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Abstract

Visual dialog, which aims to hold a meaning-
ful conversation with humans about a given
image, is a challenging task that requires
models to reason the complex dependencies
among visual content, dialog history, and cur-
rent questions. Graph neural networks are
recently applied to model the implicit rela-
tions between objects in an image or dia-
log. However, they neglect the importance
of 1) coreference relations among dialog his-
tory and dependency relations between words
for the question representation; and 2) the rep-
resentation of the image based on the fully
represented question. Therefore, we propose
a novel relation-aware graph-over-graph net-
work (GoG) for visual dialog. Specifically,
GoG consists of three sequential graphs: 1) H-
Graph, which aims to capture coreference rela-
tions among dialog history; 2) History-aware
Q-Graph, which aims to fully understand the
question through capturing dependency rela-
tions between words based on coreference res-
olution on the dialog history; and 3) Question-
aware I-Graph, which aims to capture the re-
lations between objects in an image based on
fully question representation. As an additional
feature representation module, we add GoG
to the existing visual dialogue model. Ex-
perimental results show that our model out-
performs the strong baseline in both genera-
tive and discriminative settings by a significant
margin.

1 Introduction

Vision-language tasks have drawn more attention
with the development of multi-modal natural lan-
guage processing (Baltrušaitis et al., 2018; Chen
et al., 2020b, 2019), such as image captioning (Xu
et al., 2015; Anderson et al., 2016, 2018; Cornia
et al., 2020; Ghanimifard and Dobnik, 2019), vi-
sual question answering (Ren et al., 2015a; Gao
et al., 2015; Lu et al., 2016; Anderson et al., 2018;

H0: a man in a suit and tie standing next 
to a woman with glasses
H1: what color is the man 's suit ? grey 
with a blue and grey tie
H2: what color is his hair ? White
H3: is it styled nicely ? Yes

Q4: is he looking at the woman ? 
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Figure 1: An example of complex relationships in vi-
sual dialog. The color in the text corresponds to the
same color box in the image, which indicates the same
entity. In visual dialog, we construct three graphs. His-
tory graph (H-Graph): arrows indicate the coreference
relations between QA pairs in dialog history. Question
graph (Q-Graph): arrows indicate dependency relations
of the question. Image graph (I-Graph): arrows indi-
cate spatial relations between objects in an image. The
dark green dotted line indicates the bottom graph af-
fects the upper graph.

Li et al., 2019; Huang et al., 2020) and visual dia-
log (Das et al., 2017; Kottur et al., 2018; Agarwal
et al., 2020; Wang et al., 2020; Qi et al., 2020). Re-
lations in these tasks are significant for reasoning
and understanding the textual and visual informa-
tion. Specifically, visual dialog, which aims to hold
a meaningful conversation with a human about a
given image, is a challenging task that requires
models to reason complex relations among visual
content, dialog history, and current questions.

Kinds of attention mechanisms are served as the
backbone of previous mainstream approaches (Lu
et al., 2017; Wu et al., 2018; Kottur et al., 2018;
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Gan et al., 2019; Guo et al., 2019b), following Das
et al. 2017. HCAIE (Lu et al., 2017) provides
a history-conditioned image attentive encoder to
represent the question, the question-attended his-
tory, and the attended image. CoAtt (Wu et al.,
2018) provides a sequential co-attention encoder
to realize that each input feature is co-attended
by the other two features in a sequential fashion.
ReDAN (Gan et al., 2019) and DMAM (Chen et al.,
2020a) use multi-step reasoning based on dual at-
tention to answer a series of questions about an
image. DAN (Guo et al., 2019b), MCAN (Agarwal
et al., 2020) and LTMI (Nguyen et al., 2020) utilize
multi-head attention mechanisms to manage multi-
modal intersection. However, these approaches
tend to catch only the most discriminative infor-
mation, ignoring other rich complementary clues,
such as relations between objects in an image.

Recent visual dialog studies (Zheng et al., 2019;
Schwartz et al., 2019; Jiang et al., 2020b; Guo et al.,
2020; Jiang et al., 2020a) explore the higher-level
semantic representation of images or dialog his-
tory, notably with graph-based structures for mod-
eling the image or dialog history. Although graph-
based structures have been considered, these graph-
based models lack explicitly capturing complex
relations within visual content or textual contexts,
and relations between them. As shown in Figure 1,
there are complex relations such as coreference re-
lations among dialog history, dependency relations
between words in the question, spatial relations be-
tween objects in the image. For example, to answer
the question Q4 “is he looking at the woman ?”,
we firstly need to reason in dialog history to know
who “he” is, then further understand the intention
of the question with the understood of history and
syntax of questions, and finally know clearly the
spatial location and relation about “the man” and

“the woman” in the image based on fully question
understanding. How to 1) understand the corefer-
ence among history, 2) understand the intention of
the question with its syntax and history, 3) under-
stand the image with fully question understanding
are worth exploring.

Therefore, in this paper, we propose a novel
relation-aware graph-over-graph network (GoG)
for visual dialog. Specifically, GoG consists of
three sequential graphs: 1) H-Graph, which aims to
capture coreference relations among dialog history;
2) History-aware Q-Graph, which aims to fully rep-
resent the question through capturing dependency

relations between words based on coreference reso-
lution on the dialog history; and 3) Question-aware
I-Graph, which aims to capture the relations be-
tween objects in an image on the basis of fully ques-
tion representation. As an additional feature repre-
sentation module, we add GoG to the strong visual
dialogue model LTMI (Nguyen et al., 2020). We
test the effectiveness of our proposed model on two
large-scale datasets: VisDial v0.9 and v1.0 (Das
et al., 2017). Both automatic and manual evalua-
tions show that our approach can be used to im-
prove the prior strong models. The contributions
of this work are summarized as follows:

• We explore how to construct complex explicit
relations in visual dialog, i.e., coreference re-
lations among dialog history, dependency re-
lations between words in the question, spatial
relations between objects in the image.

• We propose a novel relation-aware graph-
over-graph network to reason relations within
and among different graphs to obtain a high-
level representation of multi-modal informa-
tion and use it to generate a visually and con-
textually coherent response.

• We conduct extensive experiments and abla-
tion studies on two large-scale datasets Vis-
Dial v0.9 and v1.0. Experimental results show
that our GoG model can be used to improve
the previous strong visual dialog model in
both generative and discriminative settings.

2 Relation-aware Graph-over-Graph
Network

2.1 Preliminary
Following Das et al. (Das et al., 2017), a vi-
sual dialog agent is given three inputs, i.e.,
an image I , dialog history (the caption and
question-answer pairs) till round t − 1: H =
(Cap︸︷︷︸
H0

, (Q1, A1)︸ ︷︷ ︸
H1

, · · · , (Qt−1, At−1)︸ ︷︷ ︸
Ht−1

) and the cur-

rent question Qt at round t, where Cap is
the caption describing the image taken as H0,
and H1, . . . ,Ht−1 are concatenations of question-
answer pairs. The goal of the visual dialog agent is
to generate a response At to the question Qt.

As shown in Figure 2, our relation-aware graph-
over-graph network (GoG) firstly takes the image,
the dialog history, and the question as inputs and
represent them using Faster RCNN (Ren et al.,



232

H0: a man in a suit and tie standing 
next to a woman with glasses
H1: what color is the man 's suit ? 
grey with a blue and grey tie
H2: what color is his hair ? White
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Figure 2: Framework of our Relation-aware Graph-over-Graph Network.

2015b) and LSTM (Hochreiter and Schmidhuber,
1997). Secondly, GoG constructs the history graph,
the history-aware question graph, and the question-
aware image graph. Thirdly, GoG utilizes the at-
tention alignment module to fuse the three graphs.
Finally, GoG uses the fused multi-modal informa-
tion to give corresponding answers.

Firstly, we simply describe the feature represen-
tation of three inputs. Secondly, we introduce our
graph attention. Then we describe how we apply
our graph attention to the history graph, question
graph and image graph to construct our graph-over-
graph network. Finally, we describe how we apply
our graph-over-graph network to the strong visual
dialog models.

2.2 Feature Representation

Similar to (Anderson et al., 2018), we extract
the image features by using a pretrained Faster
RCNN (Ren et al., 2015b). We select µ object pro-
posals for each image, where each object proposal
is represented by a 2048-dimension feature vector.
The obtained visual region features are denoted as
v = vµi=0 ∈ Rµ×dv .

To extract the question features, each word
is embedded into a 300-dimensional vector ini-
tialed with the Glove vector (Pennington et al.,
2014). The word embeddings are taken as inputs by
an LSTM encoder (Hochreiter and Schmidhuber,
1997), which produces the initial question represen-
tation q ∈ Rλ×dq . Each history sentence features
are obtained as same as the question features. We
concatenate the last state hlast ∈ Rdh of each turn
history features to get the initial history represen-

tation h = ht−10 = [hlast0 , . . . , hlastt−1] ∈ Rt×dh . λ
denotes the length of the question, t denotes the
turn of dialog history, dq denotes the dimension
of each word in questions, dh denotes the dimen-
sion of each word in history and [·, ·] denotes the
concatenation operation.

2.3 Graph Attention

Given a target node i and a neighboring node j ∈
N (i) with a k×k adjacency matrixR, whereN (i)
is the set of k nodes neighboring with node i, and
the representations of node i and node j are ui and
uj , respectively. To obtain the correlation score sij
between node i and j, self-attention (Vaswani et al.,
2017) is then performed on the vertices, which
generates a relation score sij between node features
ui and uj :

sij =
(Uiui)

T · Vjuj√
du

, (1)

whereUi and Vj are trainable parameters. We apply
a softmax function over the correlation score sij to
obtain weight αij :

αij =
exp(sij + cu,lab(i,j))∑

j∈N (i) exp(sij + cu,lab(i,j))
, (2)

where c{·} = WlabAij is a bias term, lab(i, j)
represents the label of each edge, and Wlab is a
learned parameter. The representations of neigh-
boring nodes uj are first transformed via a learned
linear transformation with Wu. Those transformed
representations are then gathered with weight αij ,
followed by a non-linear function σ. This propaga-
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Figure 3: The history is performed by coreference res-
olution. The same color box and the same number indi-
cate the coreference relation between different expres-
sions of the same entity.

tion can be denoted as:

u∗i = σ
(
ui +

∑
j∈N (i)

RijαijWuuj

)
. (3)

We utilize GraphAtt(·) to denote equations from
Eq. (1) to Eq. (3)

2.4 History Graph Construction

In practice, we observe that coreference relations
exist in dialog history. To fully understand the
coreference among dialog history, we utilize the
coreference resolution tool (Lee et al., 2017) to
identify coreference relations. We use the caption
and questions to identify the relations instead of QA
pairs because there is no ground truth answer in the
test split. As shown in Figure 3, we provide a four-
turn dialog to show coreference resolution. The
same color boxes with the same numbers indicate
the coreference relations. For example, the blue
box with number 0 indicates they are related to the
word “a man” with its attribute “in a suit and tie”.

Pruned History Graph with Coreference Rela-
tions. We treat each turn history as a node. By
analyzing the coreference relations of the history,
we obtain the relations between history as shown
in Figure 3. According to coreference relations, we
construct a sparse graph, as shown in the history
graph of Figure 2.

History Graph Attention. Given a graph with
t nodes, i.e. a t-turn dialog, each turn representa-
tion in history is a node. We represent the graph
structure with a t × t adjacency matrix A, where
Aij = 1 if there is a coreference relation between
node i and node j; else Aij = 0.

The relation-aware graph based history represen-
tation h∗i is as follows:

h∗i = GraphAtt(hi, A) (4)

Figure 4: The question is performed by dependency
parsing. The word in pink is the root node. The direc-
tion of green arrows indicates the dependency relation
between two words, and the blue words (e.g., det, dobj)
are relation types.

2.5 Question Graph Construction

In practice, we observe that two words in a sen-
tence usually hold a certain relation. Such relations
can be identified by the Neural Dependency Pars-
ing (Dozat and Manning, 2017).

Pruned Question Graph with Dependency Re-
lations. We treat each word in a question as a
vertex. By parsing the dependency relations of a
question, we obtain the relations between words
as shown in Figure 4. According to dependency
relations, we obtain our sparse question graph, as
shown in the question graph of Figure 2.

History-aware Question Graph Attention.
Given a graph with λ nodes, each word in a
question is a node. We represent the graph
structure with a λ× λ adjacency matrix B, where
Bij = 1 if there is a dependency relation between
node i and node j; else Bij = 0.

In order to utilize the history to help understand
questions, we use a history-aware attention mecha-
nism to inject semantic information from the his-
tory into the question graph. The aware history
representation is calculated as follows:

ĥ = softmax
(
Wh1σ(Wh2h

∗)
)
h∗, (5)

where ĥ ∈ Rdh , h∗ is the final representation of di-
alog history. Wh1 and Wh2 are learned parameters.
The history-aware question features are achieved
by concatenating the adaptive history representa-
tion ĥ with each of question features qi, denoted as:

q′i = [qi, ĥ], for i = 1, . . . , λ. (6)

The history-aware and relation-aware graph
based question representation q∗i is as follows:

q∗i = GraphAtt(q′i, B) (7)
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2.6 Image Graph Construction

Pruned Image Graph with Spatial Relations.
By treating each object region in an image as a
vertex, we can construct a fully-connected undi-
rected graph, as shown in the image graph of Fig-
ure 2. Each edge represents a relation between two
object regions. Spatial relations represent an ob-
ject position in an image, which correspond to a 4-
dimension spatial coordinate [x1, y1, x2, y2]. Note
that (x1, y1) is the coordinate of the top-left point
of the bounding box and (x2, y2) is the coordinate
of the bottom-right point of the bounding box. Fol-
lowing Yao et al. (Yao et al., 2018), we classify dif-
ferent spatial relations into 11 different categories,
such as inside, cover and overlap. We utilize the
overlapping region between two object regions to
judge whether there is an edge between two re-
gions. If two object regions have overlapping parts,
it means that there is a strong correlation between
these two objects. If two object regions are too
far away from each other, it means that there is no
relation between these two objects. According to
the spatial relations, we prune some irrelevant rela-
tions between objects and obtain a sparse graph, as
shown in the image graph of Figure 2.

Question-aware Image Graph Attention.
Given a graph with µ nodes, each object in an
image is a node. We represent the graph structure
with a µ× µ adjacency matrix D, where Dij = 1
if there is a spatial relation between node i and
node j; else Dij = 0.

Based on the fully question understanding, we
use a question-aware attention mechanism to inject
semantic information from the question into the
image graph. The adaptive question representation
is calculated as follows:

q̂ = softmax
(
Wq1σ(Wq2q

∗)
)
q∗, (8)

where Wq1 and Wq2 are learned parameters. The
question-aware image features are achieved by con-
catenating the aware question representation q̂ with
each of the µ image features vi, denoted as:

v′i = [vi, q̂], for i = 1, . . . , µ. (9)

The question-aware and relation-aware graph
based image representation v∗i is as follows:

v∗i = GraphAtt(v′i, D) (10)

2.7 Multi-modal Fusion

After obtaining the relation-aware representation,
we fuse the question representation q∗, history rep-
resentation h∗, visual representation v∗ through
a multi-modal fusion strategy. We can use any
existing visual dialog models to learn a joint repre-
sentation J :

J = F(q∗, h∗, v∗; Θ), (11)

where J is a visual dialog model and Θ
are trainable parameters of the fusion module.
The design of generative and discriminative de-
coders (Das et al., 2017), and multi-task learning
strategy (Nguyen et al., 2020) can be referred to
Appendix A.

3 Experiments

3.1 Experiment Setup

Datasets and Implementation Details. We con-
duct experiments on the VisDial v0.9 and v1.0
datasets (Das et al., 2017) to verify our approach.
VisDial v0.9 contains 83k dialogs on COCO-
train (Lu et al., 2017) and 40k dialogs on COCO-
val images as the test set, for a total of 1.23M dialog
question-answer pairs. VisDial v1.0 dataset is an
extension of VisDial v0.9 dataset with additional
10k COCO-like images. VisDial v1.0 dataset con-
tains 123k, 2k, and 8k images as train, validation,
and test splits, respectively.

To represent image regions, we use Faster R-
CNN (Ren et al., 2015b) with ResNet-101 (He
et al., 2016) finetuned on the Visual Genome
dataset (Krishna et al., 2017), thus obtaining a
2048-dimension feature vector for each region. Fol-
lowing (Nguyen et al., 2020), we detect K = 100
objects from each image. For the question and
history features, we first build the vocabulary com-
posed of 11,322 words that appear at least five
times in the training split. The captions, questions,
and answers are truncated or padded to 40, 20, and
20 words, respectively. We employ multi-head at-
tention with 4 heads for all three graph attention
networks. The dimension of hidden features is set
to 512.

Our model is implemented based on Py-
Torch (Paszke et al., 2017). In experiments, we
use Adam (Kingma and Ba, 2014) optimizer for
training, with the mini-batch size as 32. For the
choice of the learning rate, we employ the warm-up
strategy (Goyal et al., 2017). Specifically, we begin
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Model
VisDial v0.9 (val) VisDial v1.0 (val)

MRR ↑ R@1 ↑ R@5 ↑ R@10 ↑ Mean ↓ NDCG ↑ MRR ↑ R@1 ↑ R@5 ↑ R@10 ↑ Mean ↓

Attention-based Model

RvA (Niu et al., 2019) 55.43 45.37 65.27 72.97 10.71 - - - - - -
DVAN (Guo et al., 2019b) 55.94 46.58 65.50 71.25 14.79 - - - - - -
DMRM (Chen et al., 2020a) 55.96 46.20 66.02 72.43 13.15 - 50.16 40.15 60.02 67.21 15.19
DAM (Jiang et al., 2020c) - - - - - 60.93 50.51 40.53 60.84 67.94 16.65

Pretraining-based Model

VDBERT (Wang et al., 2020)� 55.95 46.83 65.43 72.05 13.18 - - - - - -

Graph-based Model

KBGN (Jiang et al., 2020a) - - - - - 60.42 50.05 40.40 60.11 66.82 17.54

LTMI (Nguyen et al., 2020)† 55.85 46.07 65.97 72.44 14.17 61.61 50.38 40.30 60.72 68.44 15.73
LTMI-GoG (Ours) 56.32 46.65 66.41 72.69 13.78 62.63 51.32 41.25 61.83 69.44 15.32
LTMI-GoG-Multi (Ours) 56.89 47.04 66.92 72.87 13.45 63.35 51.80 41.78 62.23 69.79 15.16
LTMI-GoG-Multi* (Ours) 59.38 48.58 71.33 78.78 9.94 65.20 55.38 43.93 68.22 76.75 9.98

Table 1: Main comparisons on both VisDial v0.9 and v1.0 datasets using the generative decoder. † denotes that we
re-implemented the model. � denotes that the model utilizes large extra datasets for training. Underline indicates
the highest performance among previous approaches except pretraining-base models. (t-test, p-value<0.01)

with a learning rate of 0.0001, linearly increasing
it at each epoch till it reaches 0.0002 at epoch 4.
After 15 epochs, the learning rate is decreased by
1/4 for every 2 epochs up to 20 epochs. We use 4
Titan-XP GPU for training. We spend about 4 hour
/ 1 epoch for the discriminative setting and 1 hour /
1 epoch for the generative setting. The total param-
eter of our GoG model is 46.94M, while the total
parameter of LTMI (Das et al., 2017) is 42.20M.
GoG only has an increase of 4.74M than LTMI.

Automatic Evaluation. We use a retrieval set-
ting to evaluate individual responses at each round
of a dialog, following (Das et al., 2017). Specifi-
cally, at test time, a list of 100-candidate answers
is also given. The model is evaluated on retrieval
metrics: (1) Rank of human response, (2) existence
of the human response in top−k ranked responses,
i.e., R@k (3) Mean reciprocal rank (MRR) of the
human response and (4) Normalized discounted
cumulative gain (NDCG) for VisDial v1.0.

Human Evaluation. We randomly extract 100
samples for human evaluation (Wu et al., 2018)
and then ask 3 human subjects to guess whether
the last response in the dialog is human-generated
or machine-generated. If at least 2 of them agree
it is generated by a human, we think it passes the
Truing Test (M1). We record the percentage of
responses that are evaluated better than or equal
to human responses (M2), according to the human
subjects’ evaluation.

3.2 Main Results
Baseline methods. In our experiment, compared
methods can be grouped into four types: (1)
Fusion-based models. (2) Attention-based mod-
els: ReDAN, CorefNMN, RvA, DVAN, DMRM,
DAM. (3) The pretraining model: VDBERT and
VisualBERT. (4) Graph-based models: GNN-EM,
DualVD, FGA, KBGN. Please refer to Appendix B
for more compared methods.

GoG denotes our relation-aware graph-over-
graph network. We use the strong model
LTMI (Nguyen et al., 2020)1 as our multi-modal
fusion module. LTMI is a very strong model which
achieves some the-state-of-the-art results. “Multi”
indicates the model uses multi-task learning at train-
ing but utilizes the generative or discriminative de-
coder at inference, respectively. “Multi*” indicates
the model uses multi-task learning and utilizes the
discriminative decoder to improve the generative
decoder. In general, our model outperforms the
strong baseline by a significant margin. We use t-
test to analyze our model and LTMI (Nguyen et al.,
2020). The p-values is less than 0.01, indicating
that the results are significantly different.

Generative Results As shown in the right half
of Table 1, we compare generative performance
on the val v1.0 split. Our method improves sig-
nificantly (about 1% on all metrics) on the strong
baseline LTMI (Nguyen et al., 2020) and outper-
forms all the compared methods on all metrics
with large margins, which proves that GoG can

1We reproduce results of LTMI by their official GitHub
repo (https://github.com/davidnvq/visdial). We apply the de-
fault hyper-parameters as them.
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Model
VisDial v0.9 (val) VisDial v1.0 (test-std)

MRR ↑ R@1 ↑ R@5 ↑ R@10 ↑ Mean ↓ NDCG ↑ MRR ↑ R@1 ↑ R@5 ↑ R@10 ↑ Mean ↓

Attention-based Model

ReDAN (Gan et al., 2019) - - - - - 57.63 64.75 51.10 81.73 90.90 3.89
MCA (Agarwal et al., 2020) - - - - - 72.73 37.68 20.67 56.67 72.12 8.89

Pretraining-based Model

VisualBERT (Murahari et al., 2020)� - - - - - 74.47 50.74 37.95 64.13 80.00 6.28
VDBERT (Wang et al., 2020)� 70.04 57.79 85.34 92.68 4.04 75.35 51.17 38.90 62.82 77.98 6.69

Graph-based Model

GNN-EM (Zheng et al., 2019) 62.85 48.95 79.65 88.36 4.57 52.82 61.37 47.33 77.98 87.83 4.57
DualVD (Jiang et al., 2020b) 62.94 48.64 80.89 89.94 4.17 56.32 63.23 49.25 80.23 89.70 4.11
FGA (Schwartz et al., 2019) 65.25 51.43 82.08 89.56 4.35 56.90 66.20 52.75 82.92 91.07 3.80
CAG (Guo et al., 2020) 67.56 54.64 83.72 91.48 3.75 56.64 63.49 49.85 80.63 90.15 4.11
KBGN (Jiang et al., 2020a) - - - - - 57.60 64.13 50.47 80.70 90.16 4.08

LTMI (Nguyen et al., 2020)† 66.41 53.36 82.53 90.54 4.03 60.74 61.20 47.08 77.78 87.60 4.88
LTMI-GoG (Ours) 66.76 53.84 82.89 90.90 3.91 60.38 63.13 49.88 79.65 89.05 4.39
LTMI-GoG-Multi (Ours) 66.97 54.03 83.10 91.22 3.83 61.04 63.52 50.01 80.13 89.28 4.31

Table 2: Main comparisons on both VisDial v0.9 and v1.0 datasets using the discriminative decoder. � denotes that
the model utilizes large extra datasets for training. Underline indicates the highest performance among previous
approaches except the pretraining-based models. (t-test, p-value<0.01)

Model NDCG MRR R@1 R@5 R@10 Mean

ReDAN (Gan et al., 2019) - 64.29 50.65 81.29 90.17 4.10
KBGN 59.08 64.86 51.37 81.71 90.54 4.00
VDBERT (Wang et al., 2020)‡ 56.20 62.25 48.16 79.57 89.01 4.31
VDBERT (Wang et al., 2020)� 63.22 67.44 54.02 83.96 92.33 3.53

LTMI (Nguyen et al., 2020)† 61.52 62.31 48.92 78.55 87.77 4.86
LTMI-GoG 62.24 63.81 50.33 80.48 89.24 4.35
LTMI-GoG-Multi 63.15 62.68 49.46 78.77 87.87 4.81

Table 3: Main comparisons on VisDial v1.0 val datasets
using the discriminative decoder.

improve the performance of visual dialog models
by introducing explicit relation reasoning. Com-
pared with the graph-based model KBGN (Jiang
et al., 2020a), our GoG-gen improves NDCG from
60.42 to 62.63 (+2.21%), MMR from 50.05 to
51.32 (+1.27%), which illustrates that our explicit
relation reasoning is more effective because our
approach reduce the noise of implicit relation mod-
eling. LTMI-GoG-Multi and LTMI-GoG-Multi∗

obtain higher performance with large margins com-
paring with LTMI (Nguyen et al., 2020), which
shows that our approach is effective on multi-task
setting. As shown in the left half of Table 1, we
come to a similar conclusion on the val v0.9 split.
Our method improves a big margin (about 0.5%
on all metrics) on LTMI (Nguyen et al., 2020) and
outperforms all the none pre-trained methods on
MRR, R@1, and R@5.

Discriminative Results As shown in the right
half of Table 2, our method improves a lot (near
1.5% on all metrics except NDCG) based on
LTMI (Nguyen et al., 2020) on the test-std v1.0
split. We also compare the performance on the val
v1.0 split as shown in Table 3. As shown in the left

Row Model NDCG

LTMI 61.61
0 LTMI-GoG 62.63

1 w/o I-Graph 61.96
2 w/o Q-Graph 62.15
3 w/o H-Graph 62.03

4 w/o Q-Aware 62.41
5 w/o H-Aware 62.31

6 w/o Spatial Relation 62.15
7 w/o Dependency Relation 62.24
8 w/o Coreference Relation 62.31

Table 4: Ablation study on VisDial v1.0 val datasets
using the generative decoder.

half of Table 2, we compare discriminative perfor-
mance on the val v0.9 split. Our method improves
a lot based on the LTMI (Nguyen et al., 2020).
As shown in Table 3, our approach outperforms
VDBERT (Wang et al., 2020)‡ which trains from
scratch without extra datasets. All the compari-
son show that our approach is valid due to explicit
relation modeling.

3.3 Ablation Study

As shown in Table 4, we firstly remove the I-Graph,
Q-Graph, H-Graph to validate the effect of each
graph, respectively. Secondly, we validate the im-
portance of concatenating operation. Finally, we
use full connections to replace the relation in the
graph to validate the importance of each relation.
Firstly, the comparison between line 0 and line
1/2/3 shows all three graphs are crucial for visual
dialog, leading to higher performance, and the I-
Graph is most important. Secondly, the compari-
son between line 0 and line 4/5 shows that adding
adaptive features gives a gain of approximately
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LTMI (Nguyen et al., 2020) GoG

Method 1 (M1) 53 64

Method 2 (M2) 60 67

Table 5: Human evaluation on 100 sampled responses
on VisDial val v1.0. M1: percentage of responses pass
the Turing Test. M2: percentage of responses evaluated
better than or equal to human responses.

about +0.2. Thirdly, the comparison between line
1 and line 6/7/8 shows that doing graphs with rela-
tions gives better gain than simple fully-connected
graphs. Spatial relation is the pick of the bunch
because the full connection of 100 objects in an
image will bring lots of noise.

3.4 Human Study

As shown in Table 5, we conduct human study to
further prove the effectiveness of our model. Our
model achieves the highest scores both on the met-
ric M1 and M2 compared with the previous model,
LTMI (Nguyen et al., 2020). These results show
that our model can generate a better contextually
and visually coherent response.

3.5 Qualitative Results

As shown in Figure 5, we visualize the learned
attention maps. For the image, the colorful re-
gion means higher attention weights. We draw the
bounding boxes of the first three highest scores. For
the question, the word which has the darker color
has higher attention weights. For dialog history, the
darker QA pairs have a higher coreference score
with the question. Figure 6 provides some dialog
examples, as a comparison of the results between
GoG and the state-of-the-art LTMI model in the
supplementary material. We have two observations
by analyzing a set of randomly selected examples.
Firstly, GoG generally provides more accurate an-
swers. Secondly, GoG tends to provide longer and
more natural human-like answers. More examples
can be referred to Appendix B.

4 Related Work

4.1 Visual dialog

For the visual dialog task (Das et al., 2017), GNN-
EM (Zheng et al., 2019) utilizes an EM-style GNN
to conduct the textual coreference, which regards
the caption and the previous question-answer (QA)
pairs as observed nodes, and the current answer
is deemed as an unobserved node inferred using

EM algorithms (Moon, 1996) on the textual con-
texts. FGA (Schwartz et al., 2019) realizes a fac-
tor graph attention mechanism, which constructs
the graph over all the multi-modal features and es-
timates their interactions. DualVD (Jiang et al.,
2020b) constructs a scene graph to represent the
image while embedding both relationships pro-
vided by (Zhang et al., 2019b) and original ob-
ject detection features (Anderson et al., 2018).
CAG (Guo et al., 2020) focuses on an iterative
question-conditioned context-aware graph, includ-
ing both fine-grained visual-objects and textual-
history semantics. In this paper, we model explicit
complex relations within and among visual content,
dialog history and the current question and design
a graph-over-graph structure which are different
from graph-based models mentioned above.

4.2 Graph Neural Network

Graph neural networks (Kipf and Welling, 2016;
Veličković et al., 2017; Xinyi and Chen, 2018;
Zhang et al., 2019a) have attracted attention in
various tasks (Wang et al., 2019; Liu et al., 2018;
Gu et al., 2019). The core idea is to combine the
graphical structural representation with neural net-
works, which is suitable for reasoning-style tasks.
For visual question answering, Liu et al. (Teney
et al., 2017) propose the first GNN-based approach,
which builds a scene graph of the image and parses
the sentence structure of the question, and calcu-
lates their similarity weights. Li et al. (Li et al.,
2019) propose to encode each image into a graph
and model multi-type inter-object relations via a
graph attention mechanism, such as spatial rela-
tions and semantic, and implicit relations (Li et al.,
2019). Huang et al. (Huang et al., 2020) propose
a novel dual-channel graph convolutional network
for better combining visual and textual advantages.
These approaches are limited to built independent
graphs. There is no exploration of the coreference
among dialog history and relations between graphs
in the approach mentioned above.

5 Conclusion

In this paper, we present a relation-aware graph-
over-graph network (GoG), a novel framework for
visual dialog, which models and reasons the ex-
plicit complex relations among visual content, di-
alog history, and the current question. GoG ex-
ploits the graph-over-graph structure to obtain three
relation-aware multi-modal representation which
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Q2: what color is his hair ?
A2: it’s black
Q3: what color are his 
shorts ?
A3: they are white

Q2: what color is his hair ?
GT: it’s black
Gen: is black
Disc: black

Dialog history
H0: the young boy is playing 
tennis at the court
H1: is the young boy a 
toddler ? No

hair

the young boy is playing tennis at the court

is the young boy a toddler ? no

Q3: is he wearing shorts ?
GT: yes
Gen: yes
Disc: yes

the young boy is playing tennis at the court

is the young boy a toddler ? no

what color is his hair ? It’s black

Q2: is it a young player ?
A2: yes
Q3: can you see other 
players ?
A3: yes, 2 other players

Q2: is it a young player ?
GT: yes
Gen: yes
Disc: yes

Dialog history
H0: a baseball player 
swinging a bat in front of a 
crowd
H1: is the player a male ? No

a baseball player swinging a bat in front ..

is the player a male ? no

Q3: can you see other players ?
GT: yes
Gen: yes
Disc: yes

a baseball player swinging a bat in front ..

is the player a male ? No

is it a young player ? yes

Figure 5: Visualization of attention maps generated in our model at two Q&A rounds on two images.

Question Ground 
Truth

Generation 
by GoG

Generation 
by LTMI 

Retrieval by 
GoG

Retrieval by 
LTMI 

Q1: are there a lot of 
tree ?

i see 1 tree 
and some 
bushes

i see one tree just see 1 tree i see 1 tree 
and some 
bushes

no, just 1

Q2: what color is 
the traffic light ?

it ’s red it ’s red red ’s a the light is red the light is red

Q3: is this in black 
and white ?

it ’s in color no, it ’s in 
color

no ’s a color it ’s in color no

Q4: is there more 
than 1 building in 
the background ?

i can only see 
one

i only only see 
1

no see only 
see the 
building

i can only see 
one

i can only see 
one

Q5: are there 
animals ?

no live 
animals

no no no live 
animals

no live 
animals

traffic light in front a tree a 
statue of a lion is behind 
the tree a large building is 
in back

Figure 6: Examples of dialogs generated and retrieved by our model and the LTMI baseline. Our model provides
answers that are more accurate than LTMI (green denotes correct answers, and red denotes wrong answers). Results
from our model are also more natural and comprehensive (highlighted in blue).

can be added to prior visual dialog models. Ex-
perimental results on two large-scale datasets show
that our approach improves the previous models by
a significant margin.
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A Relation-aware Graph-over-Graph
Network

A.1 Question Graph Construction
In practice, we observe that two words in a sen-
tence usually hold certain relations. Such relations
can be identified by the Neural Dependency Pars-
ing (Dozat and Manning, 2017). As shown in Ta-
ble 6, we list a part of commonly-used dependency
relations.

A.2 Attention Alignment Module
After obtaining relation-aware features, we fuse the
question representation q∗, history representation
h∗, visual representation v∗ through a multi-modal
fusion strategy. We can use any existing multi-
modal fusion method to learn a joint representation
J :

J = F(q∗, h∗, v∗; Θ), (12)

where J is a multi-modal fusion method and Θ
are trainable parameters of the fusion module.
Here we utilize an efficient attention mechanism
method (Nguyen et al., 2020) to fuse the multi-
modal information, which is the state-of-the-art
model in visual dialog.

Let AX(Y ) denotes the efficient attention mech-
anism (Nguyen et al., 2020) from the information
X to the information Y . For example, Av∗(v∗) de-
notes the efficient self-attention. The fused visual
representation is obtained as follows:

vcontact = [Av∗(v∗), Aq∗(v∗), Ah∗(v∗)], (13)

v′ = LayerNorm(σ(vconcatWv∗) + v∗),(14)

aV = softmax(WV1σ(WV2v
′)), (15)

v =

µ∑
i=1

aV,iv
′
i, (16)

where Wv∗ , WV1 , WV2 are learned parameters. q
and h can be obtained similarly. Thus, the joint
representation J is obtained:

J = WJ [q, h, v], (17)

where WJ is a learned parameter.

Relations Relation Description Proportion

nsubj nominal subject 16.1%
root root node 16.0%
dep dependent 15.7%

punct punctuation 14.3%
det determiner 9.0%
cop copula 9.0%
prep prepositional modifier 4.6%
aux auxiliary 4.0%
pobj object of a preposition 3.6%
amod adjective modifier 3.2%

advmod adverbial modifier 2.5%
dobj direct object 1.5%

Table 6: The main categories of relations classified
by the dependency parsing tool (Dozat and Manning,
2017) in VisDial v1.0 training split (Das et al., 2017).

A.3 Generative and Discriminative Decoders

Following Das et al. (Das et al., 2017), we con-
sider both generative and discriminative decoders
to score the candidate answers using the likelihood
scores and the log-likelihood scores, respectively.

Generative Decoder Following Das et al. (Das
et al., 2017), we design the generative decoder
to score the candidate answers using the log-
likelihood scores. Specifically, the generative de-
coder utilizes a two-layer LSTM (Hochreiter and
Schmidhuber, 1997) to generate an answer using
the context vector J as the initial hidden state. In
the training phase, the generative decoder gener-
ates the next token based on the current token from
the ground truth answer. In detail, we first append
the special token “SOS” at the beginning of the
ground truth answer and “EOS” at the end. We
use Glove (Pennington et al., 2014) to initialize
the embedding and obtain the embedding vectors
agt = [w0, w1, . . . , wN ] where w0 is the embed-
ding of “SOS” and wN is the embedding of “EOS”.
The hidden state hn at timestep n is computed as
follows:

hn = LSTM(wn−1, hn−1), (18)

where h0 is intializaed by J . Then we obtain the
log-likelihood of n-th word as follows:

p = logsoftmax(Wh+ b), (19)

where W and b are learned parameters. In the
training phase, we minimize the summation of the
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Model
VisDial v0.9 (val) VisDial v1.0 (val)

MRR ↑ R@1 ↑ R@5 ↑ R@10 ↑ Mean ↓ NDCG ↑ MRR ↑ R@1 ↑ R@5 ↑ R@10 ↑ Mean ↓

Fusion-based Models

LF (Das et al., 2017) 51.99 41.83 61.78 67.59 17.07 - - - - - -
HRE (Das et al., 2017) 52.37 42.23 62.28 68.11 16.97 - - - - - -

Attention-based Model

MN (Das et al., 2017) 52.59 42.29 62.85 68.88 17.06 51.86 47.99 38.18 57.54 64.32 18.60
HCIAE (Lu et al., 2017) 53.86 44.06 63.55 69.24 16.01 59.70 49.07 39.72 58.23 64.73 18.43
CorefNMN (Kottur et al., 2018) 53.50 43.66 63.54 69.93 15.69 - - - - - -
CoAtt (Wu et al., 2018) 54.11 44.32 63.82 69.75 16.47 59.24 49.64 40.09 59.37 65.92 17.86
RvA (Niu et al., 2019) 55.43 45.37 65.27 72.97 10.71 - - - - - -
DVAN (Guo et al., 2019b) 55.94 46.58 65.50 71.25 14.79 - - - - - -
Primary (Guo et al., 2019a) - - - - - - 49.01 38.54 59.82 66.94 16.60
ReDAN (Gan et al., 2019) - - - - - 60.47 50.02 40.27 59.93 66.78 17.40
DMRM (Chen et al., 2020a) 55.96 46.20 66.02 72.43 13.15 - 50.16 40.15 60.02 67.21 15.19
DAM (Jiang et al., 2020c) - - - - - 60.93 50.51 40.53 60.84 67.94 16.65

Pretraining-based Model

VDBERT (Wang et al., 2020) 55.95 46.83 65.43 72.05 13.18 - - - - - -

Graph-based Model

KBGN (Jiang et al., 2020a) - - - - - 60.42 50.05 40.40 60.11 66.82 17.54

LTMI (Nguyen et al., 2020)† 55.85 46.07 65.97 72.44 14.17 61.61 50.38 40.30 60.72 68.44 15.73
GoG-Gen (Ours) 56.32 46.65 66.41 72.69 13.78 62.63 51.32 41.25 61.83 69.44 15.32
GoG-Multi-Gen (Ours) 56.89 47.04 66.92 72.87 13.45 63.35 51.80 41.78 62.23 69.79 15.16
GoG-Multi (Ours) 59.38 48.58 71.33 78.78 9.94 65.20 55.38 43.93 68.22 76.75 9.98

Table 7: Main comparisons on both VisDial v0.9 and v1.0 datasets using the generative decoder. † denotes that
we re-implemented the model. Underline indicates the highest performance among previous approaches except
pretraining-base models.

negative log-likelihood LG defined by:

LG = −
N∑
n=1

pn. (20)

In the validation and test phase, we compute the
summation si of the log-likelihood for each candi-
date answer âi:

si =

N∑
n=1

pâin . (21)

Then, the rankings of the candidate answers are
derived as softmax(s1, . . . , s100).

Discriminative Decoder A discriminative de-
coder outputs the likelihood score for each of 100
candidate answers for the current question. Similar
to the generative decoder, we use LSTM to obtain
the hidden state hn for b-th word but we do not use
context vector J to initialize the h0. The represen-
tation of each candidate answer is ai = hN . The
score pi for i-th candidate answer is computed by:

p = logsoftmax(aT1 J , . . . , aT100J ) (22)

In the test phase, we sort the candidate answers
using these scores. In the training phase, the cross-
entropy loss LD.

A.4 Multi-Task Learning
According to (Nguyen et al., 2020), we apply our
GoG to the state-of-the-art model (Nguyen et al.,
2020) in the multi-task learning setting that accu-
racy is improved by training the entire network
using the two decoders simultaneously. This is sim-
ply done by minimizing the sum of the losses, LD
for the discriminative one andLG for the generative
one:

L = LD + LG (23)

The increase in performance may be attributable to
the synergy of learning two tasks while sharing the
same encoder.

B Experiments

B.1 Main Results
Comparison with previous approaches using
generative decoders. As shown in Table 7, we
provide the full comparison with all the previous
generative approaches.

B.2 Qualitative Results
More examples generated and retrieved by our GoG
are provided in Figure 7. Due to the limited number
of pages, we only provide an additional example
of Figure 7.
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chocolate cake with fresh strawberries 
and small nuts

Q: is it on a table ?
GT: i think it
Gen: yes think so
Disc yes

Q: is there any silverware ?
GT: no
Gen: no
Disc no 

a brown and white dog riding a 
skateboard 

Q: can you see any people ?
GT: part of a person
Gen: just of 1 person
Disc part of a person

Q: what color is the skateboard ?
GT: black
Gen: black
Disc black 

a man holding a disk smiles as he leans 
against a sign at a disc golf course

Q: how many discs are shown ?
GT: 1
Gen: 1
Disc 3

Q: what color disk ?
GT: yellow
Gen: yellow
Disc yellow 

a man playing tennis is attempting to hit 
the ball with his racket 

Q: how old is the man ?
GT: i don ’ t know probably in late 30s 
Gen: maybe would ’ t know
Disc looks middle aged 

Q: does he wear sunglasses ?
GT: yes
Gen: yes
Disc yes 

Figure 7: Examples of dialogs generated and retrieved by our model. blue denotes has the same meaning with the
ground truth and red denotes wrong answers.


