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Abstract

Aspect-based sentiment analysis aims to judge
the polarity of the given aspect word in re-
views. Most recent methods adopt syntax-
based Graph Neural Networks to extract the
syntactic information from the dependency
graph, thinking that would be beneficial for es-
tablishing relations between aspect and opin-
ion words. However, these methods may ig-
nore that some sentences have no remarkable
syntactic structure, which causes the opposite
judgement in sentiment analysis. In this paper,
we figure out this problem by means of opti-
mally fusing syntactic information, semantic
information and their combinations simultane-
ously. Firstly, syntactic graphs and semantic
graphs are generated by dependency tree and
multi-head self-attention respectively. Then
we propose a Dynamic and Multi-channel
Graph Convolutional Network (DM-GCN) to
learn the correlated information from the gen-
erated graphs effectively. Our extensive exper-
iments on SemEval 2014 and Twitter datasets
confirm that DM-GCN fuses syntactic, seman-
tic and their combinations optimally and out-
performs all state-of-the-art alternatives with a
large margin.

1 Introduction

Aspect-Based Sentiment Analysis (ABSA) is a fine-
grained task of sentiment analysis. Distinguish-
ing from document-based and sentence-based sen-
timent analysis, aspect-based sentiment analysis
aims to determine the sentiment polarities of spe-
cific aspect words in given texts. As an example of
ABSA, in the sentence ‘The food is good but the
service is bad’, the sentiment polarities of given
aspect words food and service are recognized as
Positive and Negative. As such a more detailed
analysis of multiple aspect sentiment gives rise to
provide targeted insights into reviews.

In general, there are several steps when perform-
ing aspect-based sentiment analysis, such as obtain
word embeddings, encode the syntactic information
and extract semantic information, among which
mining the most relevant opinion word plays the
pivot role. Benefited from applying attention mech-
anisms to connect aspect words with their opinion
words, a few studies (Wang et al., 2016b; Li et al.,
2017; Ma et al., 2017; Fan et al., 2018)have re-
ported attractive results. However, limited by the
co-occurrence frequency or long-range word de-
cencies, attention mechanism may assign wrong
value for irrelevant words. As an example, ‘the
stuff should be more friendly’, due to the high co-
occurrence frequency of ‘stuff” and ‘friendly’, at-
tention mechanisms may regard ‘friendly’ as the
opinion word for ‘staff’, which result in an opposite
sentiment judgement completely.

To address those limitations, a slice of studies
encode the syntactic structure as crucial informa-
tion to establish the connections between aspects
and their opinion words. A handcrafted syntactic
rule (Liu et al., 2013) has been encoded into the
model as an early essay.However, it is over-relied
upon the quality of the rule. Then dependency
trees are regarded as another form of syntactic rule,
(Dong et al., 2014; Nguyen and Shirai, 2015; Wang
et al., 2016a) have encoded dependency tree by a
Recursive Neural Network (RNN). Recently, the
rapid development of graph neural networks has
attracted a surge of interest, due to the great capac-
ity of learning structure representation, a class of
graph neural networks is designed to extract syntac-
tic information from dependency tree (Zhang et al.,
2019a; Sun et al., 2019; Huang and Carley, 2019;
Wang et al., 2020b; Zheng et al., 2020). Although
these approaches make quite a few improvements
compared with those attention-based models, the
shortcomings should not be ignored. First and fore-
most, sentences have different sensitivities to syn-
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tactic information and semantic information. In
particular, those sentences that have inconspicuous
syntactic structure, are low sensitive to syntactic
information, which means that syntactic informa-
tion may fail to help the model to determine the
sentiment polarity of the sentences in some cases.
Given as an example, ‘Charlie sheen your fucking
annoying’, a sentence in twitter dataset, prefers
to colloquial expression, without explicit syntac-
tic structure, which makes those extracted struc-
ture information become noise. Besides, not all
the information on the dependency tree is valid
for our task, the noise would be encoded by the
GNNs-based model, then the secondary noise will
be caused if attention mechanism is used on this
basis (Zhang et al., 2019a). To make matter worse,
GCNs has been proved that fail to optimally inte-
grate node features (semantical information) and
topological structures (syntactic structure) in a de-
pendency graph with rich information (Wang et al.,
2020b), indicating that GCN may arduous to learn
some deep correlation between topological struc-
tures (syntactic structures) and node features (se-
mantical information).

In reality, syntax is complementary to semantics.
Motivated by this fundamental assumption, our Dy-
namic and Multi-Channels Graph Convolutional
Network (DM-GCN) is designed to get over the
weakness mentioned above. Firstly, on purpose
to exploit the information in semantic space ad-
equately, the semantic graphs are generated and
updated dynamically by a multi-head self-attention
mechanism in the graph convolutional network.
Secondly, the dependency trees of sentences are
transformed into syntactic graphs, which is the
same as the model mentioned above (Sun et al.,
2019; Zhang et al., 2019a). With the semantic
graphs and syntactic graphs, two specific graph
convolutional networks are applied to extract two
specific information from semantic and syntactic
space. Furthermore, considering that the common
information of semantic and syntactic space is as
significant as the specific information, a parameter
sharing graph convolution module is designed to ex-
tract the common information. Finally, a trainable
parameter matrix is utilized to adaptively learn the
importance of different embeddings and fuse them
optimally. Extensive experiments are carried out
on SemEavl2014 and Twitter datasets, and experi-
mental results demonstrate that DM-GCN achieves
predominant performance compared with baseline

methods.
The contributions of this paper can be summa-
rized as follows:

* We have come up with a kind of dynamic se-
mantic graph, generated and updated by the
multi-head self-attention mechanism, which
focuses on extract the most relevant informa-
tion in the semantic space.

* We propose a novel Dynamic and Multi-
channel GCN(DM-GCN) to adaptively learn
and fuse according to the characteristics of
sentences.

» Extensive results testify the significance
of leveraging syntactical, semantical, and
their combinational information properly, and
demonstrate the availability of our proposed
model in extracting and fusing them in senti-
ment classification.

The rest of the paper is organized as follows. In
Section 2 we briefly review the related work of
aspect-based sentiment analysis. In Section 3 we
develop our proposed model DM-GCN. The eval-
uation of our model on benchmark datasets and
the experimental result analysis are in Section 4.Fi-
nally, concluding remarks are presented in Section
5.

2 Related Work

With the appealing development of aspect-based
sentiment analysis, numbers of research can
be divided into three categories approximately:
Attention-based neural models, Syntactic rules neu-
ral network, and Syntactic-based graph neural net-
work. Our work is based on a plentiful line of those
recent efforts.

Attention-Based Neural Networks: Originated
in computer version, attention-based models have
led to promising progress in sentiment analysis
as well, which are committed to building up con-
nection between aspect word and opinion word
precisely. Among them, (Wang et al., 2016b) pro-
posed an attention-based LSTM to obtain signif-
icant information for given aspects. (Chen et al.,
2017)utilized a multi-layer attention network to ad-
dress long-distance dependency problem between
aspect and opinion words. With transformer being
proposed, the pre-trained language model make
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impressive achievement in NLP including aspect-
based sentiment analysis (Xu et al., 2019; Sun et al.,
2019; Vaswani et al., 2017).

Syntactic-Based Recurrent Neural Networks:
Due to the lack of structural information, attention-
based methods may assign the attention weights
mistakenly. Some research tries to address this is-
sue by encoding syntactic rules in word representa-
tion. (Dong et al., 2014)proposed AdaRNN, which
can propagate the sentiment information via syn-
tactic dependency tree. (He et al., 2018a)proposed
an attention mechanism that incorporates syntac-
tic information.(Zhang et al., 2019b)tried to utilize
the distance between aspect word and context on
syntactic dependency tree as auxiliary weight.

Syntactic-Based Graph Neural Networks:
More recently, with the rapid development of
graph neural networks (Kipf and Welling, 2019;
Velickovic et al.,, 2018), the combination of
syntactic dependency tree and graph neural
networks have shown gratifying results in ABSA.
(Zhang et al., 2019a; Sun et al., 2019) transformed
syntactic dependency tree into graph structure
and utilized GCN to extract syntactic information.
(Tang et al., 2020) proposed Bidirectional-GCN
to encode the directional information of syntactic
dependency tree. (Wang et al., 2020a) proposed a
new GAT model to encode the dependency rela-
tions. However, whether the correlated information
can be extracted according to the characteristics
of the sentence from GNNs adaptively remains
indistinct.
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Figure 1: Model Architecture

3 Methodology

In this section, we elaborate on the details of our
proposed model. The overall framework of DM-
GCN is shown in Figure 1. Inspired by AM-GCN
(Wang et al., 2020b), our key idea is that the pro-
posed model should be available to aggregate syn-

tactical features, semantical features and their com-
bination features becomingly to address the issues
mentioned before. For this purpose, firstly, seman-
tic graphs are constructed by the multi-head self-
attention mechanism. Secondly, syntactic graphs
are transformed from the dependency tree of sen-
tences. Then two specific convolution modules and
a common convolution module are used to extract
corresponding information respectively. Finally, a
trainable parameter is used to fuse extracted infor-
mation more suitably for our task. The components
of DM-GCN will be illustrated in the rest of the
section.

3.1 Embedding and Bidirectional LSTM

An n-word sentence x = {w{,ws, -, Wi, -
WS s+ why b with the aspect {wf -

,w¢ .. }s given, each word in the sentence
will be embedded into a low-dimensional
vector by looking up in a pre-trained word
embedding matrix £ € RIVIX% where |V|
is the lexicon size and d. is the dimension of
word embedding (Bengio et al., 2003).With the
sentence embeddings, a bidirectional LSTM is
constructed to learn the hidden representation of
tlle given sentence = ,which can be conveyed as
H® = {hiv 9 7h$+1’ T 7h7c'+m7 1> h%}
in the forward direction and H¢ = {h¢, RS, -- -
he oty hS o, B4, hG} in the backward di-
rection. Concatenating the forward and backward
representation, H¢ = [H¢, H¢] € R"™stm jg
the final representation encoded by Bidirectional
LSTM, which contains the contextual information

between aspect words and opinion words.

3.2 Syntactic Graph Convolution Module

As previous described (Sun et al., 2019; Zhang
et al., 2019a), we transform the dependency tree
into the graph structure G, = (Asy, H¢), Agy is
the adjacency matrix of the graph and H¢ is the
feature matrix.Then the graph convolutional net-
work is applied to extract the syntactic information,
which is formulated as below:

GON(A, HO, W+ = ReLU(AHOW+D) (1)

H) = H* )
o _ 0). Crr(l
Hsy,in - [Hs(y)7 s 7H§y)] (3)
It l
HHYD = GON(A,,, Hgy{m, WDy (@)
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Figure 2: Architecture of Semantic Graph Convolution
Module

Where ley =Dz (Agy + Iy) D2 is the ad-
jacency matrix with self-loop (Kipf and Welling,
2019), H S(g)m = H¢ € R™*%stm is the words rep-
resentation encoded by Bi-LSTM, we take it as the

input of the first GCN layer. When [ € [1, L — 1]

the input H gy) in 18 generated by the concatena-
tion of the output produced in layers 0,--- , 1 — 1
, W(ZH) € Rldistm+lxdgen) Xdistm ig the learnable
matrix of the [-th GCN layer, d;g, is the dimen-
sion of the hidden representation learned by bidi-
rectional LSTM, d, is the dimension of the GCN-
layer output and dj.q is the dimension of each at-
tention head. With [-step convolutional operation,
each node can iteratively aggregate the information
from its one-hop neighbors and update its represen-
tation. Syntactic information is integrated into the
final representation H. S(yL ) successfully by Syntactic
Graph Convolutional Module.

3.3 Semantic Graph Convolution Module

As we discuss in Section 1, a few short sentences
have vague syntactic structure, if the model extracts
the syntactic information stiffly, may trigger the op-
posite effect. On the other, the original dependency
tree can be seen as a form of hard attention mech-
anism (Xu et al., 2015), which may lead to the
information omission when aspects are far away
from its opinion words or two words are supposed
to be connected but they don’t on their dependency
tree. Inspired by (Huang and Carley, 2019), we
develop Semantic Graph Convolutional Module to
distinguish the correlated context words directly.
Specifically, the semantic graph convolution
module is divided into initialization and update
respectively. we take H ig)m as the input of the ini-
tialization, the multi-head self-attention will be uti-
lized to construct k attention score matrices based
on H?. ' On purpose to enhance the robustness

se, in *
of the model, these k£ matrices will be summed up

intuitively. Then a top-k selection is applied on
the summed-up matrix, which means that the top-
k significant context words are preserved. More
specially, the adjacency matrix is supposed to keep
symmetry after top-k selection. In this way, we
have initialized the adjacency matrix Agg) and a
GCN layer is applied to extract the semantic infor-
mation preliminarily. The initialization is formu-

lated as:

s(g)m = H° (5)
0 0 0 0

A(O) (Hie)ans.(e )k)(ng)ans(e,)q)T 6)

se,t ﬁdhea

d stm
dhead = lfé 7

Specially, when [ =0 :

A = top-k( Z ASE i 3

HY = coN(AY, 7

se se,in’

wly )

where H ée)m R distm is the words repre-
sentation encoded by Bi-LSTM, K is the num-

ber of heads, A(g?i is the ¢-th adjacency matrix,
w® WS(S}, € Réstm*dnead gre trainable weight

se k>
matrices, W( ) € RebistmXdgen ig the parameter ma-
trix of the GCN layer.

With the initialized semantic graph Age) , the
process of update is formulated as :

HO = 1HY; . HY) (10)
! ! 1 !
U] (Hs(e)inws(e)k)(Hs(e)inWS(B?q)T

Ase i , 7 7 (1 1)
’ Vdhead

AW — argmax[softmam(A( ) AEQK)] (12)

se, 1 »7 T

A = top-k(AQ) (13)
HD = GON(AQ. H, WD) (4)
Put slightly different, the input H ie)m is gener-

ated by the concatenation of the output produced
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Figure 3: Architecture of Common Graph Convolution
Module

in layers 0, - - - ,{ — 1, which will be delivered into
the multi-head self-attention to generate k attention
score matrices just as initialization does. Then we
figure out the matrix with maximum probability
by softmax function, which can be regarded as
the most relevant attention matrix of the semantic
graph for the current sentence. After top-k selec-
tion, a GCN layer is utilized to extract the deep-
seated semantic information. We denote the last
layer output representation as H §6L ), which contains
the most relevant semantic information of aspects
and its opinion word.

3.4 Common Convolution Module

According to (Liina and Pylkknen, 2019), syntax
and semantic space are not totally separating, as the
syntactic structure of sentence changes, so does the
semantic, which gives reason to believe that extract-
ing the common information shared by syntactic
and semantic space is beneficial to comprehend the
sentence better. Motivited by (Wang et al., 2020b),
a common graph convolutional module (Figure 3)
with parameter sharing strategy is applied to obtain
the information shared in two spaces.

For simplicity, we represent the Syntactic Graph
Convolution Module and the Semantic Graph Con-
volution Module as:

H{) = SYGON (Ayy, HE, W) (15)

H) = SEGON (Age, HE, W) (16)

the common syntactic representation Hc(.LS)y is
extracted by common graph convolutional module
from syntactic graph Gy, = (Ayy, H€) as follow
HE) = SYGCN(Ayy, HS, W,)

c-sy

a7

Where W, = WC(ZH) € Rdistm+tlxdgen)*dgen jg
the [-th layer learnable weight matrix of Common-

GCN, Hc(i)y is the final common syntactic repre-

sentation.
On purpose to extract the shared informa-
tion, when applying Common-GCN to learn the
node representation from semantic graph G =
(Ase, H€), we share the same learnable weight
matrix Wc(l) for each layer of Common-GCN .
Simply, the calculation is similar to section 3.3:
H") = SEGCN (Age, HE, W,)

c-Se

(18)

Finally, we combine these two representations

H, c(.Ls)y and H, C(.Ls)e to obtain the final representation.

aH, + BHE,

HP = (19)
2
Where « and § are trainable parameters, H, C(L) IS

R"X dgen )

3.5 Feature fusion

Before fusing the representation extracted by spe-
cific and common convolutional modules, we use
the mask mechanism and average pooling to cap-

ture the aspect vectors hgy, h. and hge from H §5 ),

H. S(eL ) and HC(L). Then the final aspect representa-
tion is obtained by concatenating hs,, h. and hge.
The formulas are described as:

hey = f(mask(H{))) (20)
he = f(mask(HM)) @1
he = f(mask(HE))) (22)

ha = [hsy; he; hae) (23)

where mask(-) represents the masked function,
which means that only aspect vectors are activated
in H, s({j ),H §£ ) and HC(L), the context vectors are
discarded. Mask function is formulated as follow:

{0, 1<t<7t+1l,7+Hm<t<n
mask =

1, 7+41<t<74+m (24)

As describedin section 3.1: 7+ 1 <t <7+ m
denotes the aspect words index. f(-) is the average
pooling function. The representation h, is sim-
ply concatenated with hg, , h. and hg. , however,
it could not distinguish the importance of syntax,
semantics and their combination. Considering to
reflect the significance of each part, a MLP layer is
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utilized to learn the adaptive important weights of
the representations and fuse them simultaneously.
As described in section 3.1: 7+ 1 <t <7+ m
denotes the aspect words index. f(-) is the average
pooling function. The representation h, is con-
catenated with hgy, h. and hg. , however, it could
not distinguish the importance of syntax, semantics
and their combination. Considering to reflect the
significance of each part, a MLP layer is utilized
to learn the adaptive weights of the representations
and fuse them simultaneously.

he = ReLU (h W + by) (25)
By training the learnable weight matrix Wi €
R3dgenxdgen our proposed model is able to fuse
syntactic, semantic and their combination repre-
sentations adaptively and derive deeper correlation
information for sentiment classification.

Model Training

The final aspect representation ila is sent to a Soft-
Max layer to calculate the probability distribution
of the sentiment polarities as follows:

§ = softmaz((ha)Wq + bs) (26)
Considering that the embeddings H 5(5 ) and Hc(.LS)y
are both learned from graph (A,,, H€) , we
hope that different information can be captured by
them.Thus, the difference loss between H. §5 ) and
Hc(i)y is defined as || HL, H.-s||7,. The smaller their
inner product is (i.e., orthogonal constraint), the
better result is obtained. Similarly, ||[HL Ho-sc||%

is the difference loss between H. §£ ) and Hc(i)e We
set the difference loss L as:

ﬁd = HH:?;/HC'SZJH%Q + HHsj:zHc—seHlQQ (27)

In addition, Hc(i)y and H, (i)e are the outputs of
Common-GC N, to confirm that common features
are learnt, the smaller the Euclidean distance is,
the better representation is obtained. We use L,
constraint to enhance their similarities:

Es = HHc-sy - Hc—seleg (28)

Finally, the cross entropy loss with Lo regulariza-
tion, as shown in equation(29), all parameters of
our proposed model is optimized via backpropaga-
tion.

L=, 35 vl log g + MOI? +vLa + 0L, (29)

Table 1: Statistics of datasets

Dataset Positive Negative Neutral
Train | Test | Train | Test | Trtain | Test
Restl4 | 2164 | 728 | 807 | 196 | 637 | 196

Lapl4 | 994 | 341 | 870 | 128 | 464 | 169
Twitter | 1561 | 173 | 1560 | 173 | 3127 | 346

where 1 is the index of i*" sample, j is the index of
4" sentiment class, P is the number of sentiment
classes, y is the real distribution of sentiment and
1 is the predicted one. Besides, A is the weight
of Lo regularization, 6 represents all parameters
in the model.y and § are hyperparameters of the

consistency and disparity constraint terms.

4 Experiment

In this section, we will first introduce the bench-
mark datasets for evaluation and the baseline mod-
els utilized for comparison. Secondly, the experi-
mental implementation and parameter setting will
be reported. Then the results of different exper-
iments are analyzed from different perspectives
including the comparison with baseline models, ab-
lation study, the effect of hyper-parameters. Finally,
some representative cases are discussed.

4.1 Datasets

Our model is evaluated the performance on Se-
mEval 2014(Pontiki et al., 2014) and Twitter
dataset provided by (Adaptive recursive neural net-
work for target-dependent twitter sentiment classi-
fication), which are authoritative evaluation dataset
in ABSA. The statistics of the datasets in Table 1.

4.2 Baseline Methods

We have chosen some mainstream and lasted mod-
els in ABSA for comparison, including:

Semantic-based models: ATAE-LSTM )(Wang
et al., 2016b), IAN (Ma et al., 2017), RAM (Chen
et al., 2017), MGAN (Fan et al., 2018).

Syntax-based models: LSTM+SynATT (He
et al., 2018b), AdaRNN (Dong et al., 2014),
PhraseRNN (Nguyen and Shirai, 2015), PWCN-
Dep (Zhang et al., 2019b), AS-GCN (Zhang et al.,
2019a), CDT (Sun et al., 2019), TD-GAT (Huang
and Carley, 2019), R-GAT (Wang et al., 2020a),
DGEDT (Tang et al., 2020) and Repwalk (Zheng
et al., 2020)
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Table 2: Sentiment classification results

Category Method Twitter Lapl4 Rest14
Accuracy Macro-F1  Accuracy Macro-F1  Accuracy Macro-F1

AdaRNN(Dong et al.,2014) 66.30 65.90 - - - -
PhraseRNN(Nguyen and Shirai,2015) - - - - 66.20 59.32
LSTM+SynATT(He at al.,2018a) - - 72.57 69.13 80.45 71.26
PWCN-Dep (Zhang at al.,2019) - - 76.12 72.12 80.96 72.21
Syn. ASGCN (Zhang et al.,2019) 72.15 70.40 75.55 71.05 80.77 72.02
CDT (Sun et al.,2019b) 74.66 73.66 77.19 72.99 82.30 74.02

TD-GAT (Huang and Carley,2019) - - 74.00 - 80.35 -
R-GAT (Wang et al.,2020) 75.57 73.82 77.42 73.76 83.30 76.08
RepWalk (Zheng et al.,2020) 74.4 72.6 78.2 74.3 83.8 76.9
DGEDT (Tang et al.,2020) 74.8 734 76.8 72.3 83.9 75.1

ATAE-LSTM (Wang et al.,2016b) - - 68.70 - 77.20 -

At IAN (Ma et al.,2017) - - 72.10 - 78.60 -
RAM (Chen et al.,2017) 69.36 67.30 74.49 71.35 80.23 70.80
MGAN (Fan et al.,2018) 72.54 70.81 75.39 72.47 81.25 71.94
Ours DM-GCN 76.93 75.9 78.48 74.9 83.98 75.59
R-GAT-BERT(Wang et al.,2020) 76.15 74.38 78.21 74.07 86.60 81.35
BERT DGEDT-BERT(Tang et al.,2020) 77.9 75.4 79.8 75.6 86.3 80.0
DM-GCN-BERT 78.06 77.36 80.22 77.28 87.66 82.79

* The symbol ‘-’ indicates this result is not available in their work.
4.3 Implementation and parameter settings =

For fairness and validation, the best results of
compared models are used in models comparation.
The Stanford parser (https://stanfordnlp.github.io/
CoreNLPY/) is utilized to get syntactic dependency
tree in our work. Inspired by CDT (Sun et al.,
2019), we exploit 300-dimensional Glove vectors
(Pennington et al., 2014)for the word embeddings.
Besides, on purpose to enrich the sentence repre-
sentation, a 30-dimensional part-of-speech (POS)
embeddings and 30-dimensional position embed-
dings are concatenated to word embeddings. The
rest of parameter settings is given in the code'.

4.4 Result and Analysis

4.4.1 Overall Performance Comparison

The results of comparison with all baseline mod-
els are shown in Table2. First, compared with the
lasted syntactic-based model DGEDT, Repwalk,
and R-GAT, DM-GCN significantly improves the
accuracy in sentiment classification, which indi-
cates that DM-GCN performs better at encoding
the syntactic and semantic information by fusing
them adaptively. Second, as the first proposed con-
cept, the common information shared by semantic
and syntactic spaces, has been proved its effective
in ABSA, which can be judged from the improve-
ment of accuracy on three datasets. The results
have proved that only encode semantic or syntac-

"https://github.com/pangsg/DM-GCN
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Figure 4(a): Impact of k
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Figure 4(b): Impact of head — numbers

tic information is inadequate in aspect-based sen-
timent classification. On the contrast, fusing the
semantic and syntactic information and their com-
bination optimally, just as humanity brain does, is
the key to the better performance of our DM-GCN.

4.4.2 Ablation Study

In this section, we further conduct an ablation study
to verify the validity of each module in our DM-
GCN. The result is in Table 4. The basic DM-GCN
is regarded as a baseline model..

First, removal of syntactic information (i.e.DM-
GCN w/o Hy,) leads to the drop of accuracy drop
of 1.42%, 1.11% and 1.65% on Twitter, Lap14
and Rest14 respectively, which demonstrates the
significance of syntactic information and verifies
syntactic information plays different roles in dif-
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only syntax-  0.023 0.011 0.048 0.089 0.27 0.029 0.034

only semantic-  0.019 0.013 0.059 0.085 0.21 0.011 0.039

full model - 0.016 0.011 0.037 0.024 0.022 0.089 0.069

i ' ' ' ' ' i
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Figure 5: The word relevance scores. The aspect word is ‘dinner’. The ground truth is ‘neutral’ while the prediction
of the only syntax, only semantic and full model are ‘positive’, ‘positive’ and ‘neutral’ respectively.

ferent sentence of three datasets. Second, after we
get rid of the semantic information (i.e. DM-GCN
w/o H,.), the model ranges the lowest accuracy
on three datasets, which indicates that the dynamic
multi-head self-attention mechanism proposed by
us is able to capture the most correlated seman-
tic information between aspect and opinion words.
As for ‘DM-GCN w/o H .ommon model, the accu-
racy decreases 1.3%, 2.54% and 1.63% on Twitter,
Lap14 and R Rest14 respectively. Recall the main
reason on Lapl4, we conclude that the common
information mixes up of the characteristics of syn-
tactic and semantic information, which is signifi-
cant to Lap14 datasets. As a result, the ablation
experimental outcomes confirm the contribution of
both components.

Table 3: Ablation study results

Twitter Lapl4 Rest14
Model Accuracy Accuracy Accuracy
DM-GCN 76.93 78.48 83.93
DM-GCN w/o H,, 74.94 75.79 81.92
DM-GCN w/o Hy, 75.51 77.37 82.28
DM-GCN w/o Hcommon 75.63 75.94 82.3

‘DM-GCN w/o H s,,’: removing syntactic convolution module;
‘DM -GCN w/o H z’: removing semantic convolution module;
‘DM -GCN w/o H ¢ommon 't removing common convolution module.

4.4.3 Hype-parameters Analysis

The results of the research about the hype-
parameter k and the head numbers of our proposed
semantic convolutional module are in Figure 4.
1. Effect of hype-parameter k. From Figure 4a,
there are some observation can be noted:1) The best
performance appears when k is equals to 3,3 and 4
respectively in Rest14, Lap14 and Twitter datasets.
The accuracy decreases on three datasets when k
becomes bigger. We conclude that the bigger %
we set, the more noise is aggerated from irrelevant
words in the sentence, which interferes with our
model’s ability to determine the sentiment polarity
of sentences.

2. Effect of hype-parameter head-number. Take

Twitter dataset for example. The result in Figure
4b show the impact of head-numbers in multi-head
self-attention mechanism of our models. Intuitively,
the best performance appears when head number
is equal to 3. Considering the characteristics of
multi-head self-attention, we take the attitude that
the model becomes haphazard and overfitting when
head number decreases and increases respectively.

4.4.4 Case Study and Attention Distribution

In this section, we utilize the method “Mask Ex-
periment” proposed by CDT(Sun et al., 2019)to
estimate the sentiment contribution of word w in
the sentence a.By leveraging this method,we eval-
uate the effective of our proposed semantic and
syntactic convolution module mathematically. The
formula is as follows:

d

E ’ BZ - Béa/w)‘

=1

1

Y(w,s) = m (30)

As described in CDT(Sun et al., 2019),where d is
the dimension of the final representation hq learned
by our model, w is the masked word, which in-
dicates w becomes zero Vector,ﬁ(a /w) 18 the final
representation of sentence a generated by our DM-
GCN with the word w masked. If k! = fz’&a J)?
which demonstrates the word w has no sentiment
contribution to sentence a.

Figure 5 is the visualization of the attention placed
on words, from which can be observed that when
syntactic or semantic convolution module (1st or
2nd row) is utilized separately, the model has as-
signed the highest attention on “wonderful” mistak-
enly. Regarding “wonderful” as the opinion word
of aspect “dinner”, which results in the wrong judg-
ment of the sentence eventually. However, our
proposed DM-GCN (3rd row) is able to adaptively
reduce the attention on irrelevant word “wonder-
ful” and increase the score on “dinner” adaptively.
Implying that our DM-GCN captures the most cor-
related information from syntactic, semantic and

2634



their combination spaces, which verifies the valid-
ity of our strategy mentioned before.

5 Conclusion

In this paper, we have proposed a dynamic and
multi-channel graph convolution network to en-
coding the syntactic and semantic information for
aspect-based sentiment analysis. Motivated by the
human brain’s mechanisms of language, we study
how to adaptively learned the most correlated infor-
mation from syntactic, semantic, and their combi-
nation spaces and fuse them sufficiently according
to the characteristic of sentences. The experimental
results on three benchmark datasets showed that
we have achieved superior performance over the
baseline methods. Besides, the ablation study and
case analysis have exploited the influence of hyper-
parameters and validated the role of each compo-
nent in our proposed model.
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