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Abstract

The combined use of neural scoring systems
and BERT fine-tuning has led to very high
results in many natural language processing
(NLP) tasks. These high results raise two im-
portant questions about the contribution and
the limitations of pretrained-language models:
(i) what are the remaining errors in the best-
performing systems? (ii) what are the types of
test examples where pretrained language mod-
els help the most? In this paper, we investigate
both questions for the task of English discon-
tinuous constituency parsing on the Penn Tree-
bank, for which recent models obtain close to
95 F; score. To do so, we propose two meth-
ods for automatically analysing the errors of
discontinuous parser. First, we annotate and
release a test-suite focused on the syntactic
phenomena responsible for discontinuities in
the Penn Treebank, enabling us to obtain a
per-phenomenon evaluation of a parser’s out-
put. Second, we extend the Berkeley Parser
Analyser — a tool that classifies parsing er-
rors according to predefined structural patterns
—, to discontinuous trees. We apply both
methods to characterize errors of a state-of-the-
art transition-based discontinuous parser, and
to provide an overview of the contribution of
BERT to this task.

1 Introduction

Discontinous constituency trees are phrase-based
syntactic representations where the constraint stat-
ing that a single phrase must yield a continuous
sequence of tokens is lifted. Such representations
are well-suited for modelling long-range dependen-
cies, that typically arise for some syntactic phe-
nomena, such as extractions or scrambling. For
example, Figure 1 presents a discontinous VP mod-
elling the relationship between the verb want and
its extracted complement How many.

In constituency treebanks, these long range de-
pendencies are sometimes represented with typed

SB,?\RQ
|
S
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le m:lmy (!Io ylu wz!mt 'l?

Figure 1: Discontinuous constituency tree.

empty categories (traces), coindexed with a dis-
placed phrase (Marcus et al., 1993). However, pro-
jective parsers usually ignore them.! Indeed, the
norm in Penn Treebank constituency parsing is to
preprocess empty categories out of the corpus, leav-
ing out important linguistic information.

Formally, discontinuous constituency trees inter-
pret as derivations from mildly context-sensitive
grammar formalisms, such as linear context-free
rewriting systems (Vijay-Shanker et al., 1987,
LCFRS) or multiple context-free grammars (Seki
etal., 1991, MCFQG). As a result, exact parsing of
discontinuous structures has high computational
complexity. For example, CKY-style parsing of
an LCFRS is O(n?/) in time (Kallmeyer, 2010),
where f is the fan-out of the grammar: the maxi-
mum number of spans in a grammar rule.”

The current state of the art for English discon-
tinuous constituency parsing on the Discontinuous
Penn Treebank has reached 94.8% F; score (Corro,
2020) obtained by a span-based chart parser that
combines a neural scoring system and pretrained
contextualized embeddings (Devlin et al., 2019,

"Except for some work on parsing traces, e.g. Gabbard
et al. (2006); Kummerfeld and Klein (2017).
’If f = 1, the grammar is equivalent to a CFG.
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BERT). However, such a high score can be mis-
leading. Despite ensuring comparability across
different parsers, the exclusive use of classical eval-
uation metrics (F-score, precision, recall, as is stan-
dard) is hard to interpret and does not disclose
information about the syntactic capabilities of a
parser. In discontinuous parsing, the standard eval-
uator discodop’ (van Cranenburgh et al., 2016)
provides metrics that only focus on discontinuous
constituents (discontinuous F-score, discontinuous
precision, discontinuous recall). However, these
scores aggregate information across many distinct
syntactic phenomena.

In this paper, we propose to automatically anal-
yse the errors of discontinuous English parsers in
order to provide a fine-grained overview of their
current limitations. To do so, we pursue two com-
plementary approaches. First, we construct a test
suite focused on 6 syntactic phenomena respon-
sible for the discontinuities in the Discontinuous
Penn Treebank (Evang, 2011). Second, we adopt
an error-correction based approach: we search for a
sequence of error-correcting tree modifications that
lead from the predicted tree to the gold tree, and
classify the sequence of tree modifications based
on structural patterns. This is a direct extension
of Berkeley Parser Analyser (Kummerfeld et al.,
2012) to English discontinuous parsing.

A secondary motivation for this work is to char-
acterize the contribution of BERT to discontinuous
constituency parsing. An active current line of
research consists in assessing the syntactic knowl-
edge learned by language models (Linzen et al.,
2016; Marvin and Linzen, 2018; Gulordava et al.,
2018), including those with structural supervision
(Kuncoro et al., 2018; Wilcox et al., 2019; Hu et al.,
2020). They usually do so by constructing test
items: minimal pairs of sentences, such that one
is grammatical and the other is not (thus isolating
a single grammatical constraint). Then, they ob-
serve whether the language model assigns higher
probability to the grammatical alternative. In these
papers, the observation of the syntactic ability of
the models is indirect. We argue that fine-grained
evaluation methods will help comparing the syntac-
tic capabilities of parsers when they have access to
BERT or not, which will provide a complementary
view to this line of research. Therefore, we apply
both proposed error analyses methods to a state-

*https://github.com/andreasvc/
disco—-dop/

of-the-art transition-based discontinuous parser in
several settings: without pretraining, with fast-text
embeddings (Mikolov et al., 2018a; Grave et al.,
2018), with BERT pretraining.

In summary, we make the following contribu-

tions:

* We construct a test-suite for automating a fine
grained evaluation of English discontinuous
parsers on target phenomena.

* We extend the Berkeley parser analyser to deal
with English discontinuous constituency trees.

* We use these two evaluation methods to char-
acterize the errors of a neural discontinuous
parser, trained in several pretraining settings.

We provide the test suite and the error analyser as
supplementary material.

2 Related Work

To address the limitations of using exclusively
an F-score to evaluate constituency parsers, prior
work focused on alternative finer-grained evalua-
tion methods. We review some of them, both from
the projective and discontinuous constituency pars-
ing litterature.

Manual error analysis For discontinuous con-
stituency parsing, Evang (2011) performed man-
ual error analysis by extracting discontinuous trees
from the evaluation corpus, classifying them ac-
cording to the phenomenon at the origin of the dis-
continuities, and manually checking if a PLCFRS
chart-parser recognized them. Coavoux et al.
(2019) used the same strategy to evaluate a neu-
ral transition-based discontinuous parser. However,
manual error analysis is quite time-consuming and
needs to be performed again for evaluating each
new parser output. Thus, it is difficult to integrate
it in an evaluation pipeline or to deploy it for many
parsers.

Automatic error analysis Kummerfeld et al.
(2012) introduced a method that consists in search-
ing for a sequence of atomic tree-modifications
(such as: inserting a node, removing a node, mov-
ing a node) that leads from a predicted constituency
tree to the gold tree. Then, they classify the tree
modifications according to predefined structural
patterns, e.g., ‘PP-attachment’, ‘NP-attachment’,
‘labelling error’. Their method led to identify most
frequent patterns of error, and characterize the im-
provement obtained with techniques such as rerank-
ing. However, the structural patterns used to clas-
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sify mistakes depend both on the language of the
treebank and on its annotation strategies. Therefore,
error patterns need to be designed when adapting
the error analyser to another treebank (Kummerfeld
et al., 2013). Moreover, their method and software
do not handle discontinuous constituents, hence
our proposal.

Targeted evaluation Another line of work on
fine-grained parser evaluation focused on specific
structures or phenomena. Ratnaparkhi et al. (1994)
introduced a collection of English sentences with
PP-attachment ambiguities, in order both to im-
prove evaluation on this type of structure, and fos-
ter research on improving their resolution. Kiibler
et al. (2009) introduced a test suite for German that
encompasses a wider range of syntactic structures
(such as coordination of unlike constituents or ex-
traposed relative clauses). However, they focus on
projective constituency representations.

For discontinuous structures, Maier et al. (2014)
released discosuite, a testsuite for German.
They annotated a set of sentences from the Tiger
corpus (Brants et al., 2004), with the syntactic
phenomena responsible for the tree discontinu-
ities. They released their annotations, such that
researchers can run their parsers on the sentences
and compute a per-phenomenon evaluation of the
parser. To the best of our knowledge, such a test
suite only exists for German. In this article, we
introduce one for English, along with an evaluation
script that provides per-phenomenon statistics.

We focus our analysis on English, since the re-
sources we introduce are for this language. How-
ever, we also provide results on German using
discosuite.

3 Test Suite Annotation

This section describes our methodology to annotate
a set of discontinuous constituency trees with the
syntactic phenomena responsible for the discon-
tinuities. We first extract all discontinuous trees
from the validation section of the discontinuous
version of the Penn Treebank (Evang, 2011; Evang
and Kallmeyer, 2011), except those for which the
discontinuities are only due to punctuation attach-
ment. We obtain 266 trees, which corresponds to
16% of the corpus. Then, we manually assign one
or several categories from the following set, previ-
ously proposed for manual error analysis by Evang
(2011) and reused by Coavoux et al. (2019). We
provide an example sentence from the corpus for

each category, with the main discontinuous con-
stituent highlighted in bold:

1. wh-extraction: [... ] the most recent period
Jor which results were broken out [... ]

2. circumpositioned quotation: While Mayor
Norman found the market’s performance
Monday reassuring, he says, he remains un-
easy.

3. fronted quotations: The proposed changes
“all make a lot of sense to me,” he added.

4. it-extraposition: While it is possible that the
Big Green initiative will be ruled unconstitu-
tional [...]

5. discontinuous dependencies: /... ] provided
little help for copper as word spread that a
three-month strike at the Highland Valley
mine in British Columbia was about over
[..]

6. subject-verb inversion: Added another exec-
utive at a big bank: “We were all a little
goosey over the weekend trying to forecast
what would happen Monday, but it’s been
very quiet.

There are several subtypes of wh-extractions in
the data: relative clauses, verbal adjunct clauses,
complement clauses, indirect and direct questions.
They all include a wh word among how, when,
which, that, where, what, why, whenever. Circum-
positioned and fronted phrases only include quo-
tations, and systematically feature a speech verb,
usually says or said. It-extrapositions feature an
expletive it in the interpretation location of an ex-
traposed clausal argument. The category of discon-
tinuous dependencies contains other cases where
a constituent is split by an intervening phrase. It
mostly includes extraposed modifiers, such as the
extraposed clause in example 5 above,

Not all occurrences of these phenomena result
in a discontinuous tree (Evang, 2011). For exam-
ple, a sentence containing both a fronted quotation
and a subject-verb inversion will not result in a
discontinuity. In some trees, there are also several
occurrences of phenomena producing discontinu-
ities. We release these annotations as a csv file,
provided as supplementary material.

Per-phenomenon evaluation method In order
to obtain a per-phenomenon evaluation of the pre-
dictions of discontinuous parsers, we first extract
individual evaluations for each discontinuous tree,
as provided by the standard evaluator for discon-
tinuous parsing (van Cranenburgh et al., 2016, dis-
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Figure 2: Error correction: add a missing node.

codop). These include the number of gold, correct,
and incorrect discontinuous constituents, both in
the labelled and unlabelled case.*

We consider that the annotated target phe-
nomenon on the sentence is perfectly predicted
if the sentence discontinuous F-score is 100, and
partially predicted if it is > 0. As such, this evalu-
ation is recall-oriented: we focus on how well the
gold phenomena are predicted, but we do not take
into account false positives (which would require
us to assign a phenomenon to predicted trees with
incorrect discontinuous constituents).

4 Error-Correction-Driven Analyser

We now focus on automatically classifying errors
according to structural patterns. To do so, we build
on Kummerfeld et al. (2012) and proceed in two
steps: (1) finding a sequence of atomic tree mod-
ifications that transforms a predicted tree to the
corresponding gold tree; (ii) classifying steps in
the transformation sequence according to prede-
fined structural patterns. For step (i), we use a
greedy search algorithm, that first corrects errors
on discontinuous nodes, and then backoffs to Kum-
merfeld et al. (2012)’s method for projective error
correction. Thus, we focus in this section on dis-
continuous error corrections.

We use 4 atomic tree modifications:

1 change label of discontinuous node;

ii create a discontinuous node;

i1 delete a discontinuous node;

iv move a node, resulting in a discontinuity.

“In the unlabelled case, we remove duplicate constituents
(that correspond to unary rewrites) before evaluation as they
are not interpretable. Therefore, it might happen that the
labelled result is higher than the corresponding unlabelled
one.

Gold tree (fragment):

SBAR

WHNP P P

— —
WRB JJ PRP VBZ VBG TO VB NNP NNP TO VB DT NN

how long it 's going to take Barry Wright to make a contribution

Predicted tree (fragment):

'
SBAR

—_—
WHADVP P

WRB JJ PRPVBZ VBG TO VB NNP NNP TO VB T NN

how long it 's going to take Barry Wright to make a

contributiol

Figure 3: Error correction: remove an extra node.

The creation of a discontinuous node (ii) consists
in gathering several nodes with the same parent,
attaching them as the children of a new node, which
is attached in turn to their original parents. For
example, in Figure 2, the parser missed a VP node.
The correction consists in creating a discontinuous
VP node with two children (ADJP and VBD nodes)
and attaching it to the SIN'V node.

To delete a discontinuous node (iii), we simply
attach its children to their grandparent node. For ex-
ample, in Figure 3, the children of the highlighted
VP to be deleted (lower part) will be attached to the
higher VP. For both node creation and node dele-
tion, the corrected tree has only a single different
node with the original predicted tree.

Finally, the moving of a node involves reattach-
ing a node to a different parent. For example, in
Figure 4, the correction of the predicted tree will
consist in attaching the WHNP to the lowest VP,
resulting in two missing discontinuous constituents
(both VPs, see gold tree). A side effect is that the
moving will also result in a unary S constituent that
should be deleted in another correction step.

In order to find a sequence of error-correcting
modifications, we perform a greedy search. While
there is a false positive or a false negative discon-
tinuous constituent in the current tree, we try to
apply actions (i-iv) in this order of priority. Modifi-
cations (i-iii) cannot introduce new errors, whereas
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Figure 4: Error correction: move a node.

moving a node (iv) may do so in some cases.> We
ensure that moving a node is only performed if the
correction does not increase the gross number of
errors by more than 1.

Once we have found the correction sequence,
we classify errors according to patterns defined by
Kummerfeld et al. (2012):

¢ PP attachment;

* NP internal structure;

e Modifier Attachment;

* Unary constituent;

¢ Different label;

* Clause attachement;

¢ Coordination;

e NP attachment;

* VP attachment.

Once all discontinuous errors are corrected, we
run the original code from Kummerfeld et al.
(2012) to compute statistics about projective con-
stituent mistakes.

3The effect of creation/deletion of a single node is purely
local, whereas the moving of the node may impact many other

nodes. For example in Figure 4, the moving changes the yield
of 3 nodes.

5 Parser

We use a Python reimplementation of the parser
described by Coavoux et al. (2019), augmented
with a mechanism to integrate and fine-tune BERT
(Devlin et al., 2019). We release our code with
pretrained models for replication purposes.®

The parser is based on a simple transition system
(ML-GAP) that features the GAP action (Coavoux
and Crabbé, 2017) to construct discontinuous con-
stituents, and separates structural and labelling ac-
tions (Cross and Huang, 2016). The scoring system
has two submodules:

* A sentence encoder that constructs contextu-
alized embeddings for each token and is run
before parsing;

* A feed-forward network that predicts the next
action from the contextualized embeddings of
tokens extracted from specific positions in the
parsing configuration.

In the remainder of the paper, we call ML-
GAP the baseline parser that has only access to
the training corpus and has no pretrained parame-
ters, ML-GAP+FT, when it has access to fasttext
pretrained embeddings (Mikolov et al., 2018b),
and ML-GAP+BERT, the parser that uses the
bert-base-cased pretrained language model
to compute token representations and finetunes it.

Token and sentence encoder The parsers dif-
fer in the way they represent the tokens
(wi,ws,...wy) in a sentence. The ML-GAP
parser computes character-based word embed-
dings with a character bi-LSTM: (cq,...cp),
where ¢; = bi-LSTM(w;), and concatenates
them to word embeddings: ([c1, W1], ... [Cp, Wy]).
The ML-GAP+FT parser replaces learned word
embeddings by (frozen) fast-text embeddings.
The ML-GAP+BERT parser also uses a char-
acter bi-LSTM, but its output is concatenated
with the contextualized embeddings from BERT:
([Cl, bﬂ, . [Cn, bn]), where (bl, b2, e ,bn> is
the output of the last layer BERT for the corre-
sponding tokens. When BERT segments a token
into several subtokens, we use the vector corre-
sponding to the first subtoken. Alternative methods
are available (using the last subtoken or an aggrega-
tion of the subtoken vectors) but they do not seem
to have an effect on parsing (Kitaev et al., 2019).

®https://gitlab.com/mcoavoux/
mtgpy-release-findings—-2021, also archived
athttp://doi.org/10.5281/zenodo.4775955
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Then, the token embeddings are fed to a bi-
LSTM sentence encoder, as usually done in parsing
(Stanojevi¢ and Alhama, 2017; Coavoux and Co-
hen, 2019; Corro, 2020; Stanojevi¢ and Steedman,
2020). In preliminary experiments, we alternatively
used a self-attentive encoder (Vaswani et al., 2017),
as done successfully in recent work in projective
constituency parsing (Kitaev and Klein, 2018; Ki-
taev et al., 2019). However, it proved hard to op-
timize (high variance across experiments) and did
not obtain better results than a bi-LSTM.

System Dev Test
F DF F DF

Fully supervised

“Evang and Kallmeyer (2011) < 25, gold POS 79

“van Cranenburgh and Bod (2013) < 40 85.2 85.6

“van Cranenburgh et al. (2016) < 40 86.9 87

Corro et al. (2017) 89.2
#Coavoux and Cohen (2019) 914 709 909 673
BCoavoux et al. (2019) 912 720 910 713
7Corro (2020) 92.7 64.2
7Stanojevi¢ and Steedman (2020) 90.5 67.1
“Ruprecht and Morbitz (2021) 90.1 729
AThis work: ML-GAP 92.0 759 914 744

Semi-supervised (Pretrained embeddings)

7Corro (2020) 929 649
“Ruprecht and Morbitz (2021) 91.8 76.1
AThis work: ML-GAP+FT 92.7 78.1 923 765

Semi-supervised (Bert-base)

7Corro (2020) 94.8 689
Vilares and Gomez-Rodriguez (2020) 91.7 49.1
“Ruprecht and Morbitz (2021) 93.3 805

BThis work: ML-GAP+BERT 950 858 950 825

Table 1: Results on the Discontinuous Penn Tree-
bank. DF: discontinuous F-score. “Grammar-based,
Ptransition-based, ¥ chart-based, Yother neural systems.

Action scorer and features We use two dis-
tinct feed-forward networks to score respectively
structural actions (SHIFT, MERGE, GAP) and la-
belling actions (NO-LABEL, {LABEL-X | X is a
non-terminal }). They both have an identical archi-

P R F DP DR DF POS

Dev corpus

ML-GAP 92.0 919 92.0 822 704 759 973
ML-GAP+FT 927 927 927 842 729 781 974
ML-GAP+BERT 950 95.1 950 86.2 854 858 97.6

Test corpus

ML-GAP 91.8 91.0 914 826 677 744 976
ML-GAP+FT 925 92.1 923 850 69.6 765 97.7
ML-GAP+BERT 952 948 950 853 799 825 979

Table 2: Detailed results on the development and test
sets of the DPTB. P and R are precision and recall; DP,
DR, DF are the discontinuous precision, recall and F-
score.

tecture and only differ in the number of units in the
output layer. We use a single hidden layer with a
tanh activation. We apply dropout to its input, and
layer normalization (Ba et al., 2016) to the hidden
layer. We use a softmax normalization to compute
scores for possible output labels.

The choice of the structural or labelling classifier
is entirely determined by the parsing configuration
and depends on the type of the next action. The
input to both classifiers is the concatenation of con-
textualized vectors extracted from a list of positions
in the parsing configuration and specified as a list
of feature templates.

In the ML-GAP transition system, a parsing con-
figuration is defined by 3 data structures: a stack s
containing subtrees, a double-ended queue d also
containing subtrees, and a buffer b containing the
yet unprocessed tokens. We use the following 11
templates:’

* the left-most and right-most token of first and
second element in s and d (8 templates in total:
So.l, S0.7, Sl.l, Ss1.17, do.l, d().?“, dl.l, dl.r);g

« the next token in the buffer (by);

* the contextualized embeddings corresponding
to the start of sentence and end of sentence
symbols.

Overall results We report overall development
and test results in Table 1 (see Appendix A for
details about training), and compare them to pub-
lished results on the DPTB dataset. For a more
comprehensive evaluation of the parser, including
results on the Tiger (Brants et al., 2002)° and Negra
(Skut et al., 1997) German corpora, we refer the
reader to Table 7 of Appendix B.

The ML-GAP setting improves over Coavoux
et al. (2019) by 0.4 and 3.1 respectively for the F
and DF metrics, which we attribute to the hyperpa-
rameter search. In both the supervised setting and
the ‘pretrained embeddings’ setting, our parser’s
results lag behind Corro (2020), the current state of
the art. However it is noticeably more accurate on
discontinuous constituents (more than 10 absolute
DF difference).

In the BERT-finetuning setting, the F measure
of the ML-GAP+BERT model slightly outperforms
the span-based parser of Corro (2020). The use

"This is an extension over the set of 7 templates from
Coavoux et al. (2019).

8We use s; (resp. d;) to address the ¢ — 1" subtree of s
(resp. d), and .l/.r to address the left-most or right-most token
yielded by the subtree.

“We use the SPMRL split (Seddah et al., 2013).
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Labelled

Phenomenon Count  Exact match Partial match Precision Recall F,
Extraction 91 85.7 (+13.2, +16.5)  92.3 (+7.7,49.9) 91.6 (+5.6, +7.1) 88.1 (+11.2, +13.1)  89.8 (+8.6, +10.3)
Fronted quotation 71 95.8 (+2.8, +4.3) 95.8 (+1.4,+2.8) 95.8 (+1.4,+4.1) 95.8 (+1.4,+2.8) 95.8 (+1.4,+3.5)
Discontinuous dependency 37 64.9 (+37.9, +46.0)  70.3 (+40.6, +46.0)  84.4 (-7.3,-5.6) 61.4 (+36.4,+40.9)  71.1 (+31.8,+37.8)
Circumpositioned quotation 16 81.2 (+18.7, +18.7) 100.0 (+12.5, +6.2)  94.1 (-1.0, +1.1) 96.0 (+18.0, +16.0)  95.0 (+9.3, +9.0)
It-extraposition 12 75.0 (+0.0, +33.3) 75.0 (+0.0, +33.3) 90.0 (+0.0, +6.7) 75.0 (+0.0, +33.3) 81.8 (+0.0, +26.2)
Extraction+fronted quotation 7 100.0 (+0.0, +14.3)  100.0 (+0.0, +0.0) 100.0 (+0.0, +0.0) ~ 100.0 (+0.0, +5.3) 100.0 (+0.0, +2.7)
Discontinuous dependency+extraction 5 60.0 (+40.0, +60.0) 100.0 (+20.0, +0.0) 88.2 (+9.6, +16.8) 88.2 (+23.5, +29.4) 88.2 (+17.2,+23.7)
Extraction+extraction 5 80.0 (+20.0, +20.0)  100.0 (+0.0, +0.0) 94.4 (-5.6, -5.6) 100.0 (+23.5,+23.5) 97.1 (+10.4, +10.4)
Subject inversion 5 100.0 (+40.0, +40.0)  100.0 (+40.0, +40.0)  100.0 (+0.0, +0.0) ~ 100.0 (+40.0, +40.0)  100.0 (+25.0, +25.0)
Unlabelled
Phenomenon Count  Exact match Partial match Precision Recall F,
Extraction 91 85.7 (+12.1,+15.4) 923 (+7.7,49.9) 92.4 (+5.5,+7.7) 89.3 (+10.0, +12.0)  90.8 (+7.9, +10.0)
Fronted quotation 71 95.8 (+2.8, +4.3) 95.8 (+1.4,+2.8) 95.8 (+1.4,+4.1) 95.8 (+1.4,+2.8) 95.8 (+1.4,+3.5)
Discontinuous dependency 37 64.9 (+35.2,+43.3)  70.3 (+37.9,+43.3) 839 (-16.1,-16.1)  60.5 (+32.6,+37.2)  70.3 (+26.7, +32.6)
Circumpositioned quotation 16 100.0 (+25.0, +25.0)  100.0 (+12.5, +6.2) 100.0 (+0.0, +3.1) 100.0 (+21.1, +18.4) 100.0 (+11.8, +11.4)
It-extraposition 12 75.0 (+0.0, +33.3) 75.0 (+0.0, +33.3) 90.0 (+0.0, +6.7) 75.0 (+0.0, +33.3) 81.8 (+0.0, +26.2)
Extraction+fronted quotation 7 100.0 (+0.0, +14.3)  100.0 (+0.0, +0.0) 100.0 (+0.0, +0.0)  100.0 (+0.0, +5.6) 100.0 (+0.0, +2.9)

Discontinuous dependency+extraction
Extraction+extraction

60.0 (+40.0, +60.0)

100.0 (+20.0, +0.0)
100.0 (+0.0, +0.0)

92.9 (+17.9, +17.9)
94.1 (-5.9, -5.9)

86.7 (+26.7, +26.7)
100.0 (+18.8, +18.8)

89.7 (+23.0, +23.0)
97.0 (+7.3,+7.3)

5
5 80.0 (+20.0, +20.0)
5

Subject inversion 100.0 (+40.0, +40.0)

100.0 (+40.0, +40.0)

100.0 (+0.0, +0.0) ~ 100.0 (+40.0, +40.0)  100.0 (+25.0, +25.0)

Table 3: Per-phenomenon results on the test suite for the ML-GAP+BERT model.

Its absolute improvements over

respectively the ML-GAP+FT and the ML-GAP model are in parentheses. We handle separately sentences that have
several occurrences of phenomena resulting in discontinuities (+ symbol), we exclude combinations with fewer

than 5 occurrences.

of BERT seems to cancel the benefits of the exact
decoding permitted by the span-based approach of
Corro (2020). On the DF metric, the gap is even
larger (13.6 absolute difference). We attribute this
difference to the fact that Corro (2020)’s parser
is restricted to a certain type of discontinuities
and cannot construct certain trees. Moreover, the
transition-based paradigm enables a parser to use
more fine-grained features than span-based parsers,
which is particularly helpful for predicting discon-
tinuous constituents.

6 Results and Discussion

In this section, we focus on the comparisons of
our 3 models to assess the contribution of BERT to
discontinuous parsing. We first focus on English,
using the two resources we introduced in Sections 3
and 4. Then we provide and discuss results on
German, using discosuite (Maier et al., 2014).

6.1 English

The improvements brought by BERT may come
from its syntactic knowledge. However, they might
also be a result of its extended lexical knowledge
(providing more lexical information about out-of-
vocabulary or rare words that might be known but
do not take part in discontinuous structures in the
training set). The ML-GAP+FT model provides a
control setting, where the ‘static’ pretrained embed-
dings provide additional lexical information.

Overall effect of pretraining We provide de-
tailed results (precision, recall, F) in Table 2. It
had been reported that discontinuous parsers often
have a large gap between precision (higher) and re-
call (lower) on discontinuities on both German and
English corpora (Maier, 2015; Coavoux and Co-
hen, 2019; Stanojevi¢ and Steedman, 2020; Corro,
2020). The use of BERT tends to fill this gap, with
a much stronger effect on recall (+15 DR on de-
velopment set over ml-gap) than on precision (+4
DP). BERT leads the parser to better detect syntac-
tic discontinuities compared to a supervised model
(ML-GAP).

On the contrary, ML-GAP+FT provides only a
small improvement over ML-GAP (+2.2 dev DF),
which is split almost equally between precision
(+2.0 DP) and recall (+2.5 DR). The striking dif-
ference between ML-GAP+FT and ML-GAP+BERT
strongly suggests that BERT’s contribution cannot
be reduced to its extended lexical knowledge.

Per-phenomenon evaluation We report results
on the test suite in Table 3, in the labelled case
(upper part) and the unlabelled case (lower part).
For each metric, we report the result of the ML-
GAP+BERT model, as well as its absolute difference
with, respectively the ML-GAP+FT and the ML-GAP
model.

First, when comparing ML-GAP+BERT and ML-
GAP, we observe a large improvement on all phe-
nomena and almost all metrics. When comparing
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ML-GAP+BERT ML-GAP+FT ML-GAP
Error type Count Nodes Count Nodes Count  Nodes

275 (-40.6%) 609 (-39.8%) 440 (-5.0%) 980 (-3.2%) 463 1012
17 (-34.6%) 27 (-34.1%) 26 (+0.0%) 40 (-2.4%) 26 41
Single Word Phrase 257 (-25.7%) 318 (-22.6%) 310 (-10.4%) 376 (-8.5%) 346 411
Unclassified 200 (-47.2%) 263 (-48.8%) 318 (-16.1%) 427 (-16.9%) 379 514
NP Internal Structure 191 (-26.8%) 221 (-32.4%) 218 (-16.5%) 283 (-13.5%) 261 327

PP Attachment
L discontinuous

L discontinuous 1 (+00%) 1 (+00%) 1 (+00%) 2 (+00%) 0 0
Modifier Attachment 186 (-23.8%) 344 (-24.4%) 221 (-9.4%) 408 (-10.3%) 244 455
L discontinuous 9 (-30.8%) 13 (-27.8%) 10 (-23.1%) 15 (-16.7%) 13 18
Unary 185 (-41.1%) 185 (-41.1%) 271 (-13.7%) 271 (-13.7%) 314 314
L discontinuous 2 (+0.0%) 2 (+0.0%) 2 (+0.0%) 2 (+0.0%) 2 2
Different label 166 (-22.4%)  335(-22.1%) 211 (-1.4%) 426 (-0.9%) 214 430
L discontinuous 6 (+0.0%) 15 (+7.1%) 6 (+0.0%) 16 (+14.3%) 6 14
Clause Attachment 116 (-37.6%) 292 (-37.7%) 170 (-8.6%) 450 (-4.1%) 186 469
L discontinuous 16 (-40.7%)  25(-34.2%) 31 (+14.8%) 44 (+158%) 27 38
Co-ordination 84 (-45.8%) 210 (-47.2%) 127 (-18.1%) 312(-21.6%) 155 398
L discontinuous 3(-25.0%) 8 (+14.3%) 4 (+0.0%) 8 (+14.3%) 4 7
NP Attachment 51(-51.9%) 168 (-43.6%) 94 (-11.3%) 312 (+4.7%) 106 298
L discontinuous 9 (-55.0%) 19(-20.8%) 14 (-30.0%)  18(-25.0%) 20 24
VP Attachment 19 (-63.5%)  62(-67.7%) 40(-23.1%)  135(-29.7%) 52 192
L discontinuous 2(-71.4%) 2 (-86.7%) 7 (+0.0%) 13(-133%) 7 15
XoverX Unary 10 (+0.0%) 10 (+0.0%) 10 (+0.0%) 10 (+0.0%) 10 10

Table 4: Error types for both models (development set).
Absolute differences with the ML-GAP model are given
in parentheses.

labelled and unlabelled results, we observe very
small differences (< 1) except for the case of cir-
cumpositioned quotations. This is due to some
cases where the discontinuous quotation phrase
has an unfrequent label (FRAG or SINV). Overall,
subject inversions, '* fronted quotations and circum-
positioned quotations are almost perfectly detected
by the ML-GAP+BERT system with DF scores over
95, and high exact match (at least in the unlabelled
case for circumpositioning). On the other hand,
discontinuous dependencies and it-extrapositions,
and to a lower extent extractions, have DF scores
below 90, despite the huge effect of BERT (re-
spectively +35.2 and +25 absolute improvement on
exact match for discontinuous dependencies and
it-extrapositions).

Secondly, the improvement brought by fast-text
embeddings is consistently very small (around
+2F), except on 2 types of phenomena: it-
extrapositions (where BERT does not improve over
fast-text), and to a lower extent discontinuous de-
pendencies (+6F for fast-text, +37.8F for BERT).
This result suggests that the difficulty to parse these
phenomena stemmed, at least partly from a lack of
lexical knowledge.

Error Analysis We report results of the error
type classifier for both models in Table 4. For each
error type, we report (i) the overall count of occur-
rences, (ii) the number of occurrences where the
correction involved a discontinuous node among
them, and (iii) the total number of nodes involved
(a single error can cause multiple wrong nodes), as
done by Kummerfeld et al. (2012).

!Note that we have a small sample for this phenomenon (5
instances).

Overall, we observe an important decrease
across all types of errors, with error reduction rates
often close to 40% (e.g. 45% fewer occurrences
of PP attachment errors) for ML-GAP+BERT and
around 20% for ML-GAP+FT.

The picture is slightly different if we look at
errors involving discontinuous constituents. In-
deed, the use of BERT drastically reduces the main
sources of errors (PP/VP/NP attachment, modifier
attachment, coordination), while having no effect
on other types of structure (NP internal structure,
unary constituent, label). In contrast, fast-text only
improves modifier and NP attachments, and even
introduces clause attachment errors.

6.2 German

In order to provide additional context to our results
on English, we further experiment with the same
parsing models on German, using the test-suite
built by Maier et al. (2014) on the German Tiger
corpus. They constructed this test-suite by first
identifying and classifying discontinuous phenom-
ena in the 1500 first sentences of the Tiger corpus;
and then they selected 15'! sentences for each iden-
tified phenomenon. In total, discosuite con-
tains 180 occurrences across 151 sentences. Each
occurrence corresponds to a single discontinuous
constituent.

We train our parsers on a modified version of the
SPMRL Tiger split, where the 151 sentences are
removed from the training set. We then parse the
151 sentences and use the labelled and unlabelled
recall on target constituents to evaluate the corre-
sponding phenomena. We provide results on the
testsuite in Table 5, using the same settings as in
English (ML-GAP, ML-GAP+FT, ML-GAP+BERT).
We refer the reader to Maier et al. (2014) for the
descriptions of specific phenomena. To the best
of our knowledge, no prior parsing work used this
testsuite for evaluation since its release.

Due to a finer-grain classification, there are only
few instances for each type. Hence, we only com-
ment on general patterns. Overall, fast-text pro-
vides small improvement on 6 types of phenomena
(over 14). In constrast, BERT improves on ev-
ery type of phenomenon, with largest increases for
extrapositions of an element of a coordination, ex-
trapositions involving a focus adverb (eg. adverb
in the main clause modifying a subordinate clause),
and local movement (involves discontinuities that

"or fewer for rarer phenomena.
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Phenomenon Occurrences | Labelled recall Unlabelled recall

ML-GAP+BERT (A) ML-GAP+FT (A) ML-GAP | ML-GAP+BERT (A) ML-GAP+FT (A) ML-GAP
Extraposed arguments 15 86.7 (+27) 66.7 (+7) 60 86.7 (+20) 66.7 (=) 66.7
Extraposed modifiers 15 73.3 (+13) 73.3 (+13) 60 73.3 (+7) 73.3 (+7) 66.7
Extraposition (comparison) 15 73.3 (+7) 66.7 (=) 66.7 80 (+7) 73.3 (=) 73.3
Extraposition (coordination) 15 40 (+33) 33.3 (+27) 6.7 60 (+47) 40 (+27) 13.3
Extraposition (focus adverb) 5 80 (+40) 40 (=) 40 80 (+20) 60 (=) 60
Local Movement (clause) 10 30 (+30) 0= 0 30 (+30) 0(=) 0
Local Movement (phrase) 10 40 (+30) 10 (=) 10 50 (+40) 10 (=) 10
Placeholder/repeated element 15 93.3 (+7) 80 (-7) 86.7 93.3 (+7) 80 (-7) 86.7
Parentheticals 15 86.7 (+13) 86.7 (+13) 73.3 93.3 (+7) 93.3 (+7) 86.7
Pronouns 15 73.3 (+13) 66.7 (+7) 60 73.3 (+13) 66.7 (+7) 60
Scrambling 15 60 (+13) 80 (+33) 46.7 60 (+13) 80 (+33) 46.7
Topicalization Other 10 10 (+10) 0= 0 10 (+10) 10 (+10) 0
Topicalization VP HD 10 80 (+10) 50 (-20) 70 80 (+10) 50 (-20) 70
Topicalization VP mod/arg 15 93.3 (+20) 733 (=) 73.3 93.3 (+20) 733 (=) 73.3

Table 5: Results of ML-GAP+BERT, ML-GAP+FT and ML-GAP on discosuite (Maier et al., 2014). Absolute

difference with ML-GAP model is indicated in parentheses.

do not cross clause boundaries). These are also
the most difficult phenomena to predict correctly
(< 50 recall).

We observe there is not a large difference be-
tween labelled and unlabelled scores, suggesting
that finding the correct structure is the main diffi-
culty.

7 Conclusion

We introduced two resources for fine-grained auto-
matic error analysis of English discontinuous con-
stituency parsers. First, we construct and release
a test-suite for the range of syntactic phenomena
responsible for the discontinuous structures in the
discontinuous version of the Penn Treebank. Sec-
ond, we extend the Berkeley parser analyser to the
analysis of discontinuous constituency trees. We
apply these resources to study the contribution of
BERT to discontinuous parsing of English.

Overall, on almost all phenomena, BERT brings
an improvement over a fast-text baseline. We found
that BERT leads to almost perfect detection for
some phenomena (subject inversion, fronted quo-
tations, circumpositioned quotations). Moreover,
there is still a wide room for improvement for ex-
tractions (despite the high frequency of this type
of structures in the corpus), it-extrapositions, and
discontinuous dependencies. In future work, we
plan to address these limitations with targeted data-
augmentation methods. We also plan to evaluate
other pretrained language models to assess whether
they exhibit the same error patterns as BERT.
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A Training Details

The parser uses the pytorch library (Paszke et al.,
2019) and the transformers interface (Wolf
et al., 2020) to fine-tune BERT. For all 3 models
(ML-GAP, ML-GAP+FT, ML-GAP+BERT), we only
tuned the batch size and the learning rate. We re-
port all hyperparameters and final configurations
in Table 6 of Appendix A. We used the Adam opti-
mizer (Kingma and Ba, 2015), divide learning rate
by 2 when the model shows no improvement on the
dev set for 5 epochs and stop training after 3 such
cycles with no improvement. Finally, we maintain
the average of parameters across iterations during
training, and use the averaged parameters (instead
of the final parameters) for the final model. We
trained the parsers on gold sequences of configu-
rations (teacher-forcing). We use a deterministic
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Parser

ML-GAP/ML-GAP+FT

ML-GAP+BERT

Sentence encoder hyperparameters

Character embedding 64 64

Character bi-LSTM state 256 128

Character dropout 0.2 0.2

Word embeddings 300 -

Word dropout 0.2/0 -

Sentence encoder bi-LSTM bi-LSTM

Sentence encoder state 400 400

Stacked bi-LSTM 2 2

Action scorer hyperparameters

Activation tanh tanh

Hidden layers 1 1

Hidden size 250 250

Dropout 0.3 0.3

Optimization hyperparameters

DPTB: batch size {4,8}/{4,8} {16, 32}

DPTB: learning rate {0.001, 0.0015} {0.00006, 0.00008, 0.0001, 0.00012}
Tiger: batch size {4,8}/{4,8} {16, 32}

Tiger: learning rate {0.001, 0.0015} {0.00006, 0.00008, 0.0001, 0.00012}
Negra: batch size {4,8}/{4,8} {16, 32}

Negra: learning rate

{0.001, 0.0015}/{0.001, 0.0015}

{0.00006, 0.00008, 0.0001, 0.00012}

DPTB: bert model

bert-base-cased

Negra, Tiger: bert model - bert-base-german-cased

Table 6: Hyperparameter search for all models (best configuration in bold). The ‘/* symbol indicates different final
values for ML-GAP and ML-GAP+FT models.

oracle that prioritizes merges over shifts when both
are possible, this implicitly corresponds to a left-
binarization of n-ary constituents. Finally, we use
greedy search for finding the best sequence of ac-
tions.

B Results on German Treebanks
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System Method type DPTB Tiger Negra

F DF F DF F DF
Fully supervised
van Cranenburgh and Bod (2013), < 40 GB 85.6 75.3% 74.8
Ferndandez-Gonzalez and Martins (2015) DB 77.3 77.0
van Cranenburgh et al. (2016), < 40 GB 87.0 78.27% 76.8
Maier (2015), gold POS TB 74.7 18.8 77.0 19.8
Versley (2016) GB 79.5
Maier and Lichte (2016) TB 76.5 16.3
Corro et al. (2017) DB 89.2
Coavoux and Crabbé (2017) TB 79.3
Gebhardt (2018) GB 75.1
Coavoux and Cohen (2019) TB 909 67.3 825 559 832 563
Coavoux et al. (2019) TB 91.0 71.3 82.7 559 832 54.6
Ferndndez-Gonzélez and Gémez-Rodriguez (2020) DB 84.6 57.9 83.7 547
Stanojevi¢ and Steedman (2020) CB 90.5 67.1 834 53.5 83.6 50.7
Corro (2020) CB 92,7 642 855 53.8 86.2 54.1
Ruprecht and Morbitz (2021) GB 90.1 729 825 559 827 49.0
Fernandez-Gonzalez and Gémez-Rodriguez (2020) DB 86.6 62.6 86.8 69.5
Gebhardt (2020) GB 77.7 40.7 81.7 435
This work: ML-GAP TB 914 744 829 574 823 556
Semi-supervised (Pretrained embeddings)
Stanojevi¢ and Alhama (2017) TB 717.0
Corro (2020) CB 929 649 852 51.2 86.3 56.1
Ferndndez-Gonzélez and Gomez-Rodriguez (2020) DB 85.7 604 85.7 58.6
Ruprecht and Morbitz (2021) GB 91.8 76.1 85.1 61.0 86.5 619
This work: ML-GAP+FT TB 923 76.5 852 61.1 856 60.9
Semi-supervised (Bert-base)
Corro (2020) CB 94.8 68.9 90.0 62.1 91.6 66.1
Fernandez-Gonzdlez and Gémez-Rodriguez (2020) DB 89.8 71.0 91.0 76.6
Vilares and Gémez-Rodriguez (2020) SL 919 50.8 84.6 51.1 839 456
Ruprecht and Morbitz (2021) GB 933 80.5 88.3 69.0 909 72.6
This work: ML-GAP+BERT TB 95.0 825 90.2 729 91.7 733

Table 7: Results on the DPTB, Tiger and Negra corpora (test sets). DF: discontinuous F-score. Methods:
GB: grammar-based, TB: transition-based, CB: grammarless chart-based, SL: sequence-labelling based, DB:
dependency-conversion based. #: different train/dev/test split.

3272



