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Abstract

Chinese spelling check (CSC) is a task to
detect and correct spelling errors in Chinese
text. Most state-of-the-art works on the CSC
task adopt a BERT-based non-autoregressive
language model, which relies on the output
independence assumption. The inappropri-
ate independence assumption prevents BERT-
based models from learning the dependencies
among target tokens, resulting in an incoher-
ent problem. To address the above issue, we
propose a novel architecture named Dynamic
Connected Networks (DCN), which generates
the candidate Chinese characters via a Pinyin
Enhanced Candidate Generator and then uti-
lizes an attention-based network to model the
dependencies between two adjacent Chinese
characters. The experimental results show that
our proposed method achieves a new state-of-
the-art performance on three human-annotated
datasets.

1 Introduction

Chinese spelling check (CSC) is an important task
which can be utilized in many natural language
applications such as optical character recognition
(OCR) (Wang et al., 2018; Hong et al., 2019)
and essay scoring. Meanwhile, CSC is a chal-
lenging task which requires human-level natural
language understanding ability (Liu et al., 2010,
2013; Xin et al., 2014). Recently, BERT-based
non-autoregressive language models have achieved
state-of-the-art performance in the CSC task (Hong
et al., 2019; Zhang et al., 2020; Cheng et al., 2020).

These works fine-tune BERT-based models us-
ing CSC training data. During the training phase,
all the target Chinese characters will be involved
as labels. In the inference stage, the models predict
the most likely Chinese character from a candidate
set at each position. When the most likely charac-
ter is different from the input character, the input

Wrong: EILHE IR T, HREFF.
Correct: HIDHFIRIR T, BEMIE -

Translation: I forgot to tell you. I'm so confused.

Table 1: An example of Chinese spelling errors. Here,
“F13%” should be corrected to “Mi¥E” (confused).

character will be considered as a spelling error and
corrected to the most likely character. Based on
the powerful generalization ability of BERT (De-
vlin et al., 2019), these works have achieved better
performance than other models.

However, these works on the CSC task rely on
the incorrect independence assumption, which may
lead to an incoherent problem. Concretely, they as-
sume that the predicted tokens are independent of
each other, which generally does not hold in natural
language (Yang et al., 2019; Gu and Kong, 2020).
For the CSC task, one spelling error may have mul-
tiple corrections. Ignoring the corrected context
may result in a correction conflict. As shown in
Table 1, “F75%” may be corrected as “KiiR" (con-
fused) or “MLJ” (embarrassed). Because of the
independence of each token, the non-autoregressive
language model may correct it as “MiE %" (emba-
fused). This incoherent problem is also called a
multi-modality problem in non-autoregressive ma-
chine translation (Gu et al., 2018).

To address the above problem, we propose a
novel Dynamic Connected Networks (DCN) which
can model the dependencies between two adja-
cent candidate Chinese characters. Specifically,
we use the RoOBERTa model (Liu et al., 2019; Cui
et al., 2019) as our base model, which can also
be replaced by other models. Firstly, we utilize
RoBERTa with a Pinyin Enhanced Candidate Gen-
erator to incorporate phonological information and
generate k candidate characters at each position.
For each two adjacent candidates, DCN learns a
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variable connection score to determine the strength
of the dependency between them via a Dynamic
Connected Scorer (DCScorer). The DCScorer cal-
culates the connection scores by feeding the contex-
tual representation and the candidate character em-
beddings of the current and the next position into
an attention layer simultaneously. Eventually, the
model generates k" candidate paths, and we utilize
the Viterbi algorithm (Rabiner, 1989) to quickly
find the one with the highest score as our final cor-
rection result.

Conditional random fields (CRF) (Lafferty et al.,
2001) can also model the dependencies of output
labels, however it is not suitable for language mod-
eling or the CSC task. The dependencies between
Chinese characters are more related to the context
and far more complicated than the label relations
of other tasks such as NER. Thus, the capacity of a
fixed transition matrix in CRF is inadequate. More-
over, the number of Chinese characters is usually
more than 5K, making the transition matrix too
large to learn. In contrast, output candidates (la-
bels) and connection scores of DCN are dynamic
and change according to the context. That empow-
ers our model with a strong ability to learn the
dependencies.

We conduct experiments on SIGHAN 2013,
SIGHAN 2014, and SIGHAN 2015 benchmarks.
Experimental results on the three human-annotated
datasets demonstrate that the performance of our
proposed method is significantly better than the
state of the art models.

To summarize, our contributions are as follows:

* We propose a novel end-to-end dynamic con-
nected networks (DCN) which can alleviate
the incoherent problem of non-autoregressive
language models in the CSC task.

* We propose a simple and effective Pinyin En-
hanced Candidate Generator to incorporate
phonological information and generate better
candidate characters.

» Experimental results show that our proposed
method achieves state-of-the-art performance
on three human-annotated datasets.

For reproducibility, our code for this paper is
available at https://github.com/destwang/DCN.

2 Related Work

Chinese spelling check (CSC) is a challenging task
that requires human-level language understanding

ability. With the development of deep learning
techniques, the CSC task has recently made more
progress. CSC is similar to the grammatical error
correction (GEC) task (Dahlmeier and Ng, 2012).
The difference between them is that CSC only fo-
cuses on Chinese spelling errors, while GEC also
includes errors that need insertion and deletion.

Most models in the GEC task use an autoregres-
sive Seq2Seq model to correct a sentence. Simi-
larly, Seq2Seq models can also be used in the CSC
task. Wang et al. (2019) propose an autoregressive
pointer network which generates a Chinese char-
acter from the confusion set rather than the entire
vocabulary. Although the autoregressive Seq2Seq
model has the ability to correct the spelling errors,
it is usually slow. The input and output are so
similar that it would be “wasteful” to completely
regenerate a sequence (Malmi et al., 2019).

Since the input and output have the same number
of Chinese characters, and the correct and incor-
rect Chinese characters correspond to each other,
it is more intuitive to use non-autoregressive lan-
guage models such as BERT to directly correct
the Chinese spelling errors. Hong et al. (2019)
propose the FASPell model to predict candidate
characters based on the BERT model and exploit
the phonological and visual similarity information
to select candidate characters. Zhang et al. (2020)
propose a model named Soft-Masked BERT, which
consists of a detection network and a correction net-
work based on BERT. Cheng et al. (2020) propose
to incorporate phonological and visual similarity
knowledge into BERT via a specialized graph con-
volutional network. Bao et al. (2020) design a
chunk-based framework and extend the traditional
confusion sets with semantical candidates to cover
different types of errors.

Although these non-autoregressive methods
mentioned above have achieved state of the art
in the CSC task so far, these methods still suffer
from the incoherent problems that exist in non-
autoregressive models (Gu et al., 2018; Gu and
Kong, 2020). In this paper, we propose a novel
model DCN which learns the dependencies be-
tween the adjacent Chinese characters and allevi-
ates the incoherent problem.

3 Our approach
3.1 Problem

Given an input text sequence X =
{z1,22,...,xN}, the goal of the CSC task is
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Figure 1: The architecture of DCN. Here, we only illustrate how to calculate one connection score between candi-

dates “¥f1” and “J&” by the Dynamic Connected Scorer.

to automatically correct the incorrect part of the
Chinese sentence and generate a correct target
sequence Y = {y1,¥2,...,yn}. Since the input
sentence X and the output sentence Y have the
same number of tokens (Chinese characters), pre-
trained non-autoregressive language models such
as BERT are natural to be used in the CSC task.
Given that non-autoregressive language models are
based on the assumption of output independence,
they will mismatch output Chinese characters and
lead to the incoherent problem. This problem
has also been mentioned in non-autoregressive
machine translation (Gu et al., 2018, 2019; Gu and
Kong, 2020) and pretrained language model (Yang
et al., 2019).

3.2 Dynamic Connected Networks

To solve the above incoherence problem, we pro-
pose a novel model named Dynamic Connected
Networks (DCN), which can learn the dependen-
cies between output Chinese characters and allevi-
ate the incoherence problem.

The model structure is illustrated in Figure 1. We
use the RoOBERTa (Liu et al., 2019; Cui et al., 2019)
model as our base model. Firstly, RoOBERTa with
a Pinyin Enhanced Candidate Generator generates
a series of candidate characters, and we sample
k characters as candidates (the candidate genera-
tion method will be discussed in detail in the next
subsection). For each two adjacent candidate char-
acters, we learn the connection scores to determine
the strength of the dependency between them by
a dynamic connected scorer (DCScorer). The fi-

nal correction score will be calculated by the joint
prediction of connection scores and the prediction
scores of the candidate generator at each position.

The DCScorer needs to consider the context in-
formation, the candidate characters of the current
and next position simultaneously. Thus, we use the
attention mechanism to learn the current candidate
context representation p and next candidate context
representation g. The strength of the dependency
between two adjacent candidates is usually more
related to the RoBERTa hidden representation of
the current and next position, so the key and value
in the attention mechanism contain only these two
hidden representations. The DCScorer is formally
defined as follows:

pim = Attention(Q; , WO, K; WK v;iwV)
¢in = Attention(Qip1.,, W, K;W 5, V,W")
h;
} (1)

’ |:hi+1

Qi,m = Wim

Qi—i—l,n = Wi+1,n

where 7 is the character position, m and n are the
indices of candidates of current position and next
position respectively. Attention denotes the atten-
tion mechanism, where the ), K, V' denote query,
key and value, and IV denote the parameters to be
learned in the attention layer. h is the hidden repre-
sentation of the last transformer block, w denotes
the candidate token embedding.

We add the candidate token embedding to the
candidate context representation. Then we feed
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the output into layer normalization and get two
representations p, . and ¢/ ..

pg,m = LayerNorm(p; m, + Wim) @
qg,n = LayerNorm(¢; », + Wit1,n)

We concatenate the two vectors and feed them
into a feed-forward network (FFN) layer used by
(Vaswani et al., 2017). Then we use a linear layer
to calculate the connection score between the two
candidates.

s = FFN(Concat(p} ., ¢/.,,))

9(Yims Yi1,n) = sU

3)

where v is a trainable weight vector and
9(Yim, Yi+1,n) is the connection score between the
mth candidate of ith position and nth candidate of
1 + 1th position.

Since we feed k? pairs of candidate combina-
tions into DCScorer, we will generate k? scores at
each position. Eventually, the model will generate
k™ candidate paths, and the score of each path is
calculated using the following equations:

S(Xv Y) = sz\il f(y’i.,m) + sz\iill g(yi,'rm yi+1,7L) (4)

where y is the candidate character, f(y; ) is the
prediction score of Pinyin Enhanced Candidate
Generator for mth candidate of ¢th position.

3.3 Candidate Generation

We generate the candidate Chinese characters via
a Pinyin Enhanced Candidate Generator based on
RoBERTa.

Pinyin Enhanced Candidate Generator Accord-
ing to statistics, more than 80% spelling errors
are related to phonological similarity (Liu et al.,
2010). Since phonological errors account for a
large proportion of Chinese character errors, a suit-
able method of introducing phonological informa-
tion would be of great help in generating the candi-
dates and correcting spelling errors.

The conversion from a single Chinese Pinyin to
the Chinese character has a large ambiguity. It is
difficult to convert properly because one Pinyin usu-
ally corresponds to many Chinese characters. How-
ever, when there are multiple consecutive Pinyin,
we will have more confidence to convert Pinyin
into correct Chinese characters. For example, the
Pinyin of Chinese characters “*” and “#” is “hu”,
and the Pinyin of “FS” and “¥&” is “tu”. When “hu”
and “tu” are together, it will have a high probability

of being converted to “¥i#%” which means “con-
fused” in Chinese. This is also a basic assumption
used in Chinese Pinyin input methods.

Based on this, we propose a Pinyin Enhanced
Candidate Generator, which can effectively reduce
the ambiguity and generate better Chinese charac-
ters. The architecture is shown in Figure 1. Con-
cretely, we adopt a convolutional layer to encode
consecutive Pinyin and add the output of convo-
lutional layer, hidden representation of RoBERTa
and character embedding together. Then we feed
the sum to layer normalization and get the predic-
tion score f(y; ) via a linear layer. The equations
are as follows:

¢i = Conv(p;_y, 17, pis1)
0; = LayerNorm(c¢; + w; + h;) 5)
f(Yim) = oivy,

where p” is the Pinyin embedding, w; is the Chi-
nese character embedding, h; is the last hidden
representation of RoBERTa, v/, is the trainable
weight vector for mth candidate.

There are various ways to represent Pinyin, and

we find that simply representing each Pinyin with-
out tone as a separate embedding can achieve good
performance. We also try to encode Pinyin by
Multi-Layer Perceptron (MLP) and GRU (Chung
et al., 2014) encoder, which treat each letter of
Pinyin as an embedding vector. Since they cannot
achieve better results, we simply represent each
Pinyin as a separate embedding in our following
experiments.
Candidate Sampling Method Given the large
number of usual Chinese characters, we sample
the candidate characters for learning. We try sev-
eral sampling methods and find that selecting the
characters with the top-k prediction scores from
vocabulary performs best. This also shows that the
more difficult candidates can be used as negative
training examples to effectively improve the dis-
criminatory ability of the model. Therefore, all the
main experimental results are based on the top-k
sampling.

3.4 Learning

Loss function The probability for the sequence Y
can be approximated by the following equation

oS(X,Y)

p(Y|X) = W (6)

i
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Training Sets # Line Avg. Length  # Erroneous Sent.
Wikipedia 7,756,725 47.0 -

(Wang et al., 2018) 271,329 44.4 271,329
SIGHAN 2013 700 49.2 350
SIGHAN 2014 3,435 49.7 3,432
SIGHAN 2015 2,339 30.0 2,339

Test Sets # Line Avg. Length  # Erroneous Sent.
SIGHAN 2013 1,000 74.1 996
SIGHAN 2014 1,062 50.1 529
SIGHAN 2015 1,100 30.5 550

Table 2: Statistics of datasets.

where Y are the path generated by the candidate
characters.

The loss function is the maximum likelihood of
the probability distribution denoted as

Loss = { 0 S(X.Y) > Spa(x,v7) (D

The loss function is similar to the one used by
LSTM-CRF (Huang et al., 2015). It learns only
the sampled negative candidate characters and the
dependencies between them, which will unduly de-
grade the ranking of potential candidates. This pos-
sibly makes more similar candidates have a lower
ranking. In order to avoid the above problem, we
make a restriction on the loss function by setting
its loss to 0 when the gold score is higher than or
equal to the max score of all the candidate paths.
Pretraining The dependencies between Chinese
characters can be more sufficiently learned via a
large scale training corpus. In this paper, we pre-
train our proposed model using Chinese Wikipedia
data shown in Table 2. We randomly replace 15%
of the characters, including 70% MASK, 15% char-
acters from the confusion set, and 15% random
characters. We exploit the confusion set released
from SIGHAN 2013 (Wu et al., 2013) which con-
sist of pronunciation similarity and shape similar-
ity characters. Based on the RoBERTa model, we
freeze the main parameters and only fine-tune the
Pinyin Enhanced Candidate Generator and the Dy-
namic Connected Scorer.

3.5 Predicting

In the predicting stage, the top-k candidate charac-
ters from vocabulary are generated by the Pinyin
Enhanced Candidate Generator. Eventually, there
are k™ paths. In order to quickly select the path
with the highest score, we use the Viterbi algorithm
(Rabiner, 1989) based on dynamic programming
to decode the output sequence.

4 Experiments

4.1 Experimental Setup

Datasets We use the large automatically gener-
ated corpus (Wang et al., 2018)! as our training
data. In addition, the training sets of SIGHAN
2013, SIGHAN 2014, and SIGHAN 2015 are also
included. For the pre-training method, we use
the Chinese Wikipedia texts which have been con-
verted to simplified Chinese characters.

We evaluate our proposed model on the test sets
from SIGHAN 2013, SIGHAN 2014, and SIGHAN
2015 benchmarks. Similar to the previous works,
we convert the traditional characters to simplified
characters by OpenCC?2.

In order to evaluate our model more reasonably,
we take 500 sentences from the SIGHAN train-
ing sets and the corresponding corrected results of
these 500 sentences together as the validation set.
The statistic information of all the datasets is listed
in Table 2.

Evaluation Metrics To compare with the state-
of-the-art models, We use the widely adopted
sentence-level precision, recall, and Fl-score as
our evaluation method, which has been used by
Hong et al. (2019)3 and Cheng et al. (2020).
Baseline Models We compare our model with sev-
eral state-of-the-art models.

* FASPell (Hong et al., 2019): This model uses
the phonological and visual similarity infor-
mation to select candidate characters.

* Soft-Masked BERT (Zhang et al., 2020): This
method combines a detection network and a
correction network based on BERT.

* SpellGCN (Cheng et al., 2020): This model
incorporates phonological and visual similar-
ity knowledge into BERT via a specialized
graph convolutional network.

¢ Chunk-based method (Bao et al., 2020): This
method utilizes a chunk-based framework and
extends the traditional confusion sets with se-
mantical candidates to cover different types
of errors.

Model Hyperparameters We use RoBERTa-
wwm (Cui et al., 2019) as our base model in this

"https://github.com/wdimmy/Automatic-Corpus-
Generation

“https://github.com/BY Void/

*https://github.com/iqiyi/FASPell
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Dataset | Model Detection-level Correction-level
D-P D-R D-F|CP CR C-F
FASPell (Hong et al., 2019) 76.2 632 69.1 | 73.1 60.5 66.2
BERT (Cheng et al., 2020) 79.0 728 758|777 71.6 74.6
CSC13 | SpellGCN (Cheng et al., 2020) 80.1 744 772|783 72.7 75.4
SpellGCN* 852 77.7 812|834 76.1 79.6
RoBERTa (Ours) 854 7777 813|839 764 79.9
RoBERTa-DCN (Ours) 86.2 784 821 |84.6 769 80.5
RoBERTa-Pretrain-DCN (Ours) 86.8 79.6 83.0 | 847 77.7 81.0
FASPell (Hong et al., 2019) 61.0 535 57.0]|594 520 55.4
BERT (Cheng et al., 2020) 65.6 68.1 66.8|63.1 655 64.3
CSC14 | SpellGCN (Cheng et al., 2020) 65.1 695 672|631 672 65.3
RoBERTa (Ours) 642 684 662|627 66.7 64.6
RoBERTa-DCN (Ours) 67.6 68.6 68.0 | 649 659 65.4
RoBERTa-Pretrain-DCN (Ours) 674 704 689 | 658 68.7 67.2
FASPell (Hong et al., 2019) 67.6 60.0 635 66.6 59.1 62.6
Soft-Masked BERT (Zhang et al., 2020) | 73.7 73.2 73.5 | 66.7 66.2 66.4
CSC15 BERT (Cheng et al., 2020) 7377 782 759|709 752 73.0
SpellGCN (Cheng et al., 2020) 748 80.7 77.7 | 721 T1.77 759(74.8)
RoBERTa (Ours) 7477 7173 76.0 | 72.1 74.5 73.3
RoBERTa-DCN (Ours) 76.6 798 782|742 713 75.7
RoBERTa-Pretrain-DCN (Ours) 77.1 809 79.0 | 745 78.2 76.3

Table 3: Experimental results of sentence-level precision, recall, and Fl-score (%). D, C denote the detection

. . . 4
and correction respectively. Since “f"]”, “i#f”, “5”

are rarely distinguished on SIGHAN 2013, we remove all

the related correction results. To compare more fairly with SpellGCN, we rerun the released code of Cheng et al.
(2020) and remove all the related correction results. The results are reported with Spell GCN*. The reported result
of SpellGCN on SIGHAN 2015 is not correct, where the precision, recall and F-score don’t match. If the precision

and recall are correct, F-score should be 74.8.

paper. We utilize AdamW (Loshchilov and Hutter,
2019) optimizer with learning rate of Se-5. The
training batch size is set to 32, and we train 12
epochs for all the experiments. To better learn
the dependencies between characters, we learn
the DCN model with MASK token for the first
2 epochs the same with the pretraining method.
The number of candidates k for training is set to
5 and the number for predicting is set to 8. The
convolution window size of the Pinyin Enhanced
Candidate Generator is set to 3. The dimensions of
all the hidden representations are 768. We search
learning rate from {2e-5, 3e-5, 5e-5} and select the
best model on the validation set.

4.2 Experimental Results

The experimental results are shown in Table 3. Our
proposed ROBERTa-DCN model has the best de-
tection and correction performance on the three
SIGHAN test sets. Both FASPell and SpellGCN
models use sophisticated techniques to incorpo-
rate the phonological and visual information and
achieve a relatively good performance. Our DCN
model is more focused on the incoherence prob-
lem and modeling the dependencies of the output
tokens. Our proposed model exceeds FASPell and

SpellGCN by simply using a Pinyin Enhanced Can-
didate Generator to model the phonological infor-
mation, which also illustrates the effectiveness of
DCN.

When we pre-train DCN using wiki data, the
model gets further improvement in the effective-
ness. This indicates that modeling the dependen-
cies between output Chinese characters is impor-
tant. DCN may achieve better performance if more
data are used to learn the dependencies.

Soft-Masked BERT uses detection network and
correction network simultaneously. In contrast, our
DCN model predicts the target sequence directly,
and the different tokens between the input sequence
and the target sequence are regarded as the detec-
tion results. As shown in the experimental results,
compared to Soft-Masked BERT, our method im-
proves 5.5% and 9.9% on detection and correction
respectively.

To compare with some other state-of-the-art
works, we also evaluate our proposed model using
the official evaluation toolkit* of SIGHAN 2015
in Table 4. The Chunk-based method, which uses
a series of methods to construct the candidate set,

*http://nlp.ee.ncu.edu.tw/resource/csc.html
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Detection-level

Correction-level

Model D-Acc D-P DR DF |CAcc CP CR CF

Chunk-based method (Bao et al., 2020) | 76.8 88.1 620 728 | 746 873 576 694

BERT (Cheng et al., 2020) 83.0 859 789 823 | 815 8.5 758 805

SpellGCN (Cheng et al., 2020) 83.7 859 806 83.1| 822 8.4 776 813

RoBERTa (Ours) 832 86.6 786 824 | 81.8 862 758 80.7

RoBERTa-DCN (Ours) 842 864 81.1 837 | 828 860 784 820

RoBERTa-Pretrain-DCN (Ours) 84.6 88.0 802 839 | 832 876 773 821

Table 4: The performance evaluated by official tools on SIGHAN 2015.

Sampling Method D-F C-F Model ‘ D-P DR DF CP CR C-F
Top-k of vocabulary 89.7 88.7 RoBERTa-DCN \ 89.8 89.6 89.7 88.8 88.6 88.7
Multinomial distribution sampling  88.1  87.6 - PECGenerator | 87.7 884 88.1 867 874 87.1
Random sampling 122 73 - DCScorer 874 884 879 86.8 87.8 873
Top-k of confusion set 35.8 34.7 - weighted loss | 87.6 89.0 88.3 86.8 882 &7.5
RoBERTa ‘ 86.1 89.2 87.6 855 88.6 87.0

Table 5: Effect of the candidate generation methods.

achieves good performance for precision. However,
the recall of this method is relatively low, and the
F-score of our method significantly outperforms
the chunk-based method by more than 10%. Simi-
larly, our model also achieves a better result than
SpellGCN.

4.3 Effect of Candidate Generation

The performance of DCN varies with the candidate
generation strategy and the number of sampled can-
didate characters. We compare the effects of four
sampling methods for training, which are sampling
top-k candidates from vocabulary, sampling top-k
candidates from the confusion set, random sam-
pling from the vocabulary and sampling from a
multinomial distribution. For the multinomial dis-
tribution sampling, the probabilities are obtained
from the Softmax output of the Pinyin Enhanced
Candidate Generator. All the subsequent experi-
ments are conducted on the validation set. The
experimental results are shown in Table 5.

From Table 5, we can see that the top-k of vo-
cabulary method has the best performance. The
multinomial distribution sampling also has a good
performance, while the random sampling and top-k
of confusion set cannot achieve good performance.
This means that sampling some difficult candidates
is more beneficial to the model training to improve
the model discriminative ability.

We also conduct experiments with the effect of
the number of candidates. Figure 2(a) shows the
change curve of the effect when the number of can-
didates for training increase. The effect gradually

Table 6: Ablation Study of DCN on validation set.
PECGenerator is the Pinyin Enhanced Candidate Gen-
erator. Weighted loss refers to the condition of loss.
When we remove the PECGenerator, the RoBERTa
generates the candidates by predicting the candidate
characters. When the DCScorer is removed, the model
selects the top-1 predicted result as the correct charac-
ter.

gets better as the number of candidates increases at
the beginning, and the effect no longer has a signif-
icant improvement after the number of candidates
for prediction exceeds 5. Figure 2(b) shows the
performance when we fix the number of training
candidates as 5 and increase the number of predic-
tion candidates. The performance keeps improving
as the number of prediction candidates increases.

4.4 Ablation Study

We conduct a series of experiments to determine
which component in the DCN model plays a more
important role. Table 6 shows the results of our ex-
periments. When we remove the Pinyin Enhanced
Candidate Generator, both the detection and cor-
rection F-scores decrease about 1.5%. This demon-
strates that the phonological information plays an
important role in candidates generation methods.
When we remove the dynamic connected scorer,
the detection F-score decreases nearly 2%, which
indicates that the dependencies between Chinese
characters are important for the CSC task. Simi-
larly, the weighted loss also help our models im-
prove the performance.
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Figure 2: The effect of the number of candidates.
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Figure 3: An example of Viterbi decoding. “7Ri&” in this sentence should be corrected to “JR#]”. Translation of
this example: Today is not the first time he is late. Daming Li is often late to Chinese class.
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4.5 Case Study and Analysis

We find that the DCN model performs better than
the vanilla RoBERTa model on consecutive errors.
Figure 3 shows an example of consecutive errors.
The vanilla RoBERTa model cannot detect it well
and can only partially correct it because consecu-
tive errors will influence each other. In contrast,
DCN can correct it completely. The best path for
this example is shown in this figure. The correct
Chinese characters “JR %/ did not rank first, but
the path including “;R%/]” have the highest score
because they are more fluent than other candidate
combinations. This example also shows that our

model can alleviate the incoherent problem.

Figure 4 shows the detection F-score of
RoBERTa and DCN on single-character and multi-
character error sets. DCN performs better than
RoBERTa in both single-character and multi-
character level cases. The effect of DCN is more
obvious in the multi-character cases, which also
shows that DCN has some advantages for multi-
character type errors. At the same time, the per-
formance of single-character error cases is much
better than multi-character error cases, which indi-
cates that DCN still has much room to improve for
multi-character errors.

By comparing the results of RoBERTa and
RoBERTa with the candidate generator. We find
that 96.7% of the correct characters are in the top-
5 candidates of ROBERTa. In contrast, 98.6% of
the correct characters are in the top-5 candidates
of RoBERTa with candidate generator. This re-
sult illustrates that the Pinyin Enhanced Candidate
Generator can generate better candidates.

5 Conclusion

In this paper, we propose a novel model named
DCN to solve the incoherent problem in the CSC
task. To better incorporate the phonological infor-
mation, we propose a simple and effective Pinyin
Enhanced Candidate Generator. The experimental
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results show that our proposed model has achieved
the state-of-the-art performance on three datasets.
DCN may also be utilized on other tasks such as
non-autoregressive machine translation. As for fu-
ture work, how to make better use of phonological
and visual information still needs to be discussed.
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