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Abstract

In this paper, we present GEM1 as a General
Evaluation benchmark for Multimodal tasks.
Different from existing datasets such as GLUE
(Wang et al., 2018), SuperGLUE (Wang et al.,
2019), XGLUE (Liang et al., 2020) and
XTREME (Hu et al., 2020) that mainly fo-
cus on natural language tasks, GEM is a large-
scale vision-language benchmark, which con-
sists of GEM-I for image-language tasks and
GEM-V for video-language tasks. Compar-
ing with existing multimodal datasets such as
MSCOCO (Chen et al., 2015) and Flicker30K
(Vinyals et al., 2015) for image-language tasks,
YouCook2 (Zhou et al., 2018) and MSR-VTT
(Xu et al., 2016) for video-language tasks,
GEM is not only the largest vision-language
dataset covering image-language tasks and
video-language tasks at the same time, but also
labeled in multiple languages. We also pro-
vide two baseline models for this benchmark.
We will release the dataset, code and baseline
models, aiming to advance the development of
multilingual multimodal research.

1 Introduction

In recent years, large-scale pre-training has be-
come the new paradigm in the natural language
processing (NLP) field. These models have demon-
strated surprisingly good generalization abilities
and can be applied to different downstream tasks
by a simple fine-tuning. Several comprehensive
benchmarks are constructed to evaluate such pow-
erful models, including GLUE (Wang et al., 2018)
and SuperGLUE (Wang et al., 2019) for evaluating
monolingual natural language understanding sys-
tems, XGLUE (Liang et al., 2020) and XTREME
(Hu et al., 2020) for evaluating multilingual natu-
ral language understanding and generation systems.
Such pre-trained models have also been extended

1https://github.com/microsoft/GEM

to vision-language scenarios (Lu et al., 2019; Chen
et al., 2019; Li et al., 2020a,b; Ni et al., 2021; Sun
et al., 2019b,a; Luo et al., 2020) to handle multi-
modal tasks such as image(or video)-text retrieval
and image (or video) captioning. However, there is
still no comprehensive benchmark dataset for evalu-
ating such multimodal pre-trained models. Besides,
most existing vision-language datasets are labeled
in English only, which cannot be used to evaluate
the qualities of such models on other languages.

Motivated by this, we present GEM, a General
Evaluation benchmark for Multimodal tasks. Com-
paring with GLUE, SuperGLUE, XGLUE and
XTREME, GEM is designed for evaluating the
generalization capabilities of vision-language mod-
els and consists of two subsets: GEM-I, which
evaluates text-to-image retrieval and image cap-
tioning capabilities, and GEM-V, which evaluates
text-to-video retrieval and video captioning capa-
bilities. Besides, it is also a multilingual dataset,
where the natural language contexts are collected
from a commercial search engine. We describe two
vision-language pre-trained models, M3P (Ni et al.,
2021) and m-UniVL, as the baselines for GEM-I
and GEM-V, respectively, where M3P is an existing
multilingual image-language pre-trained model, m-
UniVL is a multilingual extension of UniVL (Luo
et al., 2020) for multilingual video-language tasks.
The evaluation results of these two models on GEM
are reported in the experiment part.

The key contribution of this paper is twofold:
(1) we build GEM as the first large-scale multilin-
gual multimodal benchmark, which can be used to
evaluate the generalization capabilities of vision-
language pre-trained models on a set of diversi-
fied multimodal tasks. (2) we provide two multi-
lingual multimodal pre-trained models, M3P and
m-UniVL, as the baselines of GEM for image-
language and video-language tasks, respectively.
We hope GEM can further advance the research in
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Language Train Dev Test Total
English (en) 998,000 1,000 1,000 1,000,000
Spanish (es) 18,000 1,000 1,000 20,000
French (fr) 18,000 1,000 1,000 20,000
Italian (it) 18,000 1,000 1,000 20,000
Portuguese (pt) 18,000 1,000 1,000 20,000
German (de) 18,000 1,000 1,000 20,000
Korean (ko) 8,000 1,000 1,000 10,000
Polish (pl) 8,000 1,000 1,000 10,000
Catalan (ca) 2,000 1,000 1,000 4,000
Dutch (nl) 2,000 1,000 1,000 4,000
Japanese (ja) 2,000 1,000 1,000 4,000
Indonesian (id) 2,000 1,000 1,000 4,000
Vietnamese (vi) 2,000 1,000 1,000 4,000
Czech (cs) 2,000 1,000 1,000 4,000
Romanian (ro) 2,000 1,000 1,000 4,000
Turkish (tr) 0 0 1,000 1,000
Galician (gl) 0 0 1,000 1,000
Croatian (hr) 0 0 1,000 1,000
Hungarian (hu) 0 0 1,000 1,000
Malay (ms) 0 0 1,000 1,000
Total 1,118,000 15,000 20,000 1,153,000

Table 1: Language distribution and data statistics of
GEM-I for multilingual image-language tasks.

the multimodal community, just as its predecessors
did in the NLP community.

2 Dataset Construction

To the best of our knowledge, GEM dataset is
the first multilingual vision-language dataset con-
structed for image-language and video-language
tasks as the same time. GEM-I contains 1.2 mil-
lion {Query, Image, Title} triplets in 20 different
languages for text-to-image retrieval and image
captioning tasks. GEM-V contains 99K {Query,
Video, Title} triplets in 30 languages for text-to-
video retrieval and video captioning tasks. In both
GEM-I and GEM-V, Title denotes the title of the
web page where each image (or video) is extracted.
This signal can be used as the auxiliary information
in all GEM tasks, as it is usually highly relevant to
the corresponding image (or video).

Next, we will describe how GEM-I and GEM-V
are collected from a commercial search engine.

2.1 GEM-I Construction

First, we collect several billion images with Cre-
ative Commons licenses from the Internet, and dis-
card images that contain pornographic or racy con-
tent. We also discard images with human faces,
to avoid revealing privacy or introducing bias to
our data. Besides, we only keep images which
are larger than 300×300 pixels to guarantee high
image quality. The pornographic classifier, racy
classifier, and human face classifier are trained and
evaluated on human-labeled data. The (precision,

Language Train Dev Test Total
German (de) 3,316 1,000 1,000 5,316
Portuguese (pt) 3,258 1,000 1,000 5,258
Dutch (nl) 2,961 1,000 1,000 4,961
Spanish (pt) 2,894 1,000 1,000 4,894
Russian (ru) 2,804 1,000 1,000 4,804
French (fr) 2,776 1,000 1,000 4,776
Italian (it) 2,589 1,000 1,000 4,589
Korean (ko) 2,452 1,000 1,000 4,452
English (en) 2,426 1,000 1,000 4,426
Japanese (ja) 2,000 1,000 1,000 4,000
Arabic (ar) 2,000 1,000 1,000 4,000
Polish (pl) 2,000 1,000 1,000 4,000
Chinese-Traditional (zh-t) 2,000 1,000 1,000 4,000
Farsi (fa) 2,000 1,000 1,000 4,000
Indonesian (id) 2,000 1,000 1,000 4,000
Turkish (tr) 2,000 1,000 1,000 4,000
Vietnamese (vi) 2,000 1,000 1,000 4,000
Hebrew (he) 1,807 1,000 1,000 3,807
Romanian (ro) 1,441 1,000 1,000 3,441
Swedish (sv) 1,419 1,000 1,000 3,419
Filipino (tl) 1,294 1,000 1,000 3,294
Malay (ms) 0 0 1,000 2,668
Norwegian (no) 0 0 1,000 1,098
Catalan (ca) 0 0 1,000 1,002
Croatian (hr) 0 0 907 907
Georgian (ka) 0 0 863 863
Chinese-Simplified (zh-s) 0 0 833 833
Hungarian (hu) 0 0 811 811
Albanian (sq) 0 0 809 809
Serbian-Latin (sr-l) 0 0 774 774
Total 47,437 21,000 28,997 99,202

Table 2: Language distribution and data statistics of
GEM-V for multilingual video-language tasks.

recall) of them are (0.85, 0.92), (0.79, 0.94), and
(0.85, 0.92), respectively.

Then, we collect user queries from a commercial
search engine for each image based on user his-
torical clicks. We also collect the title of the Web
page that contains the image as the additional con-
text, forming {Query, Image, Title} triplets. Some
text cleanup work is done to only keep high quality
queries and contexts, including removing porno-
graphic words and meaningless strings, and dis-
carding very short queries or titles in that they are
less likely to depict the image content, etc. We
also apply an in-house GBDT model to filter out
potentially highly irrelevant {Query, Image, Title}
triplets, which is trained using a small amount of
human-labeled data, to predict the similarity be-
tween each {Query} and {Image, Title} pair.

Finally, we only keep the top 20 languages which
have more than 1000 images, and sample 1.2 mil-
lion {Query, Image, Title} triplets in total. The av-
erage length of query in GEM-I is 5.5 terms, which
is shorter than 10.6 in MSCOCO (Chen et al., 2015)
and 12.3 in Flicker30K (Vinyals et al., 2015). Also,
the average length of title is 10.1 terms. This makes
GEM-I a more practical benchmark, since all data
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Figure 1: Examples in GEM-I dataset: Q: Query, T: Title.

in GEM-I come from the real world, where the lan-
guage configuration truly differs from the queries
in existing datasets. For example, the queries in
GEM were shorter and more concise, without per-
fect grammar or syntax structure. This makes GEM
queries more ”natural”. Therefore, our benchmark
can evaluate the models on data closer to real-world
scenarios, so that the performance of the models
will be more convincing in terms of being used in
real-world applications. Based on human assess-
ment on sampled query-image pairs, 83% of the
them are well matched pairs in that the query is a
plausible caption of its paired image. We randomly
split the data into train, dev and test sets within each
language. The data statistics and language distribu-
tion of GEM-I can be found in Table 1. Figure 1
gives some examples.

2.2 GEM-V Construction

We collect several billion videos from the Internet,
and discard videos with pornographic or racy con-
tents. We also discard very long videos to save
storage and transfer expenses. For each video, its
query and title are collected from a commercial
search engine and cleaned-up according to a similar
process as we described in GEM-I, where another
in-house model is trained to filter out potentially
irrelevant {Query, Video, Title} triplets.

Finally, we only keep the top 30 languages

which have more than 700 videos, and sample 99K
{Query, Video, Title} triplets in total. The total
video length of GEM-V is 2,049 hours, and the
average video length is 1.2 minutes. The average
length of query in GEM-V is 5.3 terms, and that
of title is 8.5 terms. We also conduct human eval-
uation on some sampled query-video pairs, and
find 70% of them are plausible matched pairs. We
randomly split the data into train, dev and test sets
within each language. The data statistics and lan-
guage distribution of GEM-V can be found in Ta-
ble 2. Figure 2 gives some examples.

3 Baseline Models

This section will introduce two baseline models for
GEM, including M3P, which is a multilingual multi-
modal pre-trained model for image-language tasks,
and m-UniVL, which is a multilingual extension of
UniVL (Luo et al., 2020) for video-language tasks.

3.1 M3P as Baseline of GEM-I

We select M3P (Ni et al., 2021) as the baseline
model for tasks in GEM-I, as it is the state-of-the-
art multilingual image-language pre-trained model
for both image-language understanding and gener-
ation tasks.

The M3P model uses the model architecture of
BERT for understanding tasks and a BERT-based
encoder-decoder architecture for generation tasks.
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Figure 2: Examples in GEM-V dataset: Q: Query, T: Title.

For understanding tasks, multilingual masked lan-
guage modeling, multimodal masked language
modeling, masked region modeling and visual-
linguistic matching are used as pre-training tasks to
train a Transformer-based encoder. For generation
tasks, multilingual denoising auto-encoding, im-
age captioning and denoising image captioning are
used as pre-training tasks to train a Transformer-
based encoder-decoder. By training the encoder
and the encoder-decoder with a multitask learning
framework, universal representations are learned
to map objects occurred in different modalities or
expressed in different languages to vectors in a
common semantic space.

Fine-tune Tasks Based on the pre-trained M3P
model, we further finetune it on our GEM-I data.
For the text-image retrieval task, we adopt the BCE
loss and NCE loss (Gutmann and Hyvärinen, 2010)
(with equal weights) to learn the instance-level
alignment between texts and images. The nega-
tive samples are generated by randomly forming
text-image pairs from different training samples in
the same batch. For the image captioning task, we
directly learn captioning loss on GEM-I data.

Side-Information Since title is considered as
the side-information of the image, we concatenate
it together with the image and feed them into the
model. During the negative sampling process in the
retrieval task, we treat title and image as a whole,
i.e., for a certain query, the titles and images from
other samples are considered as negatives.

3.2 m-UniVL as Baseline of GEM-V

We adopt the same model structure with the uni-
fied video and language pre-trained model UniVL
(Luo et al., 2020), which can perform both multi-

modal understanding and generation tasks. Specif-
ically, we extend the pre-trained UniVL model
from monolingual to multilingual by replacing the
BERT-based module with XLM-R (Conneau et al.,
2019), and call the new model m-UniVL. m-UniVL
adopts an encoder-decoder architecture, including
two single-modal encoders to encode the multilin-
gual text and the visual features respectively, and
one cross-modal encoder to learn the interactions
between the two modalities, and finally an optional
decoder for generation tasks. To better leverage
the pre-trained models, we initialize each module
with different pre-trained weights: for the multilin-
gual text encoder, we directly initialize it with the
pre-trained XLM-R2 (Conneau et al., 2019), and
for other modules including the visual encoder, the
cross encoder and the decoder, we initialize them
with the weights of the pre-trained UniVL3.

Fine-tune Tasks Based on the pre-trained m-
UniVL, we further finetune it using GEM-V data.
For the text-video retrieval task, we only employ
encoders in m-UniVL in the finetuning stage and
use them to predict the matching score between
text and video. There are two baseline models for
the retrieval task: 1) m-UniVL(loose), the loosely
coupled model that only uses the single-modal en-
coders; 2) m-UniVL(tight), the loosely plus tightly
coupled model that includes both the single-modal
encoders and the cross-modal encoder. We adopt
the NCE loss (Gutmann and Hyvärinen, 2010) to
learn to discriminate the positive video-text pairs
against negative ones. The negative video-text sam-
ples are created by replacing the text or video in
a positive sample with randomly-selected text or

2https://huggingface.co/xlm-roberta-base
3https://github.com/microsoft/UniVL
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video from other samples. For video captioning
task, we employ all modules including all the en-
coders and decoder to learn the caption generation
task.

Side-Information In regard to the titles, we use
them as the side-information of the videos for an ef-
ficient text-video retrieval. In details, we first map
the embedding of the title to the same dimension
with the video embedding, and then concatenate
them together. Then we encode them using the
visual encoder to generate the enhanced video fea-
tures for further processing.

4 Related Work

4.1 Natural Language Benchmarks

GLUE (Wang et al., 2018) and SuperGLUE (Wang
et al., 2019) are two comprehensive datasets that
can be used to train and evaluate natural language
understanding systems. GLGE (Liu et al., 2020)
is another comprehensive dataset for natural lan-
guage generation evaluation. XGLUE (Liang et al.,
2020) and XTREME (Hu et al., 2020) are two re-
cent benchmark efforts that extend the evaluation
scenarios from monolingual to multilingual. Re-
cent pre-trained language models benefit a lot from
these datasets, by evaluating their effectiveness un-
der a relatively fair environment.

4.2 Vision-Language Benchmarks

A number of vision-language datasets have been
widely used in the multimodal research.

MSCOCO (Chen et al., 2015) and Flicker30K
(Vinyals et al., 2015) are two datasets for image-
text retrieval and image-captioning tasks. These
two benchmarks have been extended to multilin-
gual tasks (Elliott et al., 2016, 2017; Miyazaki and
Shimizu, 2016; Li et al., 2019) as well. VQA (An-
tol et al., 2015) and GQA (Hudson and Manning,
2019) are two datasets for visual question answer-
ing. VCR (Zellers et al., 2018) is another dataset
for visual commonsense reasoning. Comparing
with all these existing datasets, GEM-I has unique
characteristics. First, it is a large-scale multilingual
image-text dataset covering 20 different languages.
Second, the query-image pairs in GEM-I come
from a commercial search engine. Therefore, it has
big practical values. Third, for each query-image
pair, the title of the Web page that contains the im-
age is also included as the additional context, which
makes GEM-I different from all existing datasets.

HowTo100M (Miech et al., 2019b), YouCook2

(Zhou et al., 2018), and MSR-VTT (Xu et al.,
2016) are three typical benchmarks for video-text
retrieval and video captioning tasks. TVQA (Lei
et al., 2018) and ActivityNet-QA (Yu et al., 2019)
are two typical benchmarks for video question
answering. Comparing with all these existing
datasets, GEM-V is the first video-language bench-
mark supporting multilingual scenarios. Similar to
GEM-I, it also has big practical values, as all data
in GEM-V come from a real-world search engine
with massive users.

5 Experiments

In this section, we evaluate two baseline pre-trained
models (described in Section 3) on GEM. Specifi-
cally, M3P is evaluated on GEM-I for multilingual
image-language tasks and m-UniVL is evaluated
on GEM-V for multilingual video-language tasks.
For both baseline models, we fine-tune them on
downstream tasks directly.

5.1 Image-Language Evaluation on GEM-I
5.1.1 Experimental Settings
We select the open-source version4 of M3P (Ni
et al., 2021) for the image-language evaluation on
GEM-I. It uses 101G sentences (in 100 languages)
extracted from Wikipedia as the multilingual pre-
training corpus, and uses 3.3 million English image-
caption pairs in Conceptual Captions (Sharma et al.,
2018) as the multimodal pre-training corpus.

For text-to-image retrieval, the hyper-parameters
of the encoder are set as follows: 768 hidden
units, 12 heads, GELU activation, a dropout rate
of 0.1, 128 max input length, 12 layers in encoder.
For image captioning, the hyper-parameters of the
encoder-decoder are set as follows: 768 hidden
units, 8 heads, GELU activation, a dropout rate of
0.1, 128 max input length, 12 layers in both encoder
and decoder. The transformer parameters between
the encoder and decoder are shared, including em-
bedding modules and self-attention modules.

We fine-tune M3P on text-to-image retrieval and
image captioning tasks. For retrieval, we use Adam
optimizer with β1 = 0.9, β2 = 0.98, an initial
learning rate of 5e-5, a weight decay of 1e-4 and
a batch size of 64 to fine-tune M3P for 30 epochs.
For captioning, a learning rate of 1e-4 and a batch
size of 16 are used to fine-tune M3P for 20 epochs.
All above calculations are carried on 4 NVIDIA
Tesla P100 GPUs.

4https://github.com/microsoft/M3P
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Setting en es fr it pt de ko pl ca nl -

Zero-Shot
M3P (Q→I) 22.08 8.31 8.51 7.16 7.05 9.31 4.68 4.38 9.10 9.09 -
M3P (Q→I+T) 5.80 4.16 3.98 2.9 3.71 3.36 2.68 4.07 2.86 3.96 -

Fine-tune on ALL
M3P (Q→I) 43.85 26.15 24.83 22.72 27.05 27.18 15.80 32.80 12.83 20.78 -
M3P (Q→I+T) 93.75 93.16 95.15 93.26 93.73 89.37 67.46 82.67 90.78 90.37 -

ja id vi cs ro tr gl hr hu ms AVG

Zero-Shot
M3P (Q→I) 7.68 12.06 5.00 5.32 5.81 5.13 4.72 5.30 4.30 8.08 7.65
M3P (Q→I+T) 4.5 4.53 2.08 3.72 3.61 3.28 2.55 2.58 3.26 3.41 3.55

Fine-tune on ALL
M3P (Q→I) 18.88 22.13 10.10 13.33 16.10 13.23 10.38 13.51 11.11 14.33 19.85
M3P (Q→I+T) 71.90 81.98 54.83 76.23 64.35 71.97 75.00 71.28 63.43 74.18 79.74

Table 3: Evaluation results of M3P on GEM-I test set for text-to-image retrieval tasks where Mean-Recall is taken
as metric. Q→I denotes the setting where only image (I) is used to compute its similarity with query (Q), Q→I+T
denotes the setting where both image (I) and title (T) are used to compute the similarity with query (Q). The
average score is computed over all 20 languages.

Setting Metric en es fr it pt de ko pl ca nl -

M3P ROUGE-L 6.97 13.86 10.47 9.13 8.35 8.67 3.27 9.31 12.84 3.62 -
M3P METEOR 3.21 5.84 4.91 4.14 3.67 3.81 2.21 4.01 5.7 1.54 -
M3P CIDEr 17.89 8.68 14.92 11.98 7.93 20.18 7.33 8.44 7.59 6.79 -

ja id vi cs ro tr gl hr hu ms AVG

M3P ROUGE-L 4.10 0.96 0.66 4.58 3.98 0.32 9.84 0.25 0.57 0.39 5.61
M3P METEOR 1.26 0.47 0.22 1.97 1.78 0.15 4.43 0.11 0.26 0.18 2.49
M3P CIDEr 5.01 2.03 1.14 5.72 2.96 0.79 6.86 0.72 1.43 0.91 6.97

Table 4: Evaluation results of M3P on GEM-I test set for image captioning task where ROUGE-L, METEOR and
CIDEr are taken as metrics. Only images (without title) are used to test its multilingual multimodal captioning
ability. The average score is computed over all 20 languages.

5.1.2 Text-to-Image Retrieval Results
We follow the same evaluation metric, mean-Recall
(average score of R@1, R@5, R@10), in M3P to re-
port its the performance on text-to-image retrieval
task on GEM-I dataset.

From the results reported in Table 3, we have
several observations:

1) When applying M3P to GEM-I without fine-
tuning (i.e. the zero-shot setting), the general per-
formance is poor. The major reason is that M3P is
pre-trained on a monolingual multimodal corpus
and a multilingual monomodal corpus, and both
datasets have very different data distributions com-
paring with GEM-I.

2) By fine-tuning M3P using all labeled data in
different languages (i.e. the fine-tune on all setting),
better performance can be obtained. This shows
the strong transfer ability of M3P, when there is a
moderate amount of labeled data for fine-tuning.

3) By furthering considering the title signal in
this retrieval task, the general performance can be
improved significantly. This indicates the strong
correlation between the query and the title. Besides,
when taking the title signal into the zero-shot set-
ting, we can observe a performance drop. It is due

to that M3P is pretrained with input paradigm Q-I,
thus making it not suitable for evaluating Q-I-T
paradigm directly.

5.1.3 Image Captioning Results

As in Table 4, we report the performance of image
captioning tasks on GEM-I test set with M3P model
where ROUGE-L (Lin and Och, 2004), METEOR
(Banerjee and Lavie, 2005) and CIDEr (Vedantam
et al., 2015) are taken as the evaluation metrics.
To study the image captioning ability of M3P, we
only use images (without title) to generate queries
in GEM-I dataset. In general, the M3P model per-
forms relatively poor on this task, due to that most
search queries are short keywords instead of a com-
plete sentence, and they differ from our pre-training
data a lot.

From the above results from text-to-image re-
trieval task and the image captioning task, we can
conclude that our proposed GEM-I dataset can
demonstrate a model’s image understanding and
generation ability in 20 different languages.
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Setting en id pt vi ro ko ja fr ar de tl sv fa he it -

Fine-tune on ALL
m-UniVL(loose) (Q→V) 23.27 17.67 23.50 12.83 19.90 12.83 12.37 24.77 9.03 22.27 11.23 16.07 9.87 9.50 23.60 -
m-UniVL(loose) (Q→V+T) 71.83 57.03 62.90 38.97 53.57 42.09 38.87 62.83 36.50 56.67 43.37 40.20 39.67 35.20 56.80 -
m-UniVL(tight) (Q→V+T) 83.87 69.97 61.20 52.07 59.08 63.17 66.10 74.47 46.92 70.27 59.23 51.60 58.10 56.60 58.90 -

Fine-tune on EACH
m-UniVL(loose) (Q→V+T) 28.90 19.97 21.23 12.33 14.93 16.87 13.30 20.73 10.57 21.70 14.60 12.23 12.03 10.27 18.70 -

tr ru nl pl zh-t es ms no ca hr ka zh-s hu sq sr-l AVG

Fine-tune on ALL
m-UniVL(loose) (Q→V) 18.70 18.10 20.00 22.50 16.00 25.13 8.10 16.70 9.05 13.38 7.67 9.64 11.56 6.80 11.03 15.44
m-UniVL(loose) (Q→V+T) 51.43 57.73 49.73 49.80 45.70 66.03 43.97 40.60 41.40 38.37 28.00 38.38 40.69 33.00 35.70 46.57
m-UniVL(tight) (Q→V+T) 63.13 70.57 59.07 50.67 69.10 64.97 64.60 54.40 59.37 31.50 39.05 64.31 58.73 50.97 32.86 58.83

Fine-tune on EACH
m-UniVL(loose) (Q→V+T) 21.00 17.70 21.70 19.50 17.40 19.83 NA NA NA NA NA NA NA NA NA 17.40

Table 5: Evaluation results of m-UniVL on GEM-V for text-to-video retrieval, where Mean-Recall is used as the
metric. Q→V denotes the setting where only video (V) is used to compute its similarity with query (Q). Q→V+T
denotes the setting where both video (V) and title (T) are used to compute their similarity with query (Q). The
average score is computed over all 30 languages.

5.2 Video-Language Evaluation on GEM-V

5.2.1 Experimental Settings

We select the open-source version5 of UniVL (Luo
et al., 2020) and replace the original text encoder
with XLM-R (Conneau et al., 2020), to support the
multilingual video-language evaluation on GEM-
V. The original UniVL is pre-trained on 1.2 mil-
lion instructional videos with ASR transcripts in
HowTo100M (Miech et al., 2019b).

For text-to-video retrieval task, m-UniVL ex-
tracts video features using the off-the-shelf pre-
trained S3D (Miech et al., 2019a) model. The FPS
of the 3D feature extractor is 16 and the dimen-
sion is 1,024. The hyper-parameters of the video
encoder are set as follows: 768 hidden units, 12
heads, 6 layers of of Transformer blocks to capture
the sequential information on the 3D features. The
hyper-parameters of the text encoder are identical
to the ones in XLM-R: 768 hidden units, 12 heads,
12 layers of Transformer blocks. The cross encoder
on the top of the text and video encoders has 2
layers with 768 hidden units and 12 heads. For
video captioning, the decoder is with 3 layers, 768
hidden units and 12 heads.

We finetune m-UniVL on text-to-video retrieval
and video captioning tasks. For retrieval, a learning
rate of 1e-4 and a batch size of 128 are used to fine-
tune m-UniVL for 50 epochs. For captioning, a
learning rate of 3e-5 and a batch size of 16 are
used to fine-tune m-UniVL for 5 epochs. All above
calculations are carried on 4 NVIDIA Tesla V100
GPUs.

5https://github.com/microsoft/UniVL

5.2.2 Text-to-Video Retrieval Results

Following official UniVL on retrieval task, we eval-
uate the text-to-video retrieval task on our GEM-
V using two variants. One is m-UniVL (loose),
which encodes the input text query and candidate
video clips (and optional title) through the text en-
coder and video encoder respectively and finally
calculates the matching score through dot product.
The other is m-UniVL (tight), based on m-UniVL
(loose), m-UniVL (tight) further concatenates the
encoded features and feeds them to the cross en-
coder to get unified representation and predict the
matching score on the first token ‘〈s〉’. The eval-
uation metric is mean-Recall (arithmetic mean of
Recall@K for K ∈ {1, 5, 10}).

Tables 5 lists the retrieval results. The results
can be divided into two groups. One is from the
fine-tuning on all training set across linguistic type
(Fine-tune on ALL), and the other is from the fine-
tuning on individual training set of each language
(Fine-tune on Each). The target of such a divi-
sion is to explore whether one language can benefit
from other wide languages. Besides, there are 9
languages without training set. We keep such a
zero-shot evaluation to explore the transfer ability
of the proposed model.

We can get three conclusions from the results:
1) The m-UniVL (tight) outperforms m-UniVL

(loose) at the same retrieval settings. It proves
that the cross encoder of UniVL enables the multi-
modality features to fully interact with each other
to capture better alignment.

2) The title of the video introduces a large per-
formance gain and is a good semantic feature of
the video. This metadata is especially useful for
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Setting Metric en id pt vi ro ko ja fr ar de tl sv fa he it -

Fine-tune on ALL
m-UniVL (V→Q) ROUGE-L 9.43 10.95 14.63 6.64 9.96 3.41 3.10 16.87 3.80 8.18 9.72 8.55 8.25 2.28 10.65 -
m-UniVL (T→Q) ROUGE-L 46.06 35.89 36.68 27.36 35.08 21.01 17.14 41.64 22.40 30.30 43.36 26.10 30.58 33.07 34.43 -
m-UniVL (V+T→Q) ROUGE-L 46.01 36.73 37.59 26.75 36.41 20.71 17.12 41.90 23.45 30.24 44.40 26.38 30.21 32.82 34.98 -
m-UniVL (V→Q) METEOR 3.93 4.51 6.09 2.39 4.09 2.99 3.38 8.06 15.16 3.71 4.31 3.62 17.06 12.04 4.65 -
m-UniVL (T→Q) METEOR 23.99 17.01 17.40 13.13 17.10 20.77 18.33 21.25 26.47 14.40 22.67 12.23 26.25 29.33 16.60 -
m-UniVL (V+T→Q) METEOR 23.98 17.44 18.01 12.52 18.09 20.34 18.24 21.39 26.76 14.52 23.00 12.26 26.17 28.91 16.94 -
m-UniVL (V→Q) CIDEr 19.16 18.35 23.58 13.53 18.56 7.12 4.20 43.82 5.72 18.23 23.40 8.99 14.88 4.75 17.53 -
m-UniVL (T→Q) CIDEr 256.65 155.05 164.26 116.46 164.89 74.95 57.15 223.09 86.57 138.50 220.58 101.64 119.49 139.39 170.02 -
m-UniVL (V+T→Q) CIDEr 255.04 157.64 167.79 108.66 174.59 74.01 58.73 223.67 90.70 138.66 223.21 100.61 115.37 136.24 174.44 -

Fine-tune on EACH
m-UniVL (V+T→Q) ROUGE-L 21.30 12.25 18.36 6.45 9.09 7.59 3.77 15.20 4.92 8.94 14.92 8.11 7.31 1.76 10.05 -
m-UniVL (V+T→Q) METEOR 9.50 4.92 7.99 2.44 3.67 6.79 3.48 7.01 17.21 3.92 7.12 3.47 16.66 12.75 4.22 -
m-UniVL (V+T→Q) CIDEr 65.52 24.26 44.69 15.47 21.45 23.40 9.50 43.71 8.35 21.32 41.04 9.89 13.65 3.71 18.12 -

tr ru nl pl zh-t es ms no ca hr ka zh-s hu sq sr-l AVG

m-UniVL (V→Q) ROUGE-L 11.53 14.44 9.83 14.19 3.95 18.07 0.15 0.91 0.27 2.49 0.00 0.11 2.68 1.29 0.33 6.89
m-UniVL (T→Q) ROUGE-L 32.19 35.41 27.77 29.99 15.72 41.35 34.44 21.35 38.29 24.94 1.70 4.63 30.13 27.22 28.28 29.15
m-UniVL (V+T→Q) ROUGE-L 34.43 35.84 28.31 29.82 15.50 42.29 36.36 21.59 38.09 26.09 2.92 4.55 30.58 28.37 29.51 29.67
m-UniVL (V→Q) METEOR 5.41 6.11 4.47 6.06 2.65 8.21 0.07 0.39 0.13 1.05 0.00 0.61 1.18 0.67 0.13 4.44
m-UniVL (T→Q) METEOR 15.53 16.79 13.21 13.91 16.03 20.50 16.88 9.77 19.21 12.00 1.74 12.24 13.66 13.17 13.53 16.84
m-UniVL (V+T→Q) METEOR 16.54 17.12 13.62 13.86 15.48 20.83 17.92 9.83 18.95 12.47 2.76 11.59 13.78 13.72 13.81 17.03
m-UniVL (V→Q) CIDEr 28.84 24.05 17.35 17.37 8.00 32.89 0.15 1.65 0.45 2.20 0.00 0.29 2.71 1.70 0.73 12.67
m-UniVL (T→Q) CIDEr 149.09 161.47 123.79 117.37 47.94 203.88 156.38 84.81 192.65 102.38 3.95 13.58 129.47 109.78 119.64 130.16
m-UniVL (V+T→Q) CIDEr 156.35 166.33 124.20 116.29 47.13 204.85 166.13 82.70 189.35 106.02 8.01 12.85 128.94 114.98 118.01 131.38

Fine-tune on EACH
m-UniVL (V+T→Q) ROUGE-L 11.46 17.52 9.16 13.31 3.15 24.21 NA NA NA NA NA NA NA NA NA 10.90
m-UniVL (V+T→Q) METEOR 5.20 7.44 3.93 5.65 2.08 11.19 NA NA NA NA NA NA NA NA NA 6.98
m-UniVL (V+T→Q) CIDEr 29.62 36.11 16.48 21.15 6.56 62.26 NA NA NA NA NA NA NA NA NA 25.54

Table 6: Evaluation results of m-UniVL on GEM-V for video captioning, where ROUGE-L, METEOR and CIDEr
are taken as metrics. V→Q and T→Q denote the video caption is generated based on video (V) and title (T),
respectively. V+T→Q denotes the video caption is generated based on both video (V) and title (T). The average
score is computed over all 30 languages.

zero shot setting with a significant improvement.
They demonstrate that improving the retrieval per-
formance on pure videos without titles is still a
challenge. Our proposed GEM develops a chance
to push such a multimodal challenge.

3) Fine-tune on all can achieve better results
than fine-tune on each. The reason is the former
can effectively leverage the data from all languages
and benefit the task rather than the latter. Besides,
for zero shot languages, fine-tune on all is also very
effective. It demonstrates that our proposed GEM
can also be used on multilingual research besides
multimodal research.

5.2.3 Video Captioning Results
The captioning task aims to generate a caption
given a video clip (and optional title) in our set-
ting. Such a generation task is from our practical
application. We adopt whole m-UniVL including
encoders and decoder to finish the task. The eval-
uation metric are ROUGE-L (Lin and Och, 2004),
METEOR (Banerjee and Lavie, 2005) and CIDEr
(Vedantam et al., 2015), whose values are obtained
from an open-source tool6.

Table 6 lists the experimental results. Similar
conclusions can be drawn as the retrieval task, and
there are two more observations:

1) For captioning task, the performance of the

6https://github.com/Maluuba/nlg-eval

generation on pure videos is low. The reason is
that the search queries sometimes are the keywords
instead of a whole sentence, thus the task of V→Q
is relatively hard.

2) Title is especially important due to the char-
acteristic of this data collection process.

From the above results from the text-to-video
retrieval task and the video captioning task, we
can conclude that our proposed GEM-V can im-
prove video understanding and generation under
the multilingual and multimodal perspective.

6 Conclusion

This paper presents GEM as a benchmark for eval-
uating the generalization capabilities of vision-
language models on image-language and video-
language tasks. GEM is also the first large-scale
multilingual multimodal dataset, where the natural
language contexts are collected from a commercial
search engine in 20 and 30 languages for image-
related and video-related tasks, respectively. We
describe two vision-language pre-trained models
for GEM and hope these efforts can advance the
development of multilingual multimodal research.

7 Ethical Considerations

We have reviewed our data release process and
it has been approved by our institutional review
board. Specifically, (a) In GEM-I, all of the images
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are with proper Creative Commons Licenses, so
that they are safe to be distributed without violat-
ing any policies or intellectual rights. Also, we
discarded images with human faces to avoid re-
vealing privacy. (b) In GEM-V, all of the videos
were originated from Youtube, and we will only
provide Youtube URLs to the researchers. We have
confirmed with our institutional review board that
distributing URLs does not violate any policies or
intellectual rights. We didn’t do anything specific
for human faces in the videos, since we are only
distributing video URLs, and modifying the origi-
nal videos (such as blurring the faces) might violate
the copyright of the videos. When releasing GEM
to the public, we will indicate the data source, em-
phasize that the dataset is for research purposes
only, and provide an email address for people to
contact us to delete any data if any infringement.
During data collection, we didn’t collect, store, or
distribute any private information of the users.

To measure the quality of our dataset, we em-
ployed crowd-sourcing judges in the United States
and provided labeling guidelines for them. The
compensation given to the workers is 15 USD per
hour for GEM-I and 25 USD per hour for GEM-V.
The level of compensation is determined by: (a)
Market price according to similar labeling tasks in
the US. (b) The difficulty and labeling speed of this
task. This task involves labeling if a query is related
to an image or video, so it is considered as a rela-
tively easy task. The labeling speed is about 300
query-image pairs per hour and 180 query-video
pairs per hour.
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