
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 2475–2486
August 1–6, 2021. ©2021 Association for Computational Linguistics

2475

Training ELECTRA Augmented with Multi-word Selection

Jiaming Shen∇?, Jialu Liu3, Tianqi Liu3, Cong Yu3, Jiawei Han∇

∇University of Illinois Urbana-Champaign, IL, USA, 3Google Research, NY, USA
∇{js2, hanj}@illinois.edu 3{jialu, tianqiliu, congyu}@google.com

Abstract

Pre-trained text encoders such as BERT and its
variants have recently achieved state-of-the-art
performances on many NLP tasks. While be-
ing effective, these pre-training methods typi-
cally demand massive computation resources.
To accelerate pre-training, ELECTRA trains
a discriminator that predicts whether each in-
put token is replaced by a generator. How-
ever, this new task, as a binary classification, is
less semantically informative. In this study, we
present a new text encoder pre-training method
that improves ELECTRA based on multi-task
learning. Specifically, we train the discrimi-
nator to simultaneously detect replaced tokens
and select original tokens from candidate sets.
We further develop two techniques to effec-
tively combine all pre-training tasks: (1) us-
ing attention-based networks for task-specific
heads, and (2) sharing bottom layers of the
generator and the discriminator. Extensive
experiments on GLUE and SQuAD datasets
demonstrate both the effectiveness and the ef-
ficiency of our proposed method.

1 Introduction

Contextualized representations from pre-trained
text encoders have shown great power for im-
proving many NLP tasks (Rajpurkar et al., 2016;
Wang et al., 2019b,a; Liu and Lapata, 2019). Most
pre-trained encoders, despite their variety, follow
BERT (Devlin et al., 2019) and adopt the masked
language modeling (MLM) pre-training task which
trains the model to recover the identities of a small
subset of masked tokens. Although being more
effective than conventional left-to-right language
model pre-training (Peters et al., 2018; Radford
et al., 2018) due to capturing bidirectional infor-
mation, MLM-based approaches (Liu et al., 2019b;
Joshi et al., 2019) can only learn from those masked
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tokens which are typically just 15% of all tokens
in the input sentences.

To address the low sample efficiency issue,
ELECTRA (Clark et al., 2020a) proposes a new
pre-training task. Specifically, it corrupts a sen-
tence by replacing some tokens with plausible al-
ternatives sampled from a generator and trains a
discriminator to predict whether each token in the
corrupted sentence is replaced or not. After pre-
training ends, it throws away the generator and
exports the discriminator for down-stream applica-
tions. As the discriminator can learn from all input
tokens, ELECTRA is more sample efficient than
previous MLM-based methods. However, follow-
up studies (Xu et al., 2020; Aroca-Ouellette and
Rudzicz, 2020) find this new replaced token de-
tection task, as a binary classification, is often too
simple to learn. As a result, the discriminator out-
put representations are insufficiently trained and
encode inadequate semantic information.

In this work, we propose a novel text encoder pre-
training method TEAMS which stands for “Train-
ing ELECTRA Augmented with Multi-word Selec-
tion”. Compared with ELECTRA, our method also
consists of a generator and a discriminator but they
are equipped with different pre-training tasks. For
each masked position in the input sentence, the gen-
erator replaces the original token with an alternative
token and samples a candidate set that consists of
the original token and other K non-original ones.
Then, we train the discriminator to simultaneously
perform two tasks: (1) a multi-word selection task
in which the discriminator learns to select the orig-
inal token from the sampled candidate set, and (2)
a replaced token detection task similarly defined
in ELECTRA. The first task, as a (K + 1)−way
classification on the masked positions, pushes the
discriminator to differentiate ground truth tokens
from other negative non-original ones. At the same
time, the second task, with reduced task complex-
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ity, keeps the discriminator to achieve the same
sample efficiency as ELECTRA.

To further improve the performance and effi-
ciency of our method, we introduce two techniques.
The first one is using attention-based task-specific
heads for discriminator multi-task pre-training. Dif-
ferent from previous studies (Liu et al., 2019a; Sun
et al., 2020) that pass the last encoder layer out-
puts to different task heads, our method directly
incorporates task-specific attention layers into the
discriminator encoder. Such a design offers higher
flexibility in capturing task-specific token depen-
dencies in sequence and leads to significant per-
formance boost. The second technique is to share
the bottom layers of the generator and the discrim-
inator. This technique reduces the number of pa-
rameters, saves computes, and serves as a form of
regularization that stabilizes the training and helps
the generalization.

Combining above novelties all together, we train
our models of various sizes and test their perfor-
mance on the GLUE natural language understand-
ing benchmark (Wang et al., 2019b) and SQuAD
question answering benchmark (Rajpurkar et al.,
2016). We show that TEAMS substantially outper-
forms previous MLM-based methods and ELEC-
TRA, given the same model size and pre-training
data. For example, our base-sized model, achieving
84.51 SQuAD 2.0 F1 score, outperforms BERT and
ELECTRA by 8.34 and 2.99, respectively. More-
over, TEAMS-Base can outperform ELECTRA-
Base++ using a fraction of computes.

Contributions. The major contributions of this
paper are summarized as follows: (1) We propose
a new text encoder pre-training method TEAMS
that simultaneously learns a generator and a dis-
criminator using multi-task learning. (2) We de-
velop two techniques, attention-based task-specific
head and partial layer sharing, to further improve
TEAMS performance. (3) We conduct extensive
experiments to verify the effectiveness of TEAMS
on GLUE and SQuAD benchmarks1.

2 Background

In this section, we first discuss some related studies
on pre-training text encoders. Then, we introduce
our notations and describe ELECTRA in details.

1Code and pre-trained model weights are available
at https://github.com/tensorflow/models/
tree/master/official/nlp/projects/teams.

2.1 Text Encoder Pre-training

Current state-of-the-art natural language process-
ing systems often rely on a text encoder to generate
contextualized representations. This text encoder
is commonly pre-trained on massive unlabeled cor-
pora using different self-supervised tasks. Peters
et al. (2018) and Radford et al. (2018) pre-train
either a LSTM or a Transformer (Vaswani et al.,
2017) using the standard language modeling task.
To further improve pre-trained models, more effec-
tive pre-training objectives have been developed,
including masked language modeling and next sen-
tence prediction in BERT (Devlin et al., 2019), per-
mutation language modeling in XLNet (Yang et al.,
2019), masked span prediction in SpanBERT (Joshi
et al., 2019), sentence order prediction in Struct-
BERT (Wang et al., 2020), and more.

Most pre-training methods demand massive
amounts of computes, which limits their accessibil-
ities and raises concerns about their environmental
costs. To alleviate such issue, Gong et al. (2019)
and Yang et al. (2020) propose to accelerate BERT
training by progressively stacking a shallow model
to a deep model. Gu et al. (2020) extend this idea
by growing a low-cost model in different dimen-
sions. Along another line of work, Clark et al.
(2020a) propose a new pre-training task, named
replaced token detection, that learns a text encoder
to distinguish real input tokens from synthetically
generated replacements. Compared to BERT-style
MLM pre-training in which only 15% of tokens
are utilized, ELECTRA can leverage all tokens in
input sentences and thus achieves better sample
efficiency. Following this idea, Xu et al. (2020)
propose a new pre-training task based on the multi-
choice cloze test with a rejection option, and Clark
et al. (2020b) connect ELECTRA with cloze mod-
eling and pre-train the text encoder as an energy-
based cloze model. As our method is built upon
ELECTRA, we discuss it in more detail below.

2.2 ELECTRA

ELECTRA jointly trains two models, a generator
G and a discriminator D. Both models adopt the
Transformer architecture as their backbones and
map a sentence of n tokens x = [x1, . . . , xn] to
their corresponding contextualized representations
h(x) = [h(x)1, . . . , h(x)n].

The generator G is trained using the masked lan-
guage modeling (MLM) task. Specifically, given
an input sequence x, it first randomly selects a few

https://github.com/tensorflow/models/tree/master/official/nlp/projects/teams
https://github.com/tensorflow/models/tree/master/official/nlp/projects/teams
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masked positions and replaces tokens at these po-
sitions with a special mask symbol [MASK]. We
denote this masked sequence as xM . Then, the
generator learns to predict the original identities of
those masked-out tokens by minimizing the below
MLM loss:

LMLM(x;G) = E

 ∑
i:xM

i =[MASK]

− logPG(xi|xM )

 ,

(1)

where PG(xi|xM ) is the probability that G pre-
dicts token xi appears in the masked position i in
xM , and the expectation is taken over the random
draw of masked positions. More specifically, the
generator calculates PG(xi|xM ) by passing con-
textualized representations hG(xM ) into a softmax
layer as follows:

PG(xi|xM ) =
exp(e(xi)

ThG(x
M )i)∑

x′
i∈V exp(e(x′i)

ThG(xM )i)
, (2)

where e(xi) is the embedding of token xi and V
denotes the vocabulary of all tokens. Finally, for
each masked position i, the generator samples one
token x̂i ∼ PG(·|xM ) and replaces the original to-
ken xi with x̂i. We use xR to denote this corrupted
sentence with replaced tokens.

The discriminator D learns to perform the re-
placed token detection (RTD) task that requires a
model to predict whether each token in xR is re-
placed or not. In particular, ELECTRA adopts a
sigmoid layer, on top of the discriminator output
contextualized representations hD(xR), to decide
the probability that token xRi matches the original
token xi as follows:

PD(xRi = xi) = sigmoid(wThD(xR)i), (3)

where w is a learnable parameter. The loss on D is
then defined as follows:

LRTD(x,x
R;D) = E

( ∑
i:xR

i =xi

− logPD(xRi = xi)

+
∑

i:xR
i 6=xi

− log(1− PD(xRi = xi))
)
. (4)

Finally, the generator and discriminator are jointly
learned based on losses in Eq. (1) and Eq. (4). After
pre-training, ELECTRA throws out the generator
and keeps only the discriminator for fine-tuning on
downstream tasks.

3 The TEAMS Method

In this section, we first introduce a new pre-training
task named “multi-word selection”. Then, we
present our TEAMS method with two techniques
for performance improvements.

3.1 Multi-word Selection Task
To train a model on an input sequence x =
[x1, . . . , xn] using the multi-world selection task,
we first choose a random set of positions in this
sequence, denoted as {i1, . . . , im} where m is an
integer between 1 and n. Then, for each chosen
position ij , j ∈ {1, . . . ,m}, we replace token xij
with another token x̂ij and create a candidate set
Sij that includes the original token xij and K non-
original ones. Following ELECTRA, we use xR

to denote the corrupted sentence with all tokens
in chosen positions replaced. Finally, the model
inputs the corrupted sentence and outputs a proba-
bility for selecting the original token xij from the
candidate set Sij as follows:

P (xij |x
R, Sij ) =

exp(e(xij )
Th(xR)ij )∑

x
′
ij

∈Sij
exp(e(x

′
ij
)Th(xR)ij )

, (5)

where h(xR)ij is the contextualized representation
of token x̂ij from the model outputs.

Figure 1 shows a concrete example wherein a
sequence of 6 tokens is given and its 2nd, 4th,
and 6th positions are chosen to be masked. Take
the 2nd position as an example, the generator re-
places the original token xi1=“famous” with an-
other token x̂i1=“old” and generates the candi-
date set Si1={“top”, “young”, “french”, “famous”}
which includes the original token xi1 and K = 3
non-original alternatives.

We may view the multi-word selection task as a
simplification of masked language modeling and a
generalization of replaced token detection. Asking
the model to select the correct word from a candi-
date set rather than from the entire vocabulary, we
can save more computes. At the same time, being
essentially a (K + 1)−way classification problem,
the multi-word selection task is more challenging
than the replaced token detection task (which is
a binary classification problem) and thus pushes
the model to learn more semantic representations.
We describe how to generate the candidate set and
present our entire method below.

3.2 Multi-task Learning in TEAMS

In TEAMS, we jointly train two transformer en-
coders, one as the generator network G and the
other as the discriminator network D. Given a
masked sequence xM , we use the generator G to
perform two tasks for each masked position ij in
this sequence. First, similar to ELECTRA, we sam-
ple one token x̂ij ∼ PG(·|xM ) (c.f. Eq. (2)) and
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Figure 1: The overview framework of TEAMS. For each masked position, the generator replaces its original token
with a new one and outputs a candidate set consisting of the original token and another K possible alternatives.
The discriminator inputs the corrupted sentence and learns to (1) predict for every token whether it is replaced or
not and (2) select the original token from the candidate set for each masked position.

obtain the corrupted sequence xR. Second, we
draw K non-original tokens {x1ij , . . . , x

K
ij
} from

PG(·|xM ) without replacement2 and construct the
candidate set Sij = {xij , x1ij , . . . , x

K
ij
}. Finally,

we learn the generatorG using the standard masked
language modeling task (c.f. Eq. (1)).

On the discriminator side, we train the discrim-
inator network D using two tasks — replaced to-
ken detection (RTD) task and multi-word selection
(MWS) task. Given a corrupted sentence xR of
length n, the discriminator will generate two sets
of contextualized representations {hRTD

D (xR)i}|ni=1

and {hMWS
D (xR)i}|ni=1, one for each pre-training

task. For each position i ∈ {1, . . . , n}, we use
hRTD
D (xR)i to calculate the probability that the to-

ken xR
i is replaced as follows:

PD(xR
i = xi) = sigmoid(wThRTD

D (xR)i), (6)

and optimize the same RTD loss defined in Eq. (4).
For each masked position ij , j ∈ {1, . . . ,m}, we
obtain the candidate set Sij from generator outputs
and use hMWS

D (xR)ij to compute the probability of
selecting the correct original token xij from this
candidate set as follows:

PD(xij |x
R, Sij ) =

exp(e(xij )
ThMWS

D (xR)ij )∑
x
′
ij

∈Sij
exp(e(x

′
ij
)ThMWS

D (xR)ij )
.

(7)

As the multi-word selection task is a multi-class
classification problem, we define its loss function

2More discussions on other possible negative sampling
strategies are presented in experiment section.

as follows:

LMWS(x,x
R;D, S) = E

(
m∑

j=1

− logPD(xij |x
R, Sij )

)
,

(8)

where S = {Sij}|mj=1 is the collection of candi-
date sets at all masked positions. Finally, we learn
TEAMS by optimizing a combined loss as follows:

min
G,D

(
LMLM(x;G) + λ1LRTD(x,x

R;D)

+ λ2LMWS(x,x
R;D, S)

)
,

(9)

where λ1 and λ2 are two loss balancing hyper-
parameters. For the example sequence in Figure 1,
the discriminator needs to predict the tokens in 1st,
3rd, 5th positions are not replaced, the tokens in
2nd, 4th, 6th positions are replaced, and select to-
kens “famous”, “sold”, and “painting” in 2nd, 4th,
6th positions, respectively.

After pre-training, we keep the discriminator net-
work and fine-tune it for downstream applications3.
Attention-based Task-specific Heads. One re-
maining question is how to generate two sets of
task-specific representations on the discriminator
side. Previous studies (Liu et al., 2019a; Sun et al.,
2020; Aroca-Ouellette and Rudzicz, 2020) achieve
this goal by adding task-specific layers on top of
each individual token, as shown in Figure 2 (Left).
However, this approach does not model token de-
pendencies within the task-specific layers.

In this work, we propose to use attention-based
task-specific heads to capture global dependen-

3Empirically, we find that using the contextualized rep-
resentations for the MWS task (i.e., {hMWS

D (xR)i}|ni=1) can
achieve better fine-tuning performance.
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Figure 2: Architectures for transforming task-agnostic
representations to task-specific representations. (Left)
Adding task-specific heads on each token separately.
(Right) Using task-specific attention heads capture all
token information holistically.

cies in sequences. Particularly, we design this at-
tention head to be one transformer layer (i.e., a
self-attention block followed by a fully connected
network with one hidden layer). Since our dis-
criminator also uses a transformer model to obtain
each token’s task-agnostic representation, we can
merge one task head into the discriminator back-
bone. From this perspective, we can generate differ-
ent sets of task-specific representations as follows.
First, we input the sequence to a transformer with
L layers and retrieve the final layer output repre-
sentations for one task. Then, we feed the output
of an intermediate layer (e.g., the (L− 1)th layer)
into another transformer layer to obtain token rep-
resentations for the second task.

Partial Layer Sharing. ELECTRA has shown
that tying the embedding layers of the generator
and the discriminator can help improve the pre-
training effectiveness. Our study confirms this ob-
servation and finds that sharing some transformer
layers of the generator and discriminator and can
further boost the model performance. More specif-
ically, we design the generator to have the same
“width” (i.e., hidden size, intermediate size and
number of heads) as the discriminator and share
the bottom half of all transformer layers between
the generator and the discriminator.

4 Experiments

4.1 Experiment Setups

Pre-training Datasets. We use two datasets for
model pre-training: (1) WikiBooks, which con-
sists 3.3 Billion tokens from English Wikipedia and
BooksCorpus (Zhu et al., 2015). This is the same
dataset used in BERT (Devlin et al., 2019). (2)
WikiBooks++, which extends WikiBooks dataset

to 33 Billion tokens by including data from Giga-
word (Parker et al., 2011), ClueWeb (Callan et al.,
2009), and CommonCrawl (Crawl, 2019). The
same dataset is used in XLNet (Yang et al., 2019)
and ELECTRA (Clark et al., 2020a).

Evaluation Datasets and Metrics. We evaluate
all pre-trained models on the General Language Un-
derstanding Evaluation (GLUE) benchmark (Wang
et al., 2019b) and Stanford Question Answering
(SQuAD) dataset (Rajpurkar et al., 2016). GLUE
benchmark includes various tasks formatted as ei-
ther single sentence classification (SST, CoLA)
or sentence pair classification (e.g., RTE, MNLI,
QNLI, MRPC, QQP, STS). More details of each
task are available in the Appendix Section A.
SQuAD dataset requires models to select a text
span from a given passage that answers a question.
In SQuAD v1.1, the answers can always be located
in the passage, while SQuAD v2.0 contains some
questions unanswerable by the given passage.

We compute Spearman correlation for STS,
Matthews correlation for CoLA, accuracy for all
other GLUE tasks, and report the GLUE score as
the average of all 8 tasks. For SQuAD, we use the
standard evaluation metrics of Exact Match (EM)
and F1 scores. Since different random seeds may
significantly affect fine-tuned model performances,
we report the median of 15 fine-tuning runs from
the same pre-trained model checkpoint for each
result. Unless stated otherwise, results are on the
GLUE and SQuAD development sets.

Model Hyper-parameters. We follow and evalu-
ate TEAMS with different model sizes. For small-
sized model, we set model hidden dimension to
256 and reduce token embedding dimension to 128.
The transformer in the discriminator network has
12 layers and each layer consists of 4 attention
heads with the intermediate layer size 1024. For
base-sized model, we adopt the commonly used
BERT-base configuration with 768 hidden dimen-
sion, 12 layers with 12 attention heads, and 3072
intermediate layer size. For large-sized model, we
use BERT-large configuration with 1024 hidden
dimension, 24 layers with 16 attention heads, and
4096 intermediate layer size. Following (Clark
et al., 2020a), we design the generator network
size to be 1/2 of the discriminator network size for
models of all sizes. For TEAMS, we set the loss
balancing parameter λ1 = 5, λ2 = 2 (c.f., Eq. (9)),
and the number of sampled non-original tokens
K = 5 (c.f., Section 3.1).
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Method Params GLUE SQuAD 1.1 SQuAD 2.0
EM F1 EM F1

BERT-Small 14M 78.52 76.30 84.39 68.95 71.79
ELECTRA-Small (Our reimplementation) 14M 80.36 76.50 84.67 69.17 71.68
TEAMS-Small 14M 80.70 78.84 86.40 72.33 75.24

BERT-Small++ 14M 79.10 76.48 84.75 68.37 71.01
ELECTRA-Small++ (Our reimplementation) 14M 81.71 77.45 85.32 70.07 72.91
ELECTRA-Small++ (Public checkpoint re-evaluate) 14M 81.24 77.62 85.63 71.12 73.95
TEAMS-Small++ 14M 81.99 78.94 86.65 72.11 75.11

BERT-Base 110M 83.46 80.62 88.16 73.26 76.17
ELECTRA-Base (Our reimplementation) 110M 84.63 83.87 90.64 78.59 81.52
TEAMS-Base 110M 85.57 85.21 91.69 81.59 84.51

BERT-Base++ 110M 84.26 84.48 91.08 78.83 81.72
ELECTRA-Base++ (Our reimplementation) 110M 86.29 85.09 91.65 81.31 84.04
ELECTRA-Base++ (Public checkpoint re-evaluate) 110M 87.13 85.09 91.68 79.16 82.06
TEAMS-Base++ 110M 87.16 86.05 92.48 82.73 85.59

BERT-Large 335M 84.91 86.35 92.61 82.19 84.78
ELECTRA-Large (Our reimplementation) 335M 89.20 88.79 94.50 86.02 88.72
ELECTRA-Large (Public checkpoint re-evaluate) 335M 89.38 88.76 94.49 86.79 89.56
TEAMS-Large 335M 89.44 88.86 94.61 87.08 89.86

Table 1: Comparison results of TEAMS and baseline methods on GLUE and SQuAD datasets. All results are the
medians of 15 fine-tuning runs with different initial random seeds. As ELECTRA original paper only releases the
public checkpoints for Small++, Base++, and Large models, we can only report results for these three variants.

During pre-training, we set the batch size to be
256 and the input sequence length to be 512 for
both small-sized and base-sized models. We update
small-sized models for 500K steps and base-sized
models for 1M steps on the WikiBooks dataset.
Moreover, we test the performance of each model
when it is pre-trained for longer time with larger
batch size using the WikiBooks++ dataset. We
use the suffix “small++” to denote a small-sized
model pre-trained for 2M steps with batch size 256,
and the suffix “base++” to denote a base-sized
model pre-trained for 1M steps with batch size
1024. Finally, for large-sized models, we use batch
size 2048 and pre-train the model for 1.76M steps.
All large-sized models and models with suffix “++”
are trained using the WikiBooks++ dataset. More
pre-training and fine-tuning details are included in
the Appendix Section B and C.

Model Implementations. For fair comparison, we
implement all compared methods in TensorFlow 2
and evaluate their performances using the official
pipeline in TensorFlow Model Garden4. In addi-
tion to our own implementations, we also report
the performance of ELECTRA publicly released
checkpoints5. All models are trained on TPU v3.

4https://github.com/tensorflow/models.
5https://github.com/google-research/

electra.

4.2 Experiment Results

We validate the advantages of our proposed
TEAMS method by comparing it with BERT (De-
vlin et al., 2019) and ELECTRA (Clark et al.,
2020a). Table 1 shows the comparison results on
GLUE and SQuAD datasets. We find that TEAMS
can consistently outperform baseline models of the
same size. For example, compared to ELECTRA-
Base, our TEAMS-Base improves SQuAD 2.0 per-
formance from 78.59 to 81.59 and from 81.52 to
84.51 in terms of EM and F1 score, respectively.

To further verify the performance improvements
do not come from consuming more computa-
tions, we draw the learning curves of TEAMS-
Small/Base and ELECTRA-Small/Base in Figure 3.
We observe that for both small-sized and base-sized
models, our method can consistently outperform
ELECTRA when trained for the some amount of
time. Moreover, on SQuAD datasets, TEAMS-
Base can even outperform the ELECTRA-Base++
model that requires much more computation.

4.3 Ablation Studies

We continue to evaluate the design of each com-
ponent within TEAMS and test its sensitivity to
some critical hyper-parameters.

Effectiveness of Pre-training Tasks. We report
the results of small-sized models learned using dif-

https://github.com/tensorflow/models
https://github.com/google-research/electra
https://github.com/google-research/electra
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Figure 3: Learning curves for small-sized and base-
sized models.

Pre-training Task(s) GLUE SQuAD 1.1 SQuAD 2.0
EM F1 EM F1

Only MLM (i.e., BERT) 79.10 76.48 84.75 68.37 71.01
Only RTD (i.e., ELECTRA) 81.71 77.45 85.32 70.07 72.91
Only MWS 79.65 77.30 85.32 70.10 72.80

RTD + MWS (i.e., TEAMS) 81.99 78.94 86.65 72.11 75.11

Table 2: Effectiveness of multi-task pre-training for
small++ models. “MLM”, “RTD”, and “MWS” stand
for “masked language modeling”, “replaced token de-
tection”, and “multi-word selection”, respectively.

ferent pre-training tasks in Table 2. First, we can
see that the model trained with multi-word selec-
tion (MWS) task can outperform the one learned
using masked language modeling (MLM) task. Sec-
ond, on SQuAD datasets, we find that pre-training
on only 15% of masked tokens using MWS task is
comparable with pre-training on all tokens using re-
placed token detection (RTD) task. These observa-
tions demonstrate the effectiveness of our proposed
MWS task. Finally, we show that a text encoder
pre-trained using both MWS and RTD tasks can
outperform those learned using only single task.

Task-specific Layer Designs. In TEAMS, we
pre-train the discriminator network using multi-
task learning and introduce the attention-based
task-specific heads. To verify the effectiveness
of these attention-based task-specific heads, we
train another model that uses the traditional feed
forward network (FFN) as the task-specific head.
Table 3 shows the results. We can see that our
model achieves better performances because the
attention-based heads can effectively model the to-
ken dependencies in sequences.

We continue to study where to add these task-
specific heads. Currently, given a transformer with
12 layers, we treat its last layer output for one task

Method GLUE SQuAD 1.1 SQuAD 2.0
EM F1 EM F1

ELECTRA-Small++ 81.71 77.45 85.32 70.07 72.91

TEAMS-Small++ 81.99 78.94 86.65 72.11 75.11
Use FFN task heads 81.49 78.18 86.35 72.00 74.90
Add task head on 12th layer 81.29 79.08 86.66 72.47 75.31
Use RTD task head outputs 81.83 77.72 85.80 69.56 72.57

Table 3: Analysis of task-specific layers and exported
representations for small++ models. Please refer to
Section 4.3 for detailed descriptions of each method.

and feed the 11th layer output to a separate trans-
former layer to obtain representations for the sec-
ond task6. An alternative design is to add two
separate transformer layers (as two task-specific
heads) directly on top of the last layer (i.e., the
12th layer). As shown in Table 3, we find the latter
design can slightly improve the model performance
on SQuAD datasets but leads to a larger discrimina-
tor network with effectively 13 transformer layers
and thus requires more computation during both
pre-training and fine-tuning stages.

Finally, as our discriminator network will output
two sets of contextualized representations, one for
MWS task and the other for RTD task, we need
to decide which set of representations to use in
the fine-tuning stage. Empirically, we find the rep-
resentations for MWS task has better fine-tuning
performance than the ones for RTD task, especially
on the SQuAD datasets (c.f. Table 3). This observa-
tion also confirms the effectiveness of our proposed
MWS task as it produces representations capturing
more fine-grained semantic information compared
to the RTD task.

Partial Layer Sharing. Table 4 reports the results
of our models with different levels of parameter
sharing between the generator and the discrimina-
tor. First, we can see that tying all generator lay-
ers with discriminator layers results in significant
performance drops, as such a binding restricts the
model representation power. Second, we find that
compared to no weight sharing, our design of par-
tial layer tying can improve the model performance.
One possible explanation is that such layer tying
serves as an implicit form of regularization and
forces the shared transformer layers to capture use-
ful information for both generator pre-training task
(i.e., MLM) and discriminator pre-training tasks
(i.e., RTD and MWS).

6We can interpret the first 11 layers as task-agnostic layers
and view the 12th layer and the newly introduced separate
layers as two task-specific heads.
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Method GLUE SQuAD 1.1 SQuAD 2.0
EM F1 EM F1

ELECTRA-Small++ 81.71 77.45 85.32 70.07 72.91
TEAMS-Small++ 81.99 78.94 86.65 72.11 75.11

Full Tie 80.57 77.75 85.76 69.93 72.82
No Tie 81.65 78.42 86.32 72.73 75.73

ELECTRA-Base++ 86.29 85.09 91.65 81.31 84.04
TEAMS-Base++ 87.16 86.05 92.48 82.73 85.59

No Tie 86.63 85.51 91.98 80.72 83.60

Table 4: Effect of sharing generator and discriminator
bottom layers for small++ and base++ models. “Full
Tie” and “No Tie” stand for tying all or none of gener-
ator layers with the discriminator, respectively.

Sampling Strategy and Negative Sample Size.
To use the multi-world selection task for pre-
training, we need to first obtain a set of negative
samples (i.e., non-original tokens) for each masked
position in a sequence. In this study, we test two
strategies to generate K negative samples for each
masked position. Given the generator output prob-
ability distribution for a target position, we can
either sample from this distribution K times with-
out replacement or directly select K non-original
tokens with the highest probabilities. We denote
these two approaches as “Sampled” and “Hardest”,
respectively, and report the results in Figure 5. First,
we can see that performing repeated sampling is a
better strategy than always selecting those hardest
samples. One possible reason is that the “Sampled”
strategy can generate more diverse negative sam-
ples and thus helps model to generalize7. Second,
we notice that increasing K over 5 will somewhat
hurt the model performance. One reason is that a
larger K causes a higher probability of including
false negative examples. Finally, we find that for a
wide range of K from 3 to 50, our method can out-
perform ELECTRA, which further demonstrates
the effectiveness of multi-word selection task.

Generator Size. We test how the size of generator
affects the model performance by varying the num-
ber of transformer layers in the generator. For all
tested models, we tie the bottom half of generator
with the discriminator. Figure 4 reports the results.
We find that the performance first increases as the
generator size increases until it reaches about half
of the discriminator size and then starts to decrease
when we further increase the generator size. The
same results also hold for base-sized models.

7A similar result is also witnessed in (Shen et al., 2019)
and thus we adopt the “Sampled” approach in this study.
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Figure 4: Analysis of the number of generator layers in
TEAMS-small++ models.
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Figure 5: Analysis of negative sampling strategies and
negative sample sizes for small++ models. Based
on the generator output distribution, we either per-
form weighted sampling without replacement K times
(“Sampled”) or select K most likely non-original to-
kens (“Hardest”) for each masked position.

5 Related Work

Besides the general language pre-training work
we discussed in Section 2.1, this study is partic-
ularly related to methods that apply multi-task
learning (Caruana, 1997; Ruder, 2017; Shen et al.,
2018) to language representation learning. An early
study (Liu et al., 2019a) proposes to simultaneously
fine-tune a pre-trained BERT model to perform
multiple natural language understanding tasks and
achieves promising results on the GLUE dataset.
Sun et al. (2020) continue this line of work and pro-
pose to push the multi-task learning to the model
pre-training stage. Specifically, they use a contin-
ual multi-task learning framework that incremen-
tally builds and inserts seven auxiliary tasks (e.g.,
masked entity prediction, sentence distance pre-
diction, etc..) to the text encoder. More recently,
Aroca-Ouellette and Rudzicz (2020) extend this
idea to incorporate fourteen auxiliary tasks and
identify six tasks are particularly useful. While
achieving inspiring performance, these studies all
assume the MLM pre-training task must present
and just combine MLM with additional tasks. In
this paper, we relax this assumption and combine
our new multi-word selection task with the replace
token detection task for effective pre-training.
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6 Conclusions and Future Work

This work presents a new text encoder pre-training
method that simultaneously learns a generator and
a discriminator using multi-task learning. We pro-
pose a new pre-training task, multi-word selection,
and combine it with previous pre-training tasks
for efficient encoder pre-training. We also de-
velop two techniques, attention-based task-specific
heads and partial layer sharing, to further im-
prove pre-training effectiveness. Extensive exper-
iments on GLUE and SQuAD datasets demon-
strate our TEAMS method can consistently out-
perform previous state-of-the-arts methods. In the
future, we plan to explore how other auxiliary pre-
training tasks can be integrated into our frame-
work. Moreover, we consider extending our pre-
training method to text encoders with other archi-
tectures such as those based on dynamic convolu-
tion and sparse attention. Finally, being orthogonal
to this study, distillation techniques could be ap-
plied to further compress our pre-trained encoders
into smaller models for faster inference speeds.

Acknowledgement

We thank Hongkun Yu, You (Will) Wu from
Google Research, Xiaotao Gu, Yu Meng from
University of Illinois at Urbana-Champaign, and
Richard Pang from New York University for pro-
viding valuable comments and discussions. Also,
we would like to thank anonymous reviewers for
valuable feedback.

Broader Impact Statement

Recent years have witnessed the great success of
pre-trained text encoders in lots of NLP applica-
tions such as text classification, question answer-
ing, text retrieval, dialogue system, etc. This pa-
per presents a new pre-training method TEAMS
that learns a text encoder with better performance
using lower training cost. Therefore, on the pos-
itive side, our work has the potentials to benefit
all downstream applications that leverage a pre-
trained text encoder, especially those applications
with limited computation resources. On the neg-
ative side, TEAMS, as one specific pre-training
method, could still face the generic issues for all
language pre-training work. For example, the pre-
training large corpora, collected from the internet,
may include abusive language usages and fail to
capture the cultures that have smaller linguistic
footprints online.
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A GLUE Details

The original GLUE benchmark (Wang et al.,
2019b) contains 9 natural language understanding
datasets. We describe them below:

• MNLI: The Multi-genre Natural Language In-
ference Corpus (Williams et al., 2018) contains
393K training sentence pairs with textual entail-
ment annotations. Given a premise sentence and
a hypothesis sentence, a model needs to predict
whether the premise entails the hypothesis, con-
tradicts the hypothesis, or neither.

• RTE: Recognizing Textual Entailment (Giampic-
colo et al., 2007) dataset is similar to MNLI and
contains 2.5K sentence pairs with binary entail-
ment annotations (entailment or contradiction).

• QNLI: Question Natural Language Inference
dataset is a binary sentence pair classification
dataset constructed from SQuAD (Rajpurkar
et al., 2016). It contains 108K training sentence
pairs and requires a model to predict whether a
context sentence contains the answer to a ques-
tion sentence.

• CoLA: Corpus of Linguistic Acceptabil-
ity (Warstadt et al., 2018). This dataset includes
8.5K training sentences annotated with whether
it is a grammatical English sentence.

• SST: Stanford Sentiment Treebank (Socher et al.,
2013) dataset contains 67K sentences from movie
reviews and their corresponding binary sentiment
annotations.

• MRPC: Microsoft Research Paraphrase Cor-
pus (Dolan and Brockett, 2005) includes 3.7K
sentence pairs from online news sources. The
task is to predict whether two sentences are se-
mantically equivalent or not.

• STS: Semantic Textual Similarity (Cer et al.,
2017) benchmark contains 5.8K training sen-
tence pairs. The task is to predict the similarity
score of two sentences from 1 to 5.

• QQP: Quora Question Pairs (Iyer et al., 2017)
dataset includes 364K question pairs sampled
from the community question-answering website
Quora. Models are trained to predict whether a
pair of questions are semantically equivalent.

• WNLI: Winograd NLI (Levesque et al., 2011) is
a small natural language inference dataset. How-
ever, as GLUE official website8 indicates there
are some issues during its construction process,
we follow previous studies (Clark et al., 2020a;
Jiang et al., 2020) and exclude this dataset for
fair comparisons.

B Pre-training Details

For the pre-training architecture configurations, we
mostly use the same hyper-parameters as BERT
and ELECTRA. To generate masked positions, we
follow BERT and duplicate training data 40 times
so each sequence is masked in 40 different ways.
We find this static masking strategy performs simi-
lar to the dynamic masking strategy in ELECTRA,
while being easier to implement and has less com-
putation overhead. Besides, we notice a mask per-
centage of 15 works well for all models and thus
do not increase it to 25 for large-size models as
suggested in ELECTRA. We set λ1 and λ2, the
loss balancing parameters to 5 and 2, respectively,
to ensure different loss terms are of the same scale.
For small-size and base-size models, we search for
the learning rate out of {1e-4, 2e-4, 3e-4, 5e-4},
batch size from {128, 256, 512, 1024}, and training
steps from {500K, 1M, 1.5M, 2M}. For large-size
models, we search for the learning rate out of {1e-
4, 2e-4, 3e-4, 5e-4} and batch size from {1024,
2048}. Also, we select the generator size out of
{1/4, 1/3, 1/2} in early experiments. The best con-
figurations are reported in the main text and we
perform no other hyper-parameter tuning. The full
set of hyper-parameters are listed in Table 5.

C Fine-tuning Details

For fair comparisons, we fine-tune all pre-trained
checkpoints using the official pipeline in Tensor-
Flow Model Garden9 and report the median of 15
fine-tuning runs. We do not include layer-wise
learning-rate decay. We search for the learning
rate from {1e-5, 3e-5, 5e-5, 8e-5, 1e-4}, batch size
from {32, 48}, and training epoch from {2, 3, 5}.
For GLUE tasks, best evaluation scores during fine-
tuning are reported. For SQuAD, scores at the end
of fine-tuning are reported. The full set of hyper-
parameters are listed in Table 6.

8https://gluebenchmark.com/faq
9https://github.com/tensorflow/models

https://gluebenchmark.com/faq
https://github.com/tensorflow/models
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Hyper-parameter Small/Small++ Base/Base++ Large

Number of Layers 12 12 24
Embedding Dim. 128 768 1024
Hidden Dim. 256 768 1024
Intermediate Layer Dim. 1024 3072 4096
Number of Attention Heads 4 12 16
Attention Head Dim. 64 64 64
Generator Size (Multiplier for Number of Layers) 1/2 1/2 1/2
Mask Percentage 15 15 15
Learning Rate Decay Linear Linear Linear
Warmup Steps 10000 10000 10000
Learning Rate 5e-4 2e-4/3e-4 2e-4
Adam ε 1e-6 1e-6 1e-6
Adam β1 0.9 0.9 0.9
Adam β2 0.999 0.999 0.999
Attention Dropout 0.1 0.1 0.1
Dropout 0.1 0.1 0.1
Weight Decay 0.01 0.01 0.01
Batch Size 256/256 256/1024 2048
Train Steps 500K/2M 1M/1M 1.76M

Table 5: Pre-training hyper-parameters.

Hyper-parameter Value

Learning Rate 1e-4 in Small/Small++, 3e-5 in Base/Base++/Large for GLUE
8e-5 in Small/Small++, 5e-5 in Base/Base++, and 3e-5 in Large for SQuAD 1.1/2.0

Learning Rate decay Linear
Warmup fraction 0.1
Adam ε 1e-6
Adam β1 0.9
Adam β2 0.999
Dropout 0.1
Batch Size 32 for GLUE, 48 in Small/Small++/Large and 32 in Base/Base++ for SQuAD 1.1/2.0
Training Epochs 5 for GLUE, 5 in Small/Small+ and 2 in Base/Base++/Large for SQuAD 1.1/2.0

Table 6: Fine-tuning hyper-parameters.


