendix.
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Figure 4: Language model cross-entropy loss (green) after the scaling factor and bias for a given dimension are set
to zero, one at a time. The dashed blue line shows the loss achieved by the full model.

BERT-large BERT-base @ mBERT RoBERTa BERT-medium BERT-small

#w CE #w CE #w CE #w CE #w CE #w CE

Baseline | 0 228 0 230 0 193 0 199 0 200 O 2.26

< Random 48 229 24 231 24 195 24 203 16 201 8 2.26
& Top outlier | 48 322 24 333 24 321 24 523 16 287 8 2.44
— Random 144 229 48 231 72 196 48 200 32 204 16 2.28
< Alloutliers | 144 549 48 453 72 692 48 785 32 321 16 2.93

Table 2: Cross-entropy (CE) on the validation set of WikiText when the LayerNorm weights are zeroed. Single
shows the performance when the most damaging outlier is disabled vs. disabling one non-outlier feature (averaged
over all non-outliers disabled one at a time). All shows performance for when all outliers in a given model are
disabled vs. disabling an equal number of randomly selected non-outliers (averaged over 1000 runs). #w indicates

the total number of modified weights in a given model.

(Merity et al., 2016). We use the standard maxi-
mum sequence length of 256 and the token masking
probability of 0.15.

All tested models show surprising sensitivity
to zeroing out the weights at the outlier positions
across all layers of the model (Figure 4). For ex-
ample, removing only 24 parameters (the scaling
factor and the bias of a specific LayerNorm dimen-
sion across all 12 layers) increases ROBERTa’s loss
by almost a factor of 4.

Table 2 shows even more drastic effects when
scaling factors and biases for all the outlier dimen-
sions are disabled simultaneously. For compari-
son, we randomly sample an equal number of non-
outlier dimensions and disable the corresponding
LayerNorm weights throughout the model. We
report the loss averaged over 1000 runs.

4.2 BERT Downstream Tasks

In order to investigate the effect of outlier weights
on downstream performance, we evaluate BERT-
base on the GLUE benchmark tasks (Wang et al.,
2018), with the exclusion of Winograd Schema
Challenge, which BERT generally fails to learn
(Prasanna et al., 2020). We use the evaluation split
of the GLUE benchmark for which the labels are
publicly available. As described above, BERT has
two outlier dimensions, 308 and 381. We con-
sider the following two sets of experiments:

1. Disable post fine-tuning. We fine-tune BERT
on every GLUE task, then disable the outlier Lay-
erNorm parameters (scaling factor and bias pair)
across all layers as described in subsection 3.2. We
experiment with disabling each of the two detected
outliers both individually and simultaneously in
pre-trained BERT-base. We compare the result-
ing performance to (a) removing the LayerNorm
weights for all other hidden dimensions one-by-one,
and (b) randomly sampling pairs of non-outlier di-
mensions so as to disable them simultaneously.

2. Disable pre-fine-tuning. We disable the layer
norm parameters for the outlier dimensions prior
to fine-tuning. Our goal is to check whether the
fine-tuning allows the transformers to recover the
information from rest of the parameters.

For all the fine-tuning runs, we set the learning
rate to Se-5, batch size to 64 and train for 4 epochs
across all the experiments. Since BERT perfor-
mance varies a lot due to task-specific initialization
(Dodge et al., 2020), we use the same initialization
across all experiments.

Figure 5 shows model performance when Layer-
Norm outliers are disabled one at a time. Table 3
compares task-specific performance of the outlier-
disabled and the full model for each task.

The main takeaway from the post fine-tuning
experiments is that disabling one or the other of the
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Figure 5: Performance of BERT-base on GLUE tasks when one LayerNorm weight at a time is disabled throughout
the model. Dimensions are shown on the X axis. Loss (blue) and accuracy, or correlation coefficients, where

applicable (other colors) are shown.

MRPC STS-B MNLI MNLI-mm COLA SST-2 QQP QNLI RTE

Baseline (full model) 87.2 88.8 84.1 84.2 56.8 92.5 89.8 90.6  61.7

Non-outlier’ +0.3 -0.1 -0.2 -0.1 +0.2 0 -0.1 0 -0.4

«  Outlier-308 -10.5 -23.4 2.2 -1.8 -2.16 -0.6 -1.0 -1.9 =12

Z Outlier-381 -4.6 -4.4 -13.7 -13.0 -22.2 34 -10.8 -1.3 -5.0
~

Random non-outlier pair* -1.1 0.0 +0.3 +0.2 -0.5 +0.1  +0.1 0 +05

Outliers 308 + 381 -8.6 -44.1 -27.9 -27.2 -323 208 -13.0 -12.2 -10.0

Random non-outliers™ -0.3 -0.05 -0.2 -0.2 +0.9 -0.06 -0.2 03 +0.6

% Outlier-308 +0.3 -0.9 -0.5 +1.7 -0.3 +0.7 -0.1 0 -5.1

;f Outlier-381 2.4 -0.7 -0.6 -0.5 -0.9 -1.2 -0.7 -1.4 +40

Outliers 308 + 381 -1.1 -1.6 -14 -0.7 -2.9 -1.7 -0.7 -2.3 -0.7

Table 3: Performance of the pretrained BERT-base model vs. different configurations with disabled outlier weights:
post fine-tuning (post-ft) and pre-fine-tuning (pre-ft). TWe disable each of non-outlier dimension parameters one at
a time and average over them. ‘For the random sampling of the pairs of non-outlier dimensions, we report averages
over 1000 runs. *For the pre-finetuning experiment where random non-outlier parameters are disabled, we sample
10 non-outlier dimensions randomly and disable LayerNorm weights and biases for them across the entire model.

outlier dimensions (or both) drastically degrades
model performance on downstream tasks. Which
of them affect downstream performance the most
is highly task-dependent. For example, the outlier
dimension 308 has little effect on CoLA(-2.16)
but a large effect on STS-B(-23.4), and for 381
it’s the opposite. On SST-2, QNLI, RTE neither
outlier drops the performance by over 10 points
individually, but disabling them both has a strong
adverse effect.

In general, disabling two outliers together causes
more severe damage across the board than dis-
abling a single outlier. The overall performance
drop is task-specific. The most adversely affected
tasks are STS-B (-44.1) and CoLA (-32.3), which
are the regression tasks that also suffered the most
in pruning experiments by Prasanna et al. (2020).
However, MNLI and SST-2 are classification tasks,
and both of them also lose over 20 points. Note that

disabling random non-outlier dimensions (either
alone, or in pairs) has negligible effect on perfor-
mance across tasks. Disabling one outlier and one
random non-outlier has the same effect as disabling
a single outlier.

In pre-fine-tuning experiments, the question we
ask is whether the model can recover from the hand-
icap we introduce, and still learn the task. We
expect it to mostly recover, since even randomly
initialized BERT without any pre-training can be
fine-tuned to solve GLUE tasks fairly well (Koval-
eva et al., 2019). In this case, since most of the
pretrained sub-networks are still accessible to the
classifier, we expect to see a strong recovery close
to the baseline. We find this to be the case, how-
ever, the model is more adversely affected: -1.1 on
average when two outliers are disabled, compared
to disabling 10 non-outliers (-0.31 on average).

3397



ELECTRA

8.0

7.0

6.0

50

XLNet base BART base GPT-2 large

5.0 32

3.1

3.1

3.1

4.0 31

3.0

J 3.0

- - did.
3.0
& & & & ¥

Figure 6: Performance (loss) of other Transformer models after a given LayerNorm scaling factor and bias are set
to zero, one at a time. For GPT-2, the dense layer weights and biases are disabled, as it is an instance of a pre-LN
model. The dashed blue line shows the loss for the full model.

Disabled Performance
Model Task Data  #Params #dims weight % Baseline Disabled
ELECTRA MLM WikiText 110M 2 4x107° 4.8 8.1
XLNet PLM WikiText 120M 2 4x107° 5.2 8.4
BART Summ. CNN/Daily Mail 140M 2 9x107° 3.1 44
GPT2 CLM WikiText 770M 1 0.024 3.0 3.2

Table 4: Loss increase in other Transformer models after layer normalization scaling factors and biases highlighted
in Figure 6 are set to zero, compared to the baseline configuration. For GPT-2, the dense layer weights and biases
are disabled instead, since it is a pre-LN model. MLM, PLM, and CLM stand for masked, permutation, and causal
language modeling objectives, respectively. Summ. stands for the summarization task. #dims denotes the total

number of dimensions modified.

4.3 Outliers in Other Transformers

Above, we described our methodology for identify-
ing outliers in BERT models and studied how they
affect model performance. In this section, we show
that a similar phenomenon is observed in other pop-
ular Transformers: BART-base, ELECTRA-base
generator, XLNet-base, and GPT-2 large.

Since our goal here was merely to confirm the
existence of outlier dimensions, in these experi-
ments, we simply disabled individual LayerNorm
dimensions of the encoder part of the model across
all Transformer layers. For GPT-2, we modify the
weights of the dense output layer instead of the Lay-
erNorm weights, since it uses the pre-LayerNorm
(pre-LN) configuration (i.e., LayerNorm is placed
before the output feature-producing feed-forward
layer).

We perform this experiment for all models, mea-
suring how this affects the loss function in the na-
tive pre-training tasks of three models: permuta-
tion language modeling task for XI.Net, causal lan-
guage modeling for GPT-2, and masked language
modeling for the generator component of ELEC-
TRA. For BART, we found that the pre-trained
model had unusually high perplexity out of the box,
and we substituted the modeling task with summa-
rization on the CNN/Daily Mail dataset (Hermann

et al., 2015).

As with BERT, our results (Figure 6) suggest that
for each model, there are a few distinct dimensions
which disrupt performance significantly more than
the rest. We identify a few most impactful dimen-
sions and also disable them at once, as reported in
Table 4. The effect on perplexity is the least pro-
nounced for GPT?2, which we attribute to the fact
that the model is significantly larger than the others,
which may make it more robust to the disabling of
individual weights. However, we found that when
six dimensions are disabled simultaneously, the
perplexity increases by over 300 times.

5 What Makes Outlier Weights Special

5.1 Magnitude or Location?

In this section, we conduct two experiments to
validate our proposed criteria for selecting BERT
weights to be disabled. Specifically, we want to
understand if the same effects would be observed
(1) with magnitude-based selection of LayerNorm
parameters to be disabled, or (2) using our selection
method, but disabling the outlier dimensions only
in the first (input) layer or in the later layers (which
may have a more direct effect on the output). We
use the drop in the loss value for this comparison.

First, we compare the effect of disabling the

3398



CE #w CE #w
baseline (full model) 2.30 O\ 2.30 0

Random 2.31 24 232 48
LSF 2.72 24 2.74 48
LB 3.21 24 3.42 48
Outlier-308 332 24

Outlier-381 244 24 }4‘53 48

Table 5: BERT-base cross-entropy loss (CE) on the
WikiText validation data when one (left) or two (right)
outlier dimensions are disabled at a time, compared to
magnitude-based pruning approaches (LSF and LSB).
#w denotes the total number of modified weights.

selected dimensions (308 and 381 in BERT-base,
disabled individually or together —i.e. disabling
either 12 or 24 LayerNorm scaling factor and bias
pairs) to disabling of the following alternatives:

* Random: disable 12 or 24 randomly selected
pairs of LayerNorm scaling factor and bias
pairs in the entire model;

* Largest Scaling Factor (LSF): sort the Lay-
erNorm scaling factors in the model by mag-
nitude and disable the top 12 (or 24) scaling
factors and the corresponding biases;

» Largest Bias (LB): repeat the above using the
LayerNorm biases instead, i.e. select the top
12 (or 24) LayerNorm biases and disable the
corresponding scaling factor / bias pairs.

Table 5 suggests that simple magnitude-based prun-
ing of the output LayerNorm results in a much
smaller degradation. As compared to disabling
both BERT outliers, the magnitude-driven pruning
of the same number of weights results in the value
of cross-entropy that is 1.3x smaller.

Looking at the effects of disabling the outlier di-
mensions only in a subset of layers, Table 6 shows
that modifications made to the input layer have
little to no effect. Interestingly, switching off the
weights in the last Transformer layer, which is used
for computing inputs for task-specific classifiers,
also does not disrupt the model. However, as we
begin to disable earlier layers and the number of
layers with disabled weights increases, we observe
progressively larger loss values.

We conclude that both the magnitude and the
consistent emergence of outlier weights in the
same locations across the model are responsible
for the emergence of distinct embedding features
that BERT heavily relies on.

1 12 11-12 9-12 7-12 1-12
CE 233 240 267 281 287 4.53
#w 4 4 8 16 24 48

Table 6: BERT-base language modeling cross-entropy
loss (CE) on the validation set of WikiText corpus,
shown by location and number of modified Trans-
former layers. #w denotes the total number of modified
weights.

5.2 How Do Outlier Weights Emerge?

In this section, we examine the emergence of out-
lier dimensions during pre-training. To the best
of our knowledge, there are no publicly available
BERT pre-training checkpoints available to study
these effects. We pre-train® a BERT-medium model
(chosen due to computational constraints) from
scratch on the BookCorpus data (Zhu et al., 2015)
and track statistics of the LayerNorm scaling fac-
tors and biases. We start from a randomly initial-
ized BERT-medium configuration that has 8 layers
with the hidden dimensionality of 512 units. We
save checkpoints of the model every 2000 steps,
and we track the output LayerNorm weights across
all of the model’s layers as the training progresses.

Figure 7 shows that both scaling factors and bi-
ases begin to diverge from their initialization values
quite early (after approximately 50k steps) in the
training process. At roughly the same point, both
training loss and evaluation perplexity begin to fall
off. An interesting question for future work is to
clarify whether there is a causal relationship here.

Although the published BERT-medium model
had two outlier dimensions, our model had only
one dimension for which both the scaling factor
and the bias exceed their corresponding means by
more than three standard deviations.

Due to the gradual emergence of these outliers
during pre-training, there is a possibility that thresh-
olding their distance from the rest of the parame-
ters can be used as a litmus test for when the pre-
training is complete. We leave the investigation of
this hypothesis to future work.

6 Implications and Future Work

The outlier dimension effect we identified may
enable attacks on Transformer-based encoders
that could be used to degrade the model quality
while modifying very few weights. Further, since
these perturbations to the model do not cause the

SWe used two RTX-3090 GPUs for pre-training.
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Figure 7: BERT-medium pre-training on the BookCorpus dataset. (left) Evaluation perplexity (brown) and train
loss (blue) as the training progresses. (middle) The changes in the scaling factors and the biases of the output
normalization layer. Each line corresponds to one of the 512 dimensions. We highlight (in orange) the 41 7-th
dimension, for which both the scaling factor and the bias fall out of the three sigma range at the end of pretraining.
(right) Token embeddings computed for an input sequence that was randomly sampled from the data. Each line
corresponds to one input token. The outlier embedding values are marked at the same 4 17-th dimension. All the

plots are presented for the middle Transformer layer (4).

model to break completely, this may lead to late
detection of this attack. To curtail the risks of this
attack from affecting deployed Transformer mod-
els, we would suggest simple measures such as
storing the file checksums for the trained models at
a secure location and verifying that the deployed
model file matches the checksums.

Another direction for exploiting the phe-
nomenon of outlier dimensions is pruning. The
studies of model compression using unstructured
pruning typically do not consider whether the
pruned weights were in the same position through-
out the model. Our work suggests that if the out-
liers were disabled consistently, the drop in per-
formance could be expected to be larger than for
random or magnitude-based pruning.

Finally, future work could consider outlier di-
mensions in the context of weight initialization.
Our experiments suggest that these dimensions are
a normal emergent property of Transformer pre-
training. It is possible that higher performance or
faster convergence could be achieved by manipu-
lating the initialization to encourage such outliers
and experimenting with their number.

7 Conclusion

The main contribution of our work is isolating the
phenomenon of a small number of outlier dimen-
sions in Transformer layer outputs which signifi-
cantly disrupt performance while modifying less
than 0.0001% of all parameters of the model. We
attribute this phenomenon to an interaction of high-
magnitude scaling factors and biases in the same
dimension throughout the model, rather than mag-
nitude alone. It emerges early in the training and

consistently warps the embedding space.

In case of BERT, the layer output component
is LayerNorm. We introduce a method to isolate
these outlier dimensions for BERT, and we show
that the phenomenon is present in six models of
BERT family that we examine. It is also present in
four other Transformer-based models (ELECTRA,
XLNet, BART, and GPT-2), although the effect of
their disabling varies.
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10 Appendix

10.1 Candidate outlier dimensions of the models.

For each of the BERT-like models we experimented with we present the outlier candidate weights, detected
as described in section 3.

Model component Outliers
output.dense.weight 275,276, 444
attention.output.dense.bias 193
attention.output.LayerNorm.weight 275,276, 444
attention.output.LayerNorm.bias 276, 444
output.LayerNorm.weight 121, 262, 444, 276
output.LayerNorm.bias 276, 444

Table 7: BERT-small outlier dimension candidates across model components.

Model component Outliers
attention.output.dense.bias 92, 400, 476, 17
output.dense.weight 400

output.dense.bias 400
attention.output.LayerNorm.weight 17, 400, 430
attention.output.LayerNorm.bias 192, 400
output.LayerNorm.weight 11, 193, 393, 427, 400
output.LayerNorm.bias 400, 427

Table 8: BERT-medium outlier dimension candidates across model components.

Model component Outliers
output.dense.weight 308, 381
output.dense.bias 308
attention.output.dense.bias 308
attention.output.LayerNorm.weight 308, 381
attention.output.LayerNorm.bias 145, 308, 381
output.LayerNorm.weight 92, 145, 308, 381, 225
output.LayerNorm.bias 308, 381

Table 9: BERT-base outlier dimension candidates across model components.

10.2 Scaling factor and bias statistics for BERT-base.

For the BERT-base configuration, we present the detailed statistics on per-layer scaling factors and biases
of the output LayerNorm (see Table 13). We report per-layer means, standard deviations and counts of the
weights falling out of the three sigma range. We also show the values of the outlier weights (308 and
381) along with their ranks, where the ranks are computed for the corresponding sorted arrays of weight
magnitudes. Note that the outlier weights consistently appear to be among the top largest or top smallest
LayerNorm weights throughout the model, but are not necessarily the top-1 largest/smallest values.

10.3 Sample language model outputs after disabling outlier LayerNorm weights.

For RoBERTa and BERT, we randomly sample a set of sentences from Wikipedia and BookCorpus, mask
multiple input tokens, and use the models for token prediction. We compare the baseline (full) models
with the models where select LayerNorm weights are zeroed out across all of the Transformer layers. In
particular, we compare the setups where the outlier dimensions (two per model) are disabled as opposed
to random dimensions (two per model).
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Model component Outliers

attention.output.dense.bias 757,327
output.dense.weight 757, 159
output.dense.bias 159, 757
attention.output.LayerNorm.weight 159, 757, 327
attention.output.LayerNorm.bias 159, 757, 327
output.LayerNorm.weight 159, 757, 327
output.LayerNorm.bias 159, 757, 327

Table 10: Multilingual BERT (mBERT) outlier dimension candidates across model components.

Model component Outliers

output.dense.weight 588

output.dense.bias 588, 494

attention.output.dense.bias 588

attention.output.LayerNorm.bias 77,217,453, 551, 588, 496, 731, 494
output.LayerNorm.bias 77,453, 551, 588, 217, 240, 496, 61, 494

Table 11: Base RoBERTa outlier dimensions across model components.

Model component Outliers

attention.output.dense.bias 466, 18

output.dense.bias 466, 750, 18, 933

attention.output.LayerNorm.weight 234, 466, 933

attention.output.LayerNorm.bias 9,71, 136, 234, 327, 706, 466, 474, 929, 933, 18, 143

output.LayerNorm.weight 80, 136, 232, 234, 331, 466, 639, 665, 702, 724, 750,
763, 968, 315, 428, 933, 18, 506, 314

output.LayerNorm.bias 136, 466, 706, 327, 9, 929, 18, 143, 933

Table 12: BERT-large outlier dimension candidates across model components.

Scaling factors Biases
Transf.  mean/ std #> 30 308 value/ 381 value/ | mean/ std #> 30 308 value / 381
layer rank rank rank value/rank
1 0.756 / 0.056 12 0.343/764 0.404/762 | -0.037/0.099 6 -1325/0 0.144 /78
2 0.870/0.069 24 0.400/765 0.374/766 | -0.034/0.086 8 -0.678/0 0.277/5
3 0.851/0.052 16 0.408/767 0.549/765 | -0.031/0.075 4 -0.070/298 0.118/103
4 0.811/0.044 11 0.562/764 0.388/767 | -0.033/0.052 7 0.075/174 0.114/50
5 0.840/0.045 8 0.615/763 0.360/767 | -0.031/0.051 8 0.200/3 -0.083 /113
6 0.832/0.037 7 0.692/763 0.411/767 | -0.032/0.060 6 0403/0 -0.394 /1
7 0.834/0.037 4 0.752/752  0.375/767 | -0.033/0.063 5 0.785/0 -0.337/1
8 0.810/0.030 4 1.163/0 0.335/767 | -0.033/0.065 2 0959/0 0.304 /1
9 0.831/0.042 6 1.618/0 0.262/767 | -0.035/0.062 2 0.129/38 0.695/0
10 0.801/0.060 7 1437/0 0.254/764 | -0.032/0.057 9 -0415/2 0.258/4
11 0.817/0.062 9 1.671/0 0.185/765 | -0.040/0.068 5 -0.667/1 1.234/0
12 0.633/0.027 13 0.273/767 0.536/758 | -0.019/0.050 5 0225/0 -0.021/531

Table 13: The statistics of output LayerNorm weights (scaling factors and biases) for all of the Transformer layers
of BERT-base.
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Input

Ghostbusters was [released] on June
8,[1984], to critical [acclaim] and
became a cultural phenomenon . It
was well [received] for its deft blend
of comedy, [action] , and horror ,
and Murray ’ s performance was [re-
peatedly] singled out for praise .

a filmy coating of [dust] and peb-
bles had settled onto the block , and
[sami] ’s hand instinctively jerked
forward to swipe the [scratchy] de-
bris off his cheek , then pulled [up]
short against the biting [metal] cuffs

According to the RIAA, the Beatles
are the best-[selling] music artists
in the United States, with 178 [mil-
lion] certified units. They have had
more number-[one] albums on the
[British] charts and sold [more] sin-
gles in the UK than any other act.

RoBERTa

Ghostbusters was [ ] on June
8, [1986], to critical [ ] and
became a cultural phenomenon . It
was well [ ] for its deft blend
of comedy, [ 1, and horror ,
and Murray ’ s performance was [of-
ten] singled out for praise .

a filmy coating of [dirt] and peb-
bles had settled onto the block , and
[ ] ’s hand instinctively jerked
forward to swipe the [crusty] debris
off his cheek , then pulled [up] short
against the biting [leather] cuffs .

According to the RIAA, the Beatles
are the best-[ ] music artists in
the United States, with 178 [ ]
certified units. They have had more
number-[one] albums on the [US]
charts and sold [ ] singles in the
UK than any other act.

Random

Ghostbusters was [ ] on June
8,[1986], to critical [ ] and
became a cultural phenomenon . It
was well [ ] for its deft blend
of comedy, [ 1, and horror ,
and Murray * s performance was
[particularly] singled out for praise.

a filmy coating of [dirt] and peb-
bles had settled onto the block , and
[Tsui] ’s hand instinctively jerked
forward to swipe the [crusty] debris
off his cheek , then pulled [up] short
against the biting [leather] cuffs .

According to the RIAA, the Beatles
are the best-[ ] music artists in
the United States, with 178 [ ]
certified units. They have had more
number-[one] albums on the [US]
charts and sold [ ] singles in the
UK than any other act.

Outliers

{ lock was [never] on June 8, [</s>],
torely [,] and . It was well [known]
for its acker of comedy , [dinner],
and horror , and Murray * s was
[ever] , </s> </s>)

a Fre ) covering of [humor] and cele-
beele had </s> </s> </s> </s> , and
[</s>1] ’s </s> </s> </s> </s> </s>
</s> (@ the [brainy] during (@ end)
, Then pulled [*] isk ss the wearing
[of] cuffs </s>

2017 </s> the RIAA, the Beatles
are the [1] music files in the United
States, with 178 [Canadian] Cer-
tified ols </s> They have had ¢
yl-[million] Deaths on the [Chart]
charts and Died [are] Hearts in</s>
UK . </s></s></s></s>

Table 14: RoBERTa’s masked language model predictions for randomly sampled input sequences. Input masked to-
kens (blue) are given in brackets. Correctly predicted tokens are shown in green, incorrect but plausible predictions

are shown in brown. 48 weights have been modified in total for the Random and Outliers setups.

Input

he didnt [really] have a plan and he
wasnt sure he [could] go through
[with] anything , but the [feeling]
of doing something was lifting his
[spirits] .

ice is water frozen into a [solid] state
. [depending] on the presence of im-
purities such as particles of soil or
[bubbles] of air , it can appear [trans-
parent] or a more or less [opaque]
bluish - white color .

but the [sound] of the river babbling
by the yard and the ducks splashing
on the [pond] seemed to be [work-
ing] a cure for her [melancholy] .

BERT

he didnt [even] have a plan and he
wasnt sure he [ ] go through
[ ] anything , but the [thought]
of doing something was lifting his

[ 1.

ice is water frozen into a [frozen]
state . [ ] on the presence
of impurities such as particles of soil
or [particles] of air , it can appear
[ ] or a more or less [uniform]
bluish - white color .

but the [ ] of the river babbling
by the yard and the ducks splashing
on the [water] seemed to be [provid-
ing] a cure for her [fears] .

Random

he didnt [even] have a plan and he
wasnt sure he [ ] go through
[ ] anything , but the [thought]
of doing something was lifting his

[

ice is water frozen into a [liquid]
state . [ ] on the presence
of impurities such as particles of soil
or [particles] of air , it can appear
[ ] or a more or less [uniform]
bluish - white color .

but the [ ] of the river babbling
by the yard and the ducks splashing
on the [water] seemed to be [just] a
cure for her [fears] .

Outliers

he didny [wee] have a plan and he
wasnt sure he [would] go through
[it] anything , but the [actual] of do-
ing something was lifting his [shoul-
ders] .

that is water turned into a [yu] state

[based] on the presence of im-
purities such as particles of soil or
[breath] of air , it can appear [white]
or a more or more [commoning] ing
- white color .

but the [ ] of the child babble
by the yard and the ducks splashing
on the [windows] all to be [in] a re-
placement for her [ness] .

Table 15: BERT’s masked language model predictions for randomly sampled input sequences. Input masked tokens
(blue) are given in brackets. Correctly predicted tokens are shown in green, incorrect but plausible predictions are

shown in brown. 48 weights have been modified in total for the Random and Outliers setups.

3405



