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Abstract

Bilingual Lexicon Induction (BLI) aims to
map words in one language to their transla-
tions in another, and are typically through
learning linear projections to align monolin-
gual word representation spaces. Two classes
of word representations have been explored for
BLI: static word embeddings and contextual
representations, but there is no studies to com-
bine both. In this paper, we propose a sim-
ple yet effective mechanism to combine the
static word embeddings and the contextual rep-
resentations to utilize the advantages of both
paradigms. We test the combination mecha-
nism on various language pairs under the su-
pervised and unsupervised BLI benchmark set-
tings. Experiments show that our mechanism
consistently improves performances over ro-
bust BLI baselines on all language pairs by av-
eragely improving 3.2 points in the supervised
setting, and 3.1 points in the unsupervised set-
ting1.

1 Introduction

Bilingual Lexicon Induction (BLI) aims to find
bilingual translation lexicons from monolingual
corpora in two languages (Haghighi et al., 2008;
Xing et al., 2015; Zhang et al., 2017a; Artetxe et al.,
2017; Conneau et al., 2017), and is applied on nu-
merous NLP tasks such as POS tagging (Zhang
et al., 2016), parsing (Xiao and Guo, 2014), and ma-
chine translation (Irvine and Callison-Burch, 2013;
Qi et al., 2018).

Most work on BLI learns a mapping between
two static word embedding spaces, which are pre-
trained on large monolingual corpora (Ruder et al.,
2019). Both linear mapping (Mikolov et al., 2013;
Xing et al., 2015; Artetxe et al., 2016; Smith et al.,
2017) and non-linear mapping (Mohiuddin et al.,

∗ Corresponding Author.
1Code is released at https://github.com/zjpbinary/CSCBLI

2020) methods have been studied to align the two
spaces. Recently, other than the static word embed-
dings, contextual representations are used for BLI
due to the significant progresses on cross-lingual
applications (Aldarmaki and Diab, 2019; Schuster
et al., 2019). Although the static word embed-
dings and the contextual representations exhibit
properties suited for alignment, there is no works
to combine the two paradigms.

On one hand, the static word embeddings have
been widely used for BLI, but one specific embed-
ding mapping function does not ensure that in all
conditions, words in a translation pair are nearest
neighbors in the mapped common space. On the
other hand, the contextual representations contain
rich semantic information beneficial for alignment,
but the dynamic contexts of word tokens pose a
challenge for aligning word types.

In this paper, we propose a combination mech-
anism to utilize the static word embeddings and
the contextual representations simultaneously. The
combination mechanism consists of two parts. The
first part is the unified word representations, in
which a spring network is proposed to use the con-
textual representations to pull the static word em-
beddings to better positions in the unified space for
easy alignment. The spring network and the unified
word representations are trained via a contrastive
loss that encourages words of a translation pair to
become closer in the unified space, and penalizes
words of a non-translation pair to be farther. The
second part is the weighted interpolation between
the words similarity in the unified word representa-
tion space and the words similarity in the contextual
representation space.

We test the proposed combination mechanism
in both the supervised BLI setting which can uti-
lize a bilingual dictionary as the training set, and
the unsupervised BLI setting which does not allow
using any parallel resources as supervision signal.
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On BLI benchmark sets of multiple language pairs,
our combination mechanism performs significantly
better than systems using only the static word em-
beddings and systems using only the contextual
representations. Our mechanism improves over ro-
bust BLI baselines on all language pairs, achieving
average 3.2 points improvement in the supervised
setting, and average 3.1 points improvement in the
unsupervised setting.

2 Background

The early works on Bilingual Lexicon Induction
(BLI) date back to several decades ago, including
feature-based retrieval (Fung and Yee, 1998), distri-
butional hypothesis (Rapp, 1999; Vulić and Moens,
2013), and decipherment (Ravi and Knight, 2011).
Following Mikolov et al. (2013), which pioneered
the embedding based BLI method, word representa-
tion based method becomes the dominant approach,
and can be categorized into two classes: static word
embedding based method, and contextual represen-
tation based method.
• Static Word Embedding Based Method

Word embeddings of different languages are
pre-trained in large monolingual corpora in-
dependently. Then a mapping function is ap-
plied to align the embedding spaces of the two
languages (Mikolov et al., 2013; Xing et al.,
2015; Artetxe et al., 2016; Smith et al., 2017).

We follow one robust BLI system VecMap
(Artetxe et al., 2018a,b), which maps both
source space and target space into a third com-
mon space. Let Ex and Ey be the word em-
bedding matrices in two languages for a given
bilingual dictionary such that their ith rows
are the embeddings of words of the ith trans-
lation pair in the dictionary. The training ob-
jective is to find mapping functions Wx and
Wy such that

W ?
x ,W

?
y = arg max

Wx,Wy∈Md(R)
cos(ExWx, EyWy)

(1)

where d is the dimension of the embeddings,
Md(R) is the space of d× d matrices of real
numbers. The optimalWx andWy maximizes
the cosine similarity between words of each
translation pair in the mapped common space.
In the unsupervised version where no bilin-
gual dictionary is given, an artificial dictionary

is initialized and iteratively updated through
training Wx and Wy according to equation (1)
(Artetxe et al., 2018b).

Both mapping functions are constrained to
be orthogonal during training by settingWx =
U andWy = V , whereUΣV T = XTY is the
singular value decomposition of XTY . Such
orthogonal constraint is based on the assump-
tion that the source embedding space and the
target embedding space are isometric, which
is a particularly strong assumption that does
not hold in all conditions (Zhang et al., 2017b;
Søgaard et al., 2018). To depart from the isom-
etry assumption, Patra et al. (2019) uses a
semi-supervised technique that leverages both
seed dictionary and a larger set of unaligned
word embeddings, Mohiuddin et al. (2020)
uses a non-linear mapping function that is not
constrained to be orthogonal.

We propose another method to relax the
isometry assumption by combining the con-
textual representations with the word embed-
dings to compensate the shortage of the overly
strong assumption.

• Contextual Representation Based Method

Contextual representations can be obtained
through multilingual pre-training, which en-
codes whole sentence and outputs contextual
representation for each word (Devlin et al.,
2019; Lample and Conneau, 2019). Due to the
rich context information contained in the con-
textual representations, there are endeavors to
align them in different languages (Schuster
et al., 2019; Aldarmaki and Diab, 2019; Wang
et al., 2020; Kulshreshtha et al., 2020; Cao
et al., 2020).

Since a word may appear in different sen-
tences with different contexts, Schuster et al.
(2019) use an average anchor to summarize
multiple contexts for a word type and align
the anchors of different languages, while other
works aim to align each individual context
representation based on parallel corpora, in-
cluding learning alignment on sentence level
representations and applying the learned map-
ping on word level contextual representa-
tions (Aldarmaki and Diab, 2019), using word
alignments in a parallel corpora to learn the
mapping for word contextual representations
(Wang et al., 2020), and directly minimizing
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Figure 1: The illustration of the proposed combination mechanism. (A) is the static word embedding space, where
ex and ey are the source and target embeddings, respectively. (B) is the unified word representation space which
consists of the mapped word embeddings pulled by a spring network Fx/Fy with the contextual representations
as input. We just depict two springs for illustration. (C) is the mapped contextual representation space. (D) is the
original contextual representation space. ax and ay are the source and target contextual representations, i.e., the
average anchors, respectively. In the similarity interpolation shown in the bottom, ux and uy are the unified word
representations in the two languages, a

′

x and a
′

y are the mapped contextual representations in the two languages,
cos denotes the cosine similarity function, λ denotes the weight.

the distance between two contextual repre-
sentations of an aligned word pair in parallel
corpora without mapping (Cao et al., 2020).

We adopt the average anchor method for
the contextual representations (Schuster et al.,
2019), which does not depend on parallel cor-
pora. Let the contextual representation of a
source word x in context ci be denoted as rx,ci .
If x appears a total of p times in the source
corpus, the average anchor for x across all
contexts is:

ax =

∑p
i=1 rx,ci
p

(2)

Similar to the mapping for the static word
embeddings, we conduct mapping for the av-
erage anchors. Let Ax and Ay be the ma-
trices of average anchors in two languages
with correspondence to word pairs from a
given bilingual dictionary. The mapping func-
tions Vx and Vy are optimized by maximiz-
ing cos(AxVx, AyVy), where Ax and Ay are
fixed, Vx and Vy ∈ Md′(R), and d′ is the di-
mension of the contextual representations.

Besides the above methods, there is another di-
rection that extracts word alignments in pseudo par-
allel corpora for BLI. The pseudo parallel corpora

are built by either the unsupervised machine trans-
lation (Artetxe et al., 2019) or the unsupervised
bitext mining (Shi et al., 2021). Both methods need
significant computation overload or use monolin-
gual corpora that are magnitudes larger than ours,
and are beyond the scope of this paper that focuses
on representation based methods.

3 Proposed Combination Mechanism for
BLI

Since there is no work to combine both the static
word embeddings and the contextual representa-
tions, we propose a combination mechanism illus-
trated in Figure 1. The mechanism first builds a
unified word representation space that unifies the
static word embeddings and the contextual repre-
sentations, then performs similarity interpolation
between the unified space and the contextual space.

3.1 The Unified Word Representations

As shown in Figure 1, the original word embed-
ding space (A) is mapped to (B) through the map-
ping functions. Since the mapping functions are
orthogonal, (A) is just rotated to (B). Notice that
the spaces of the two languages are not necessarily
isometric everywhere, some words in certain trans-
lation pairs are still far away from each other after



2946

rotation. To pull words in a translation pair getting
closer, we propose a spring network that can pull
the mapped embedding points to better positions
such that words in a translation pair are nearest
neighbors of each other. Since the contextual repre-
sentations contain rich context information that can
be used as the flexible adjustment, the spring net-
work takes the contextual representations as input,
and outputs offsets for the word embeddings.

Specifically, in the unified word representations,
the mapped word embeddings are pulled to new po-
sitions by offsets, which are produced by the spring
network with the the contextual representations as
input:

Ux = E
′
x + γ1 � Fx(Ax)

Uy = E
′
y + γ2 � Fy(Ay) (3)

where Ux and Uy are the unified word representa-
tions,E

′
x andE

′
y are the mapped word embeddings,

Fx and Fy are the spring networks, and γ1or2 is the
weight vector, which is used to element-wisely mul-
tiply each row of the output of the spring network.
Take the source side for example, the mapped word
embedding matrix E

′
x is added with a weighted

offset produced by the spring network Fx on the
contextual representation (i.e., the average anchor)
matrix Ax.

The Spring Network stacks two feedforward lay-
ers with Tanh activations on top of the contextual
representation matrices. The first layer transforms
the dimension of the contextual representation d′ to
the dimension of the word embedding d. Equations
(4-5) list the network structure of both sides.

A1
x = φ(θ0

x(Ax)), A1
y = φ(θ0

y(Ay)) (4)

A2
x = φ(θ1

x(A1
x)), A2

y = φ(θ1
y(A1

y)) (5)

where φ denotes the Tanh activation, and θ denotes
the feedforward layer. A2

x/y is the output of the
spring network, and fulfills as the offset distance to
compensate the deviation of words in each transla-
tion pair in the mapped word embedding space.

Since we use cross-lingual pre-training (Lam-
ple and Conneau, 2019) to generate the contextual
representations, which are actually BPE’s (Sen-
nrich et al., 2016) contextual representations, we
have to form the contextual representations in
the word level. Suppose a word x has q BPEs,

and x appears p times in the monolingual cor-
pus, then the word level contextual representation
ax =

∑p
i=1 (

∑q
j=1 rbj ,ci,j/q)/p, where rbj ,ci,j de-

notes the representation of the jth BPE with the ith
context ci,j . ax actually averages q BPEs’ repre-
sentation at first, then averages p contexts. After
this cascaded averaging, it constitutes one row of
Ax.

Contrastive Training is used to train the spring
networks Fx and Fy with the pre-trained mapped
word embeddings and the contextual representa-
tions fixed in the unified space. Basically, through
the spring adjustment, the training encourages par-
allel words to get closer, and drives non-parallel
words to be farther. It is divided into two scenarios:
supervised contrastive training and unsupervised
contrastive training.

• In the supervised contrastive training, given
a bilingual dictionary with I translation pairs,
the contrastive loss is:

Lsup =−
I∑

i=1

(J × cos(uix, uiy)

−
J∑

j=1

cos(uix, u
j
ȳ)) (6)

where uix and uiy are the unified representa-
tions corresponding to the ith entry of the
given bilingual dictionary.

In equation (6), (uix, u
i
y) is the positive

translation pair according to the given dictio-
nary, and the cosine similarity of this pair is
maximized during training, while (uix, u

j
ȳ) is

the negative pair where ȳ is not aligned to x.
The cosine similarity of (uix, u

j
ȳ) is minimized

during training.

We select J negative pairs for a source word
x. In the implementation, we use Jbest out-
puts of the current model excluding the correct
translation as the negative pairs. To keep bal-
ance between positive and negative pairs, the
positive pair is copied J times to pair with
negative pairs.

During inference, we select y =
arg maxy cos(ux, uy) as the translation of x.

• In the unsupervised contrastive training, no
bilingual dictionary is given. The contrastive
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loss is the same to that of the supervised con-
trastive training, except that the bilingual dic-
tionary is not given. We initialize the bilingual
dictionary using the output of the static word
embedding based unsupervised method, and
iteratively update it by using the trained model
of last iteration to find new translations for
given source words and compose a new dic-
tionary, which is used to train the new model.
Such process iterates until the dictionary does
not change any more.

3.2 Similarity Interpolation

The similarity interpolation is for inference. As
shown in Figure 1, both the unified word repre-
sentation space and the mapped contextual repre-
sentation space can output the cosine similarities
between words. Given a source word x, we inter-
polate both similarities as below:

S = cos(ux, uy) + λcos(a
′
x, a

′
y) (7)

where λ is the weight, a
′

x/y is the mapped con-
textual representation, which is pre-trained as in-
troduced in the section of the background of the
contextual representation based method. We aim
to find y that has the maximal S as the translation
of x.

In the supervised setting, λ is tuned on the val-
idation set consisting of translation pairs. In the
unsupervised setting, λ is tuned by an unsupervised
procedure: when source-to-target model and target-
to-source model have been trained, the word x in
the validation set is aligned to y′ based on equation
(7), then y′ is back aligned to x based on the inverse
version of equation (7). We select λ that has the
highest accuracy of this back alignment to x.

4 Experiments

We test our combination mechanism in super-
vised and unsupervised BLI tasks on English-
Espanish (EN-ES), English-Arabic (EN-AR),
English-Chinese (EN-ZH), English-German (EN-
DE), and English-French (EN-FR).

4.1 Data

We need monolingual corpora to compute the con-
textual representations. Unfortunately, most exist-
ing BLI datasets distribute pre-trained word embed-
dings alone, but not the monolingual corpora used

to train them. For that reason, we use WikiExtrac-
tor2 to extract plain text from Wikipedia dumps,
and preprocess the resulting corpora using stan-
dard Moses (Koehn et al., 2007) tools by applying
sentence splitting, punctuation normalization, to-
kenization, and lowercasing. On these corpora,
we use the cross-lingual pre-training system XLM
(Lample and Conneau, 2019)3 to compute the con-
textual representations.

Meanwhile, we also use these corpora to train
the static word embeddings by using fastText4 to
ensure that both the contextual representations and
the static word embeddings come from the same
data. We use the bilingual dictionaries released
by Muse project5 in our experiments. Note that
some words in these dictionaries do not necessarily
appear in our monolingual corpora, we have to
recompose the training, validation, and test sets
such that all words in these sets are included in our
monolingual corpora. In the end, we have 5000
entries with unique source words in the training set,
and 1500 entries with unique source words in both
the validation set and the test set for all language
pairs.

4.2 Baseline Systems
Baseline systems are divided into two tasks as be-
low. We run the released code of each baseline
system in our experiments.
Supervised BLI task, which is allowed to use
bilingual dictionaries for training and validation.
The baseline systems are:

• Muse: Supervised Muse is set as the base-
line in Conneau et al. (2017). It uses iterative
Procrustes alignment for supervised BLI.

• VecMap6: Artetxe et al. (2018a) use a multi-
step framework consisting of several steps:
whitening, orthogonal mapping, re-weighting,
de-whitening, and dimensionality reduction.

• RCSLS7: In addition to use CSLS during in-
ference, Joulin et al. (2018) minimize a con-
vex relaxation of CSLS loss during training,
and improve the supervised BLI performance.

2https://github.com/attardi/wikiextractor
3https://github.com/facebookresearch/xlm. We use the

MLM model of 15 languages with tokenize + lowercase +
no accent + BPE.

4https://github.com/facebookresearch/fastText/
5https://github.com/facebookresearch/MUSE
6https://github.com/artetxem/vecmap
7https://github.com/facebookresearch/

fastText/tree/master/alignment

https://github.com/facebookresearch/fastText/tree/master/alignment
https://github.com/facebookresearch/fastText/tree/master/alignment
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EN-ES EN-AR EN-ZH EN-DE EN-FR avg→ ← → ← → ← → ← → ←
Supervised BLI

Muse(Conneau et al., 2017) 77.80 81.40 49.47 55.07 40.87 43.07 69.80 71.07 78.67 79.33 64.65
VecMap(Artetxe et al., 2018a) 77.20 82.13 53.53 57.73 52.13 46.67 70.33 72.80 78.40 80.47 67.14
RCSLS(Joulin et al., 2018) 79.27 84.30 55.53 61.00 53.07 48.87 73.07 75.40 79.60 82.07 69.22
BLISS(Patra et al., 2019) 79.67 84.87 54.47 59.60 50.80 48.80 73.33 76.13 79.20 82.93 68.98
UnifiedVecMap 79.60 84.73 56.20 60.73 53.80 48.93 73.27 74.47 79.33 81.33 69.24
ContextualVecMap 44.07 50.33 5.07 7.73 21.93 9.67 44.60 47.87 57.47 65.20 35.39
InterpolationVecMap 80.47 85.70 57.13 61.47 56.27 50.60 74.13 77.13 80.80 83.40 70.71
UnifiedRCSLS 80.13 86.60 55.87 62.47 56.67 51.13 74.26 77.93 81.20 83.87 71.01
ContextualRCSLS 46.27 51.40 3.67 7.13 19.47 7.93 45.67 47.80 58.00 65.20 35.25
InterpolationRCSLS 80.67 87.67 59.40 62.73 59.40 52.27 74.87 79.67 81.80 85.40 72.39

Unsupervised BLI
Muse(Conneau et al., 2017) 77.06 81.53 48.00 55.47 24.26 43.00 70.13 71.20 78.73 78.40 62.77
VecMap(Artetxe et al., 2018b) 77.60 81.67 50.87 56.73 34.33 44.00 70.00 71.80 78.73 80.27 64.60
Ad.(Mohiuddin and Joty, 2019) 77.93 82.20 50.07 57.33 34.67 43.67 69.13 72.47 78.46 80.13 64.61
Unified 79.47 82.60 52.47 57.87 35.93 46.07 71.07 74.00 80.27 80.87 66.06
Contextual 46.33 55.93 3.87 7.53 17.40 4.87 43.53 44.33 56.20 63.93 34.39
Interpolation 79.93 85.33 52.73 58.47 37.07 46.27 72.53 78.73 81.80 84.13 67.70

Table 1: P@1 on all language pairs. “Unified” denotes our unified word representation based method, which com-
putes cos(ux, uy), “Contextual” denotes the contextual representation based method, which computes cos(a

′

x, a
′

y),
“Interpolation” denotes our similarity interpolation, which computes cos(ux, uy) + λcos(a

′

x, a
′

y). The subscript
“VecMap” denotes that our method is based on the work of Artetxe et al. (2018a), the subscript “RCSLS” denotes
that our method is based on the RCSLS criterion in training (Joulin et al., 2018). In unsupervised BLI, there is no
subscript in our method, which means using the default “VecMap” (Artetxe et al., 2018b).

• BLISS8: Patra et al. (2019) use a semi-
supervised method that leverages both the
bilingual dictionary and a larger set of un-
aligned word embeddings.

Unsupervised BLI task, which is not allowed to
use any parallel resources for training and valida-
tion. The baseline systems are:

• Muse: Unsupervised Muse (Conneau et al.,
2017) uses adversarial training and iterative
Procrustes refinement.

• VecMap: Artetxe et al. (2018b) use careful
initialization, robust self-learning procedure,
and symmetric re-weighting to improve the
unsupervised mapping result.

• Ad.9: Mohiuddin and Joty (2019) include reg-
ularization terms for adversarial auto-encoder
for the unsupervised BLI.

4.3 Experimental Settings
We use fastText to train the word embeddings for
BLI. The dimension of the word embeddings is
300. The contextual representations are extracted
from XLM, and the dimension of the contextual
representations is 1024. For each word type, we
randomly select ten sentences containing the word
from the monolingual corpora to do the averaging

8https://github.com/joelmoniz/BLISS
9https://github.com/taasnim/unsup-word-translation/

to get the contextual representation. The influence
of the number of selected sentences for each word
type is reported in section 4.5.2. Regarding the
spring network, we use ten negative pairs for each
source word in the supervised contrastive training,
and use one negative pair for each source word in
the unsupervised contrastive training.

All inferences in our experiments, including all
baseline systems, use CSLS which is introduced in
Conneau et al. (2017). The results are evaluated by
Precision@1 (P@1).

4.4 Main Results

Table 1 summarizes the main results of the super-
vised and the unsupervised BLI tasks on all test
sets. In both tasks, our proposed methods achieve
significant improvements, with average 3.2 points
higher than the strongest baseline RCSLS in the
supervised task, and with average 3.1 points higher
than the strong baselines VecMap and Ad. in the
unsupervised task.

In the supervised task, we have two indepen-
dent bases to build our proposed methods. One is
VecMap (Artetxe et al., 2018a), the other is RCSLS
(Joulin et al., 2018). They are the preprocessing
steps to align the static word embeddings, and align
the contextual representations in the two languages.
Our methods build upon these alignments, and fur-
ther train the spring networks and the unified word
representations for the combination. The perfor-
mances of our methods with these two bases are
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EN-ES EN-AR EN-ZH EN-DE EN-FR avg→ ← → ← → ← → ← → ←
Supervised BLI

XLM-UnifiedRCSLS 80.13 86.60 55.87 62.47 56.67 51.13 74.26 77.93 81.20 83.87 71.01
XLM-ContextualRCSLS 46.27 51.40 3.67 7.13 19.47 7.93 45.67 47.80 58.00 65.20 32.05
XLM-InterpolatedRCSLS 80.67 87.67 59.40 62.73 59.40 52.27 74.87 79.67 81.80 85.40 72.39
mBART-UnifiedRCSLS 80.07 85.33 56.13 61.93 55.53 51.20 74.27 77.53 80.20 83.40 70.56
mBART-ContextualRCSLS 46.33 49.70 3.53 8.24 18.80 8.03 45.33 48.33 60.10 66.53 32.26
mBART-InterpolatedRCSLS 81.27 87.40 57.00 63.00 58.27 52.07 76.07 80.60 82.33 85.93 72.39

Unsupervised BLI
XLM-Unified 79.47 82.60 52.47 57.87 35.93 46.07 71.07 74.00 80.27 80.87 66.06
XLM-Contextual 46.33 55.93 3.87 7.53 17.40 4.87 43.53 44.33 56.20 63.93 31.26
XLM-Interpolated 79.93 85.33 52.73 58.47 37.07 46.27 72.53 78.73 81.80 84.13 67.70
mBART-Unified 79.07 82.60 51.60 58.13 35.80 44.67 70.47 74.00 79.93 81.27 65.75
mBART-Contextual 47.06 53.37 5.40 8.13 16.76 4.77 41.23 42.53 53.53 62.87 30.51
mBART-Interpolated 79.93 84.90 52.73 59.67 36.60 45.27 71.87 76.33 81.40 84.53 67.32

Table 2: Result comparison between using XLM and using mBART for the contextual representations.

Figure 2: Performances of 5 random trials of selecting
10 sentences to gather contexts for each word type.

reported in Table 1 with the corresponding sub-
scripts.

Table 1 shows that if we use VecMap as the basis
of our method, we can improve 3.6 points over the
corresponding VecMap baseline. If we use RCSLS
as the basis, we can improve 3.2 points over the
corresponding RCSLS baseline. In our methods,
“Unified” can achieve around 2 points improvement
over the corresponding baselines. Although “Con-
textual” obtains inferior performances, it is com-
plementary to “Unified”. When “Contextual” is
combined with “Unified” through the interpolation,
the performance is further improved, achieving the
best performance among all systems. It shows that
our combination mechanism is effective to utilize
the merits of both the static word embeddings and
the contextual representations.

In the unsupervised task, we achieve the signifi-
cant improvements over the baselines. “Unified” is

1.5 points better than VecMap baseline. “Contex-
tual” is inferior to other methods, but it can provide
useful complements to “Unified”, resulting in the
final 3.1 points improvement through interpolation.

In summary, our combination mechanism consis-
tently improves the performances for both distant
language pairs, such as EN-AR and EN-ZH, and
closely-related European language pairs.

4.5 Analyses
4.5.1 XLM v.s. mBART
Our results in Table 1 are based on using XLM
for obtaining the contextual representations. In
this section, we also use mBART (Liu et al., 2020)
to compare with XLM. Table 2 shows the com-
parison result. XLM pre-trains the Transformer
encoder through the masking mechanism, while
mBART pre-trains the full Transformer encoder-
decoder through multilingual denoising. Regarding
BLI task, we obtain the contextual representations
from the encoder. Table 2 shows that XLM and
mBART get similar BLI performances since only
encoder is used. In some directions, mBART per-
forms slightly better than XLM, while in other di-
rections, XLM is slightly better. According to the
average performance, XLM ties with mBART in
the supervised task, and is slightly better in the
unsupervised task.

4.5.2 The Randomness of Contexts
The contextual representations are derived ran-
domly from sentences of the monolingual corpora.
We study if this random derivation affects the per-
formances. Firstly, we run 5 times of randomly
selecting 10 sentences to gather contexts for each
word type in the “Unified” setting. Figure 2 shows
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Figure 3: Performances of randomly selecting 1-100
sentences to gather contexts for each word type.

EN-DE EN-FR
→ ← → ←

Supervised BLI
RCSLS 61.82 60.92 59.58 60.92
Unified 62.93 62.35 61.87 62.40
Interpolation 67.09 68.00 67.05 67.12

Unsupervised BLI
VecMap 55.29 56.96 57.18 59.33
Unified 57.20 58.70 58.40 61.16
Interpolation 61.00 61.52 62.70 63.40

Table 3: P@1 of using WaCKy corpora.

that the performance is stable in the 5 trials. Sec-
ondly, we try randomly selecting 1-100 sentences
to gather contexts for each word type. Figure 3
shows that selecting 1 sentence will drag the per-
formance down to baseline, which indicates that 1
sentence is too random to gather enough informa-
tion for BLI.

We only list the studies on EN-ES due to space
limit. Studies on other language pairs can be found
in the appendix.

4.5.3 The Influence of Selecting Encoder
Layer

In the above experiments, we derive the contextual
representations from the first layer of the encoder
of XML/mBART. In this section, we show how
different will be when we change the layer in the
“Unified” setting. Figure 4 shows that as layer go
higher, the performance drops. Please refer to the
appendix for performances of other language pairs.

4.5.4 Results of using WaCKy Corpora
WaCKy corpora is introduced in Dinu et al. (2014)
for BLI, but only word embeddings trained on
WaCKy corpora are provided in their work. To ob-

Figure 4: Performances of selecting different layer of
XLM encoder to derive the contextual representations.

tain the contextual representations, we find WaCKy
corpora from BUCC10, and use the corresponding
dictionaries with the same training, validation, and
test split. We use mBART instead of XLM for
computing the contextual representations in this
task.

Table 3 shows that our combination mechanism
is robust on this dataset. Both “Unified” and “Inter-
polation” perform better than the baselines. “Inter-
polation” achieves significant improvements in the
supervised setting.

5 Discussion

The static word embeddings in our paper are trained
by skip-gram or CBOW, while the word embed-
dings from XLM/mBART are trained by the pre-
training objectives. Different training objectives
result in quite different word embeddings. Actu-
ally, they show remarkably different behavior for
BLI. By using VecMap, the word embeddings from
XLM/mBART perform averagely around 30 points
lower than the static word embeddings used in our
paper. We also test fastText with 1024 dimension
and word2vec with 300 dimension for fair compar-
ison. They all perform remarkably better than the
word embeddings from XLM/mBART. We plug
in the word embeddings from XLM/mBART in
place of the fastText static embeddings in our com-
bination approach, and obtain much worse perfor-
mance. This indicates that the static word embed-
dings trained by skip-gram or CBOW are more
suitable for BLI and our combination approach.

10https://comparable.limsi.fr/bucc2020/bucc2020-
task.html
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In addition, regarding the asymmetry in Figure
1, we used to try the spring function that takes
the static word embeddings as input, but got much
worse results. This indicates that the spring func-
tion conditioned on the static space may be not
helpful for BLI. Such observation may also explain
that symmetrizing Figure 1 by yielding two unified
spaces to combine performs slightly worse than the
asymmetry version of Figure 1 of this paper. This
is because that the spring function conditioned on
the static space is introduced to maintain the sym-
metry, while this introduced spring function is not
helpful for the combination.

6 Conclusion

Most BLI systems use either the static word embed-
dings or the contextual representations, but there
is no works to combine both. In this paper, we
propose a combination mechanism, which consists
of the unified word representations and the similar-
ity interpolation. The unified word representations
use a spring network to pull the static word em-
beddings with offsets produced by the contextual
representations, and compose a unified space such
that parallel words are nearest neighbors to each
other. The similarity interpolation is applied after-
ward to interpolate the similarities in the unified
space and the contextual representation space. BLI
experiments on multiple language pairs show that
our combination mechanism can utilize the merits
of both the static word embeddings and the con-
textual representations, achieving significant im-
provements over robust baseline systems in both
the supervised and the unsupervised BLI tasks.
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Appendix

A Experiment Environment and Settings

Our experiment is running on a Linux machine
with GTX 1080Ti. The version of cuDNN is 7.6.0
and the version of CUDA is 10.1. We also use the
PyTorch deep learning framework. The version
of PyTorch is 1.6. The average runtime in our
experiment is 5 to 10 minutes for one language pair,
excluding the time for training word embeddings
by fastText.

Regarding Wikipedia corpora used in our
experiments, their download links are: https:

//dumps.wikimedia.org/${lg}wiki/latest/

${lg}wiki-latest-pages-articles.xml.bz2,
where ${lg} should be replaced with the corre-
sponding languages. ${lg} can be set as “en”, “es”,
“ar”, “zh”, “de”, and “fr”. We download them
on Jan. 2, 2021. Regarding WaCKy corpora, we
use WaCKy corpora11 provided by BUCC2020

11https://corpus.leeds.ac.uk/serge/bucc

for obtaining the contextual representations, and
use the provided word embeddings trained on
this corpora. The BUCC2020 dictionaries are
downloaded from the same page. We concat the
three training sets with high, mid, low frequency
as one training set, and concat the three test sets
with high, mid, low frequency as one test set.
Because no translations are provided in the test set
of BUCC2020, we look up the Muse dictionaries
to get the translations. All source words in the test
set can find translations in the Muse dictionaries.

The evaluation script for computing pre-
cision@1 (P@1) is: https://github.com/

artetxem/vecmap.git/eval_translation.py.

B Parameter Settings

The parameter size of the spring network is 796202.
We use default parameter settings of VecMap and
RCSLS.

language λ
EN→ES 0.11
ES→EN 0.05
EN→AR 0.10
AR→EN 0.30
EN→ZH 0.12
ZH→EN 0.10
EN→DE 0.11
DE→EN 0.25
EN→FR 0.13
FR→EN 0.11

Table 4: The optimal hyperparameter λ in the unsuper-
vised settings

Regarding the hyperparameter λ in the similarity
interpolation, we search the optimal value in [0.05-
0.3] with step size of 0.01. We found λ = 0.1
is superior on validation sets in all supervised set-
tings. The optimal value of λ found by the unsuper-
vised tuning procedure in the unsupervised settings,
which is introduced in section 3.2, is shown in Ta-
ble 4. In the search range, the performances has
low variance, and are better than the baselines.

C The Influence of Selecting Encoder
Layer in Other Language Pairs

We report the influences on EN-AR, EN-ZH, EN-
DE, EN-FR in Figure 5. It shows that as we select
higher layers for deriving the contextual represen-
tations, the performances become lower. This trend
exists in most language pairs, except that the trend
in EN-ZH is not significant.

https://dumps.wikimedia.org/${lg}wiki/latest/${lg}wiki-latest-pages-articles.xml.bz2
https://dumps.wikimedia.org/${lg}wiki/latest/${lg}wiki-latest-pages-articles.xml.bz2
https://dumps.wikimedia.org/${lg}wiki/latest/${lg}wiki-latest-pages-articles.xml.bz2
https://corpus.leeds.ac.uk/serge/bucc
https://github.com/artetxem/vecmap.git/eval_translation.py
https://github.com/artetxem/vecmap.git/eval_translation.py
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D The Randomness of Contexts in Other
Language Pairs

We report the randomness analyses on EN-AR, EN-
ZH, EN-DE, EN-FR in Figure 6. It shows that
trying 5 times of selecting 10 random sentences for
gathering contexts gets stable performances in all
language pairs. In most cases, using 1 sentence for
computing the contextual representation drags the
performance down, which indicates the inadequacy
of 1 sentence for gathering contexts.

E Performances on Words with Different
Frequencies

We use WaCKy corpora and the dictionaries pro-
vided by BUCC202012 to study the performances
on words with different frequencies. The provided
dictionaries are divided into groups of high fre-
quency words, mid frequency words, and low fre-
quency words. We test our combination mechanism
on these three groups respectively. The results are
presented in Table 5 and Table 6. We can see that
our combination mechanism is effective on all three
groups.

EN→DE DE→EN EN→FR FR→EN
High Frequency

VecMap 67.60 75.27 79.00 79.27
Unified 71.27 77.40 79.67 80.80
Interpolation 72.53 79.67 80.47 82.13

Middle Frequency
VecMap 67.20 71.47 77.73 80.27
Unified 67.80 73.53 78.33 81.00
Interpolation 70.60 78.13 81.13 83.73

Low Frequency
VecMap 69.53 74.73 78.47 81.87
Unified 70.00 75.53 79.27 82.67
Interpolation 77.53 82.47 87.00 87.07

Table 5: Performances on words with different frequen-
cies in the unsupervised setting

EN→DE DE→EN EN→FR FR→EN
High Frequency

VecMap 67.87 76.13 78.27 79.73
Unified 70.40 78.07 78.4 81.4
Interpolation 71.00 78.90 78.90 82.13

Middle Frequency
VecMap 68.87 71.8 78.47 80.87
Unified 69.93 75.20 79.53 82.20
Interpolation 71.20 76.33 80.07 83.73

Low Frequency
VecMap 70.60 76.13 79.67 82.93
Unified 72.67 78.27 81.20 84.20
Interpolation 74.13 79.97 82.30 84.73

Table 6: Performances on words with different frequen-
cies in the supervised setting

12https://comparable.limsi.fr/bucc2020/bucc2020-
task.html

(a) EN-AR

(b) EN-DE

(c) EN-FR

(d) EN-ZH

Figure 5: Performances of selecting different layer of
XLM encoder to derive the contextual representations.
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(a) EN-AR

(b) EN-ZH

(c) EN-DE

(d) EN-FR

Figure 6: Performances of different context selection methods on EN-AR, EN-ZH, EN-DE, and EN-FR.


