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Abstract

We present a novel model for the problem of
ranking a collection of documents according
to their semantic similarity to a source (query)
document. While the problem of document-to-
document similarity ranking has been studied,
most modern methods are limited to relatively
short documents or rely on the existence of
“ground-truth” similarity labels. Yet, in most
common real-world cases, similarity ranking
is an unsupervised problem as similarity la-
bels are unavailable. Moreover, an ideal model
should not be restricted by documents’ length.
Hence, we introduce SDR, a self-supervised
method for document similarity that can be ap-
plied to documents of arbitrary length. Impor-
tantly, SDR can be effectively applied to ex-
tremely long documents, exceeding the 4, 096
maximal token limit of Longformer. Extensive
evaluations on large documents datasets show
that SDR significantly outperforms its alterna-
tives across all metrics. To accelerate future re-
search on unlabeled long document similarity
ranking, and as an additional contribution to
the community, we herein publish two human-
annotated test-sets of long documents similar-
ity evaluation. The SDR code and datasets are
publicly available 1.

1 Introduction

Text similarity ranking is an important task in mul-
tiple domains, such as information retrieval, recom-
mendations, question answering, and more. Recent
approaches based on Transformer language models
such as BERT (Devlin et al., 2019) benefit from ef-
fective text representations, but are limited in their
maximum input text length. Hence, developing
techniques for long-text or document level match-
ing is an emerging research field (Jiang et al., 2019).

∗ , § Denotes equal contribution.
† Corresponding author

1github.com/microsoft/SDR

In this work, we present SDR, a self-supervised
method for document-to-document similarity rank-
ing that can be effectively applied to extremely long
documents of arbitrary length and does not require
similarity labels. SDR employs a self-supervised
pre-training phase that leverages: (1) a masked
language model that fine-tunes contextual word
embeddings to specialize in a given domain and (2)
a contrastive loss on sentence pairs, assembled by
inter-and intra-sampling, that encourages the model
to produce enhanced text embeddings for similar-
ity. Similarity inference is achieved by producing
per-sentence embeddings followed by a two-staged
hierarchical scoring.

Our contributions are as follows: (1) we present
SDR, a novel method for document-to-document
similarity that can effectively operate on long doc-
uments of arbitrary length and does not require
similarity labels. We evaluate SDR and report its
performance on two large datasets of documents,
showcasing its ability to rank documents better than
other state-of-the-art alternatives. (2) to accelerate
future research, we publish two long-document
similarity datasets annotated by human experts.

2 Related Work

Semantic similarity has been studied in many fields,
such as computer vision (Parmar et al., 2018;
Huang et al., 2017), recommender systems (Wang
and Fu, 2020; Barkan et al., 2020a, 2021; Malkiel
et al., 2020), and natural language processing (De-
vlin et al., 2019; Reimers and Gurevych, 2019;
Mikolov et al., 2013). Recently, transformer-based
Language Models (LMs) ushered significant per-
formance gains in various natural language under-
standing tasks, but mainly on relatively short texts
(Devlin et al., 2019; Liu et al., 2019). These models
are usually pre-trained on the Masked Language
Modeling (MLM) objective followed by a down-

https://github.com/microsoft/SDR
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stream task-specific fine-tuning process (Wang
et al., 2018). However, most models employ a
battery of self-attention operations, which scale
quadratically with the sequence length rendering
extremely inefficient for long documents contain-
ing pages of text.

To mitigate scale challenges, the Longformer
(Beltagy et al., 2020) model has been proposed
which employs local windowed attention unit that
restrains the computation and space to scale lin-
early with the sequence length. However, com-
putation complexity still depends on the sequence
length. Moreover, it entails a linear space com-
plexity (memory usage). Therefore, in practice, the
propagation of extremely long sequences remains
infeasible and the maximal input of the Longformer
is capped at 4, 096 tokens only, far less than many
real-world long documents.

Apart from the aforementioned scale limitations
on the model’s input, in the case of computing pair-
wise similarities between a large number of doc-
uments, the above models also suffer from an ex-
haustive inference process: Longformer and BERT
score pairs of items in a unified feed-forward pro-
cess, by which each pair of two items is fed to
the model in order to produce a single pair-wise
score (as opposed to scoring based on the individ-
ual item embeddings). Such inference technique,
impose O(N2) feed-forward operations (Barkan
et al., 2020b), compared to just O(N) in SDR.

An additional challenge of Transformer-based
LMs is the fact that their raw vector representations
is known to perform poorly on semantic textual
similarity tasks (Reimers and Gurevych, 2019). As
a result, specific methods for text similarity tasks
have been proposed. A prominent example for
such methods is the SBERT model (Reimers and
Gurevych, 2019). SBERT employs a novel fine-
tuning procedure that encourages representations
of similar sentences be closer in terms of the cosine
similarity, substantially improving their ability to
capture semantic similarity. Yet, SBERT still toils
from the aforementioned complexity challenges
and is unable to handle long-documents.

Recently, several works proposed long-
document processing and retrieval techniques
using labeled data. Cohan et al. (2020) introduced
SPECTER, a model for producing document-level
embedding of scientific documents. SPECTER
employs a novel objective that uses paper citations
as a proxy for similarity. Similarly, the Cross-

Figure 1: A representative inter- and intra-samples,
along with cosine similarity scores retrieved by SBERT
and SDR. Top: Inter-sampling from two documents as-
sociated with games of different categories. SBERT
scores the sentences with a higher cosine value than
the one retrieved by SDR. Bottom: attaching the anchor
sentence with a sentence sampled from the same para-
graph (and document). SDR and SBERT are reversed,
where SDR yields a higher score that is more faithful
to the sentences’ underlying semantics and topic.

Document Attention (CDA) model (Zhou et al.,
2020) and the Cross-Document Language Model
(CDLM) (Caciularu et al., 2021) suggest equipping
language models with cross-document information
for document-to-document similarity tasks. All the
above methods rely on supervision, either during
the pre-training phase or during fine-tuning. How-
ever, in the general case, document-to-document
similarity (as well as most similarity tasks), is
performed in unsupervised settings where no labels
(or citations) are available.

Another line of work consists of hierarchically
learning single document representations. For ex-
ample, Hierarchical Attention Networks (HANs)
incorporate words and sentences into the final doc-
ument representation showing competitive perfor-
mance in different tasks involving long document
encoding (Yang et al., 2016; Sun et al., 2018). More
recently, Yang et al. (2020) and Jiang et al. (2019)
investigated hierarchical models based on recur-
rent neural networks or BERT (Devlin et al., 2019)
leading to state-of-the-art results in supervised doc-
ument similarity challenges. These hierarchical
models employ a bottom-up approach in which a
long body of text (a document) is represented as an
aggregation of smaller components i.e., paragraphs,
sentences, and words. As opposed to these works,
SDR exploits a document’s hierarchical structure
while avoiding compressing it into a single rep-
resentation. This enables SDR to preserve more
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relevant information, leading to the superior results
presented in Sec. 4. Importantly, SDR is unsu-
pervised and does not require similarity labels or
further fine-tuning.

3 The SDR Model

We present the problem setup followed by a descrip-
tion of the SDR model, its training and inference.

3.1 Problem Setup

Given a collection of documents
D = {d1, . . . , dn} and a source document
s ∈ D, the goal is to quantify a score that would
allow us to rank all the other documents in D
according to their semantic similarity with the
source document s. In this work, we assume
that document similarity labels are not supplied.
Therefore, we propose a self-supervision loss that
utilizes labels that we invent - this is a proxy to the
ultimate similarity labels (if were given).

3.2 Training

SDR adopts the RoBERTa language model as
a backbone, and, following Gururangan et al.
(2020a), continues the pre-training of the RoBERTa
model on D. Unlike RoBERTa, the SDR training
solely relies on negative and positive sentence-pairs
produced by inter- and intra-document sampling,
respectively.

Specifically, the SDR training propagates
sentence-pairs sampled from D. The sentence-
pairs are sampled from the same paragraph with
probability 0.5 (intra-samples), otherwise from dif-
ferent paragraphs taken from the different docu-
ments (inter-samples). The sentences in each pair
are then tokenized, aggregated into batches, and
randomly masked in a similar way to the RoBERTa
pre-training paradigm. The SDR objective com-
prises a dual-term loss. The first term is the stan-
dard MLM loss adopted from Devlin et al. (2019).
Denoted by LMLM . The MLM loss allows the
model to specialize in the domain of the given col-
lection of documents (Gururangan et al., 2020b).

The second loss term is the contrastive loss (Had-
sell et al., 2006). Given a sentence pair (p, q) prop-
agated through the model, we compute a feature
vector for each sentence by average pooling the
token embeddings associated with each sentence
separately. The tokens embedding are the output
of the last encoder layer of the model. The con-
trastive loss is then applied to the pair of feature

vectors and aims to encourage the representations
of intra-samples to become closer to each other
while pushing inter-samples further away than a
predefined positive margin m ∈ R+.

Formally, the contrastive loss is defined as fol-
lows:

LC =

{
1− C (fp, fq) yp,q = 1

max (0, C (fp, fq)− (1−m)) yp,q = 0

(1)
where fp, fq are the pooled vectors extracted from
the tokens embedding of sentence p and q, re-
spectively. y(p, q) = 1 indicates an intra-sample
(sentence-pair sampled from the same paragraph),
otherwise negative (sentence-pair from different
documents). C(fp, fq) measures the angular dis-
tance between fp and fq using the Cosine function:

C (fp, fq) =
fT
p fq

|fp| |fq|
(2)

A demonstration of the inter-and intra-sampling
procedure associated with the cosine scores pro-
duced by SDR can be found in Fig.1. The figure
presents a representative sample as a motivation
for SDR sampling and contrastive loss, where SDR
is shown to score sentences in a way that is more
faithful to their underlying topic and semantics. Im-
portantly, as the inter-samples represent sentences
that were randomly sampled from different doc-
uments, it is not guaranteed that their semantics
would oppose each other. Instead, it is likely that
those sentences are semantically uncorrelated while
obtaining some level of opposite semantics only
in rare cases. Therefore, instead of pushing nega-
tive samples to completely opposite directions, we
leverage the contrastive loss in a way that encour-
ages orthogonality between inter-samples while
avoiding penalizing samples with negative scores.
Hence, in our experiments, we set m , 1, which
encourages inter-samples to have a cosine simi-
larity that is less than or equal to 0, and do not
penalize pairs with negative cosine scores.

Finally, both loss terms are combined together
yielding the total loss

Ltotal = LMLM + LC (3)
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Figure 2: A schematic illustration of the SDR inference. Given a source and candidate documents, and for each
paragraph-pair, SDR decomposes the paragraphs into sentences and maps each sentence into a vector. In the first
stage, a sentence-similarity matrix is computed for each paragraph-pair. In the second stage, paragraph-similarity
scores are inferred for all pairs and aggregated into a paragraph-similarity matrix. The matrix is then globally
normalized and reduced into a total score, estimating the cumulative similarity between the two documents.

3.3 Inference

Let s ∈ D be a source document composed of
a sequence of paragraphs s = (si)

ñ
i=1, where

each paragraph comprises a sequence of sentences
si = (ski )

i∗
k=1, and i∗ denotes the number of sen-

tences in si. Similarly, let c ∈ D be a candidate
document, c can be written as c = (cj)

m
j=1, where

cj = (crj)
j∗

r=1. The SDR inference scores the sim-
ilarity between s and every other candidate docu-
ment c by calculating two-staged hierarchical simi-
larity scores. The first stage operates on sentences
to score the similarity between paragraph-pairs,
and the second operates on paragraphs to infer the
similarity between two documents. In SDR, we
first map each document in D into a sequence of
vectors by propagating its sentences through the
model. Each sentence is then transformed into a
vector by average pooling the token embeddings of
the last encoder layers’ outputs. Next, for each can-
didate document c ∈ D, SDR iterates over the fea-
ture vectors associated with the sentences in s and
c and composes a sentence-similarity matrix for
each paragraph-pair from both documents. Specifi-
cally, for each paragraph-pair (si, cj) ∈ s×c, SDR
computes the cosine similarity between every pair

of sentence embedding from si × cj , forming a
sentence-similarity matrix. Focusing on the (k, r)
cell of this matrix, 1 ≤ k ≤ i∗, 1 ≤ r ≤ j∗, the
sentence-similarity matrix can be expressed as:

Mkr
ij , C(ski , c

r
j) (4)

Calculated for each paragraph pair (si, cj) ∈ s× c,
the paragraph-similarity scores are then aggregated
into a paragraph-similarity matrix. Focusing on
the (i, j) cell, the matrix can be expressed as:

P sc
ij ,

∑i∗

k=1 max
0≤r≤j∗

Mkr
ij

i∗
(5)

The motivation behind the similarity scores in Eq. 5
is that similar paragraph-pairs should incorporate
similar sentences that are more likely to correlate
under the cosine metric, due to the properties of the
contrastive loss employed throughout SDR training.
In order to rank all the documents in the dataset,
we compute the above paragraph-similarity matrix
for every candidate document c ∈ D. The resulted
paragraph-similarity matrices are then globally nor-
malized. Each row i in P sc

ij is z-score normalized
by a mean and standard deviation computed from
the row i values of P sc

ij across all candidates c ∈ D.
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The motivation behind this global normalization is
to refine the similarity scores by highlighting the
ones of the most similar paragraph-pairs and nega-
tively scores the rest. Throughout our early experi-
ments, we observed that different paragraph-pairs
incorporate sentences with different distributions of
cosine scores, where some source paragraphs may
yield a distribution of cosine values with a sizeable
margin compared to other paragraphs. This can be
attributed to the embedding space, for which some
regions can be denser than others.

Finally, a total similarity score is inferred for
each candidate c, using the above paragraph-
similarity matrix. The total similarity score aims to
quantify the cumulative similarity between s and c.
To this end, we aggregate all paragraph-similarity
scores for each paragraph in s as follows:

S(s, c) =

∑ñ
i=1 max

1≤j≤m

[
NRM(P sc

ij )
]
i,j

n
(6)

where NRM is the global normalization ex-
plained above. The essence of Eq.6 is to match
between the most similar paragraphs from s and c,
letting those most correlated paragraph-pairs con-
tribute to the total similarity score between both
documents. Finally, the ranking of the entire col-
lection d can be obtained by sorting all candidate
documents according to S(s, c), in a descending
order.

It is important to notice that (1) in SDR infer-
ence, we do not propagate documents-pairs through
the language model (which is computationally ex-
haustive). Instead, the documents are separately
propagated through the model. Then, the scoring
solely requires applications of non-parametric op-
erations2. (2) both SDR training and inference
operate on sentences and therefore do not suffer
from discrepancies between the two phases.

4 Experiments

4.1 Datasets

We conducted our experiments over two datasets
excerpted from Wikipedia. For each of the
Wikipedia-based datasets, we provide a human-
annotated test set of similarity labels. Examples
from the datasets are provided in Fig. 3.

2The cosine similarity function.

Wikipedia video games (WVG) The Wikipedia
video games dataset3 consists of 21,935 articles re-
viewing video games from all genres and consoles.
Each article consists of a different combination of
sections, such as summary, gameplay, plot, produc-
tion, etc. For this dataset, we publish ground-truth
similarity annotations, crafted by a domain expert,
for ∼ 90 source game articles. For each source,
the expert annotated∼ 12 articles of similar games.
Examples for the ground-truth similarities are: (1)
Grand Theft Auto - Mafia, (2) Burnout Paradise -
Forza Horizon 3.

Wikipedia wine articles (WWA) Wikipedia
wines4 dataset consists of 1635 articles from the
wine domain. This dataset consists of a mixture
of articles discussing different types of wine cate-
gories, brands, wineries, grape varieties, and more.
The ground-truth similarities were crafted by a hu-
man sommelier who annotated 92 source articles
with∼10 similar articles, per source. Examples for
ground-truth expert-based similarities are: (1) Dom
Pérignon - Moët & Chandon, (2) Pinot Meunier -
Chardonnay.

4.2 Quantitative Metrics

We evaluated the performance of SDR, the base-
lines, and ablations using the MPR,MRR and
HR@k metrics:

Mean Percentile Rank (MPR) The mean per-
centile rank is the average of the percentile ranks
for every sample with ground truth similarities in
the dataset. Given a sample s, the percentile rank
for a true recommendation r is the rank the model
gave to r divided by the number of samples in the
dataset. MPR evaluates the stability of the model,
i.e, only models where all ground truth similarities
had a high rank by the model will have a good
score.

Mean Reciprocal Rank (MRR) The mean re-
ciprocal rank is the average of the best reciprocal
ranks for every sample with ground truth similari-
ties in the dataset. Given a sample with Ms ground
truth similarities we first mark the rank of each
ground truth recommendation by the model and
then take the reciprocal of the best (lowest) rank.

Hit Ratio at k (HR@k) HR@k evaluates the
percentage of true predictions in the top k retrievals

3Wikipedia Video Games dataset.
4Wikipedia Wine Articles dataset.

https://zenodo.org/record/4812962#.YK5z2KgzY2w
https://zenodo.org/record/4812960#.YK5z2agzY2w
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Figure 3: Samples from the Wikipedia Video Games (WVG) and Wikipedia Wines Articles (WWA) datasets. For
each seed item (left), the opening sentence of each of the first three paragraphs is presented. A recommended
sample by the domain expert is shown on the right.

made by the model, where a true prediction corre-
sponds a candidate sample from the ground truth
annotations.

4.3 Baseline models

We compare SDR with the following baselines:

Latent Dirichlet Allocation (LDA) LDA (Blei
et al., 2003) is one of the renowned algorithms for
topic modeling and text-matching. LDA assumes
that documents are generated by sampling from a
distribution of latent topics, where each topic can
be described by another distribution defined over
the vocabulary. For every LDA experiment, we
perform a grid search with 1, 000 different config-
uration of hyper-parameters. The reported perfor-
mance corresponds to the model with the highest
topic coherence value (Newman et al., 2010).

BERT and Longformer For BERT (Devlin
et al., 2019) and Longformer (Beltagy et al., 2020)
(see Sec. 2), we evaluate two different variants.
First, we employ the publicly available pre-trained
weights of the models. Second, we continue the
pre-training of the models over the corpora induced
by the datasets, applying our proposed method as-
sociated with each model. We used only the “large”
architectures during all the experiments.

SBERT The SBERT model (Reimers and
Gurevych, 2019) utilizes a fine-tuning approach
that produces semantically meaningful embeddings
under a cosine-similarity metric.

We evaluate SBERT model under two infer-
ence configurations (1) using the original weights
trained on the NLI dataset (Bowman et al., 2015),
and (2) after fine-tuning with the pseudo labels
presented in Sec. 3.2.

4.4 Inference Methods

To compare SDR with the above baselines, which
are restricted by a maximal sequence length, we fol-
low previous procedures (Reimers and Gurevych,
2019; Beltagy et al., 2020) and report the perfor-
mance of four different inference techniques ap-
plied on the output embeddings of the different
models :

• CLS - use the special CLS token embedding
of the N5 first tokens.

• FIRST - use the mean of the embeddings of
the N first tokens.

• ALL - propagating the entire document in

5N is the maximal sequence length the model supports in
one forward pass.
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Video games Wines

Architecture Inference MPR MRR HR@10 HR@100 MPR MRR HR@10 HR@100

LDA - 94.1% 31.8% 8.8% 28.1% 83.7% 23.4% 8.7% 41.3%

SBERT First 86.4% 42.6% 11.9% 26.9% 83.5% 31.1% 11.4% 41.8%
SBERT ALL 92.6% 51.1% 16.1% 37.5% 81.3% 28.3% 11.1% 37.2%
SBERT SDRinf 94.2% 53.4% 18.2% 39.7% 83.6% 32.3% 12.1% 41.0%

Longformer CLS 58.0% 10.4% 2.1% 6.3% 65.0% 15.7% 4.8% 14.6%
Longformer First 66.6% 3.3% 1.3% 3.7% 56.1% 12.4% 3.5% 10.2%
Longformer ALL 66.0% 9.7% 2.4% 4.3% 64.7% 13.9% 2.2% 11.8%
Longformer SDRinf 68.5% 10.2% 4.1% 7.7% 55.3% 16.4% 3.3% 12.3%

BERT large CLS 69.6% 30.9% 9.7% 20.3% 70.1% 30.3% 9.5% 34.7%
BERT large First 61.1% 15.5% 3.8% 9.8% 71.3% 21.8% 6.7% 20.9%
BERT large ALL 65.2% 27.2% 7.1% 16.2% 64.6% 27.8% 7.8% 26.2%
BERT large SDRinf 71.2% 33.5% 12.9% 22.2% 75.5% 24.7% 9.7% 36.8%

SDR SDRinf 97.4% 64.0% 23.6% 54.0% 89.3% 50.9% 17.0% 59.0%

Table 1: Similarity results evaluated on the video games (left), movies (middle) and wines (right) datasets from
wikipedia, based on expert annotations. The second column specifies the applied inference method, as described
in Section 4.4. SBERTv refers to the vanilla SBERT (without continuing training on each dataset by utilizing our
pseudo-labels).

chunks, then use the mean of the embeddings
of all the tokens in the sample.

• SDRinf - use the hierarchical SDR inference
described in Sec. 3.3.

4.5 Results

The results over the document similarity bench-
marks are depicted in Tab. 1. The scores are based
on the ground-truth expert annotations associated
with each dataset. The results indicate that SDR
outperforms all other models by a sizeable mar-
gin. Recall that the underlying LMs we evalu-
ated (BERT, Longformer) were pre-trained on the
MLM objective. This makes them hard to gener-
ate meaningful embeddings suitable for probing
similarity using the Cosine-similarity metric, as
previously discussed in Sec. 2. Comparing to the
best variant of each model, SDR presents absolute
improvements of ∼7-12% and ∼11-13% in MPR,
and MRR, respectively, and across all datasets.

SBERT, as opposed to the underlying models
above, presents a cosine similarity-based loss dur-
ing training. Compared to SDR, we observe that
a fine-tuned SBERT, which utilizes the pseudo-

labels introduced in Sec. 3.2, shows inferior results
across all datasets, yielding -3% MPR, -5% MRR
and -2% HR@10 in the Video games. This can be
attributed to SBERT’s cosine loss, that constantly
penalizes negative pairs to reach a cosine score of
−1. For uncorrelated sentence-pairs, such prop-
erty can hinder the convergence of the model. See
the below ablation analysis for more details. We
observe that SBERT’s suffers from an additional
degradation in performance when applied with the
original SBERT weights, yielding -6% MPR and
-8% MRR. This can be attributed to the importance
of continue training on the given dataset at hand.

Notably, as shown in the table, applying the
SDR inference to other baseline language models
improves their performance by a significant mar-
gin. This is another evidence of our inference’s
advantage over other methods, especially as we
observe sizeable gains across all baseline models
and datasets.

Inspecting SBERT results, we see that the
SDRinf gains increase in all metrics, yielding an
increase of at least +3% MPR, +4% MRR, +6%
HR@10 and +7% HR@100. This can be attributed
to the importance of the hierarchical evaluation
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Video games Wines

Model
Seed

Dead Island Mafia III Hagafen Cellars Champagne

SDR
1. Dead Island: Riptide 1. Mafia II 1. Golan Heights Winery 1. Champagne Krug
2. Dying Light 2. Saints Row 2 2. Manischewitz 2. Sparkling wine
3. Dead Rising 4 3. Grand Theft Auto V 3. Barkan Wine Cellars 3. Champagne Krug

SBERT
1. Fallout 3 1. Red Dead Redemption 2 1. Petit Rouge 1. Moët & Chandon
2. Dead Rising 3 2. Dark Souls II 2. Roter Veltliner 2. Chardonnay
3. Wasteland 2 3. Battlefield 3. Trisaetum Winery 3. Chasselas

BERT
1. The Outer Worlds 1. The Godfather 1. Domaine Dujac 1. Roter Veltliner
2. Metro Exodus 2. Dark Souls 2. Petri Wine 2. Table wine
3. Rage 2 3. Code Vein 3. Blue Nun 3. Champagne wine region

Table 2: Similarity predictions for the Wikipedia video games (WVG) and Wikipedia wine articles (WWA) datasets.
For each of the shown recommendations, a domain expert rated the similarity with the source document. Red,
yellow, and green indicate poor, mediocre, and high similarity (respectively).

for long documents and indicate the struggle trans-
formers have in embedding long text into a single
vector. Importantly, SDR outperforms SBERT by
a significant margin, even when SBERT is applied
with SDRinf. This is due to SDR training, which
incorporates the contrastive loss for promoting or-
thogonality between negative sentence-pairs.

Table 2 presents qualitative results on randomly
chosen samples from the WWA and WVG datasets.
We compare SDR with the top two baselines as-
sociated with the highest scores in the Wikipedia
evaluations, namely SBERT and BERT. Similarly
to the evaluation scheme presented for the quan-
titative experiments, we employ a self-supervised
training for SBERT, with the same pseudo-labels
as in SDR training. In Tab. 2, we observe that SDR
correctly understands the essence of the article, as
finding Grand Theft Auto V similar to Mafia III,
or Sparkling wine similar to Champagne. As to
SBERT results, we see that the model fails to grasp
the article’s underlying topic in 50% of the predic-
tions. For example, SBERT matches between Bat-
tlefield and Mafia III, or Chasselas and Champagne.
This can be attributed to the fact that SBERT does
not apply a hierarchical inference and struggles
to compress the entire document representation in
one vector. This becomes especially crucial in very
long documents, which are common in the WVG
dataset. In BERT, we observe document similarity
predictions of relatively poor quality. For example,
for Hagafen Cellars BERT retrieves Blue Nun, or
for Champagne it matches Table wine. The rela-
tive degradation in performance can be attributed
to the BERT pre-training procedure, which inher-
ently does not optimize text embedding under a
well-defined metric.

The above results highlight the benefit obtained
by the SDR model, which utilizes a hierarchical
inference, along with a self-supervised training pro-
cedure that embeds sentences under a well-defined
similarity metric.

4.6 Ablation Study
We performed an ablation study to asses the effec-
tiveness of SDR. To that end, we used the video
games dataset, described in Sec. 4.1. The following
ablations are considered:

• No hierarchical inference - the embeddings
of the first N tokens of each document are
averaged, producing one embedding vector
per document. These embeddings are com-
pared via the cosine function to score the sim-
ilarity between documents. This is similar
to the scoring procedure from (Reimers and
Gurevych, 2019).

• Paragraph-level inference - the paragraph-
similarity matrix is computed directly using
the first N tokens of each paragraph. This
variant neglects the sentence-similarity matrix
from stage 1 2 of the inference mechanism.
The scoring proceeds by stage 2 of the infer-
ence, as described in Sec. 3.3.

• No training - the BERT pre-trained weights
are used and applied with the proposed hi-
erarchical inference (i.e., we do not employ
additional pre-training on the given collection
of documents).

• Global normalization - the SDR inference
is applied without globally normalizing the
paragraph-similarity matrix.
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Video games

MPR MRR HR@10

(i) No hierarchical inference 96.3% 52.4% 20.1%
(ii) Paragraph-level inference 97.4% 58.5% 22.8%
(iii) No training 87.1% 28.2% 7.0%
(iv) No normalization 97.3% 63.2% 22.6%
(v) No contrastive loss 91.5% 46.0% 14.5%

Full method 97.4% 64.0% 23.6%

Table 3: Ablation study results.

• No contrastive loss - the SDR training is ap-
plied without the contrastive loss term (solely
using the MLM objective).

• Standard cosine loss - the SDR training em-
ploys a contrastive loss with a margin of
m = 2. This is equivalent to the standard
Cosine-Similarity loss, that reinforces nega-
tive and positive samples to cosine scores of
−1 and 1, respectively.

The results depicted in Tab.3 indicate that our
proposed hierarchical inference is highly beneficial,
even compared to a paragraph-level inference, that
it is crucial to employ the proposed training in the
way it is done in SDR, and that it is better to apply
global normalization.

Particularly noticeable is the contrastive loss,
whose gain is present in both (ii) and (iii), for which
the biggest degradation in the results took place.
Another significant improvement is due to the hi-
erarchical inference, with a leap of 11% in MPR
by applying paragraph-level inference, and another
9% by applying the two-stage hierarchy.

4.7 Implementation details

SDR and all other transformer-based baselines uti-
lize the Huggingface package 6. In our transformer-
based baselines experiments, we use the best-
published model configuration associated with each
variant. To split the paragraphs into sentences as
suggested in SDR, we used the NLTK package 7,
resulting in an average sentence length of 16 to-
kens. We use a train-validation split of 90%-10%
to evaluate the MLM and cosine similarity accuracy
during training.

For LDA modeling and similarity evaluation, we

6HuggingFace
7nltk

used the implementation of the Gensim package8.
We conduct a hyperparameter search, based on the
topic coherence score, to find the best LDA param-
eters for each dataset.

For SBERT we used the official package9, with
the released fine-tuned weights for the STS task.
All our experiments were conducted using a single
Tesla V100 32GB card, with a batch size of 8 both
for training and evaluation.

5 Conclusions

In this work, we presented Self-Supervised Doc-
ument Similarity Ranking (SDR), a novel self-
supervised model for document similarity, support-
ing extremely long documents. Documents’ simi-
larities are extracted via a hierarchical bottom-up
scoring procedure, which preserves more semantic
information, leading to superior similarity results.
For our evaluations, we assembled two manually-
labeled test-sets using expert annotations, that will
be made publicly available to expedite future re-
search on long-document similarities.
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Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020b. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
8342–8360, Online. Association for Computational
Linguistics.

Raia Hadsell, Sumit Chopra, and Yann LeCun. 2006.
Dimensionality reduction by learning an invariant
mapping. In 2006 IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition
(CVPR’06), volume 2, pages 1735–1742. IEEE.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and
Kilian Q Weinberger. 2017. Densely connected con-
volutional networks. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion, pages 4700–4708.

Jyun-Yu Jiang, Mingyang Zhang, Cheng Li, Mike Ben-
dersky, Nadav Golbandi, and Marc Najork. 2019.
Semantic text matching for long-form documents.
In Proceedings of the Word Wide Web Conference
(WWW).

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Itzik Malkiel, Oren Barkan, Avi Caciularu, Noam
Razin, Ori Katz, and Noam Koenigstein. 2020. Re-
coBERT: A catalog language model for text-based
recommendations. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
1704–1714, Online. Association for Computational
Linguistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed represen-
tations of words and phrases and their composition-
ality. arXiv preprint arXiv:1310.4546.

David Newman, Jey Han Lau, Karl Grieser, and Tim-
othy Baldwin. 2010. Automatic evaluation of topic
coherence. In Human language technologies: The
2010 annual conference of the North American chap-
ter of the association for computational linguistics,
pages 100–108.

Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz
Kaiser, Noam Shazeer, Alexander Ku, and Dustin
Tran. 2018. Image transformer. In International
Conference on Machine Learning, pages 4055–4064.
PMLR.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
bert: Sentence embeddings using siamese bert-
networks. arXiv preprint arXiv:1908.10084.

Qingying Sun, Zhongqing Wang, Qiaoming Zhu, and
Guodong Zhou. 2018. Stance detection with hierar-
chical attention network. In Proceedings of the 27th
International Conference on Computational Linguis-
tics, pages 2399–2409, Santa Fe, New Mexico, USA.
Association for Computational Linguistics.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 353–355, Brussels, Belgium.
Association for Computational Linguistics.

Tian Wang and Yuyangzi Fu. 2020. Item-based col-
laborative filtering with BERT. In Proceedings of
The 3rd Workshop on e-Commerce and NLP, pages
54–58, Seattle, WA, USA. Association for Computa-
tional Linguistics.

https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/2020.acl-main.207
https://doi.org/10.18653/v1/2020.acl-main.207
https://doi.org/10.18653/v1/2020.acl-main.207
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.18653/v1/2020.findings-emnlp.154
https://doi.org/10.18653/v1/2020.findings-emnlp.154
https://doi.org/10.18653/v1/2020.findings-emnlp.154
https://www.aclweb.org/anthology/C18-1203
https://www.aclweb.org/anthology/C18-1203
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/2020.ecnlp-1.8
https://doi.org/10.18653/v1/2020.ecnlp-1.8


3098

Liu Yang, Mingyang Zhang, Cheng Li, Michael Ben-
dersky, and Marc Najork. 2020. Beyond 512 tokens:
Siamese multi-depth transformer-based hierarchical
encoder for document matching. arXiv preprint
arXiv:2004.12297.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchical
attention networks for document classification. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1480–1489, San Diego, California. Associa-
tion for Computational Linguistics.

Xuhui Zhou, Nikolaos Pappas, and Noah A. Smith.
2020. Multilevel text alignment with cross-
document attention. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 5012–5025, On-
line. Association for Computational Linguistics.

https://doi.org/10.18653/v1/N16-1174
https://doi.org/10.18653/v1/N16-1174
https://doi.org/10.18653/v1/2020.emnlp-main.407
https://doi.org/10.18653/v1/2020.emnlp-main.407

