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Abstract

Current models for event causality identifica-
tion (ECI) mainly adopt a supervised frame-
work, which heavily rely on labeled data for
training. Unfortunately, the scale of current
annotated datasets is relatively limited, which
cannot provide sufficient support for models
to capture useful indicators from causal state-
ments, especially for handing those new, un-
seen cases. To alleviate this problem, we
propose a novel approach, shortly named
CauSeRL, which leverages external causal
statements for event causality identification.
First of all, we design a self-supervised frame-
work to learn context-specific causal patterns
from external causal statements. Then, we
adopt a contrastive transfer strategy to incor-
porate the learned context-specific causal pat-
terns into the target ECI model. Experimen-
tal results show that our method significantly
outperforms previous methods on EventSto-
ryLine and Causal-TimeBank (+2.0 and +3.4
points on F1 value respectively).

1 Introduction

Event causality identification (ECI) aims to identify
causal relations between events in texts, which can
provide crucial clues for deep textual understanding
(Girju, 2003; Oh et al., 2013, 2017). For example in
Figure 1, an ECI system should identify two causal
relations in S; with mentioned events: noticed g1
U5 alerted g5 and alerted g3 = rangs.

To date, most existing methods regard this task
as a classification problem and usually train ECI
models on annotated data (Hashimoto et al., 2014;
Riaz and Girju, 2014b; Mirza and Tonelli, 2016;
Hu and Walker, 2017b; Gao et al., 2019). However,
the scale of current annotated datasets are relatively
limited, where the so far largest dataset EventSto-
ryLine (Caselli and Vossen, 2017) only contains
258 documents, 4316 sentences, and 1770 causal

The captain noficedr; the pirates five minutes ago,

he rang; to the deck and alertedy; the crew of the emergency.

Billy finds his childhood teddy bear.

Billy gives his childhood teddy bear to his daughter.

[Entity] find/notice/feell... [Entity]

? . cause
noticedp; —salertedg3 noticedz — alertedy3

[Entity] call/give/alert/... [Entity]

Unseen Case Context-specific Causal Pattern > Prediction

Figure 1: S; is a labeled data that contains unseen
causal events and their statement when training; .S is
an external causal statement; The bottom illustrates the
context-specific causal pattern in Sz could help identify
the causality of unseen events in S7.

event pairs. As a result, on the limited annotated
examples, existing ECI models could not easily
capture useful indicators from causal statements,
especially for handing those new, unseen cases.

To address this problem, Liu et al. (2020) em-
ployed external event-related knowledge bases
(KBs) to enhance the causality inference, where
those KBs store inherent causal relations between
some given events. For those unseen events and
unlabeled causalities in KBs, Liu et al. (2020) pro-
posed a mention-mask based reasoner to enhance
the causal statement representation. However, such
mention-mask based reasoner is still trained on the
human-annotated examples solely. It will still suf-
fer from data limitations and have no capacity to
handling unseen contexts. Moreover, Zuo et al.
(2020) improved the performance of ECI with the
distantly supervised labeled training data. How-
ever, their models are still limited to the unsatisfied
qualities of the automatically generated data.

To address the insufficient annotated example
problem, we employ a large number of external
causal statements (Sap et al., 2018; Mostafazadeh
et al., 2020) that can support adequate evidence of
context-specific causal patterns (Liu et al., 2020)
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for understanding event causalities. For example
in Figure 1, the context-specific causal pattern sup-
port by an external causal statement So is help-
ful for identifying the causality of event noticedg
and event alertedps in S1, which is unseen when
only training with labeled data. However, different
from annotated examples for the ECI task, there
are no event annotations in the external causal state-
ments. As a result, it is difficult for the models to
learn context-specific causal patterns from them
to identify event causalities. To resolve this issue,
inspired by Grill et al. (2020), we design a self-
supervised representation learning framework to
learn enhanced causal representations from exter-
nal causal statements. Specifically, we iteratively
sample two external causal statements, then take
each of them as a target to learn the commonali-
ties among them. Intuitively, we believe that the
learned commonalities between different causal
statements through self-supervision reflect such
context-specific causal patterns which are helpful
for identifying event causalities in the unseen cases.

Moreover, to incorporate the learned context-
specific causal patterns from external causal state-
ments into the target ECI model, we employ a con-
trastive transfer strategy. In specific, we regard
the self-supervised representation learning module
as a teacher model that masters abundant exter-
nal causal statements, and the target ECI model
as a student model. Methodologically, we make
the representation of the causal events encoded by
the student model should be close to the causal
representation grasped by the teacher model, and
keep the representation of the non-causal events
away from it. In this way, the mutual information
between the teacher and student models could be
maximized (Tian et al., 2020). Then the learned
context-specific causal patterns could be naturally
transferred into the ECI model and the generaliza-
tion could be improved.

In experiments, we evaluate our model on two
benchmarks. The experimental results show that
our model achieves SOTA performance. Then, con-
crete proofs show that the effectiveness of our self-
supervised contrast-based framework for context-
specific causal patterns learning and transfer.

In summary, the contributions are as follows:

* We propose a novel approach, shortly named
CauSeRL, which could leverage external
causal statements to identify the causalities
between events.

* First of all, we design a self-supervised frame-
work to learn context-specific causal patterns
from external causal statements. Then, we
adopt a contrastive transfer strategy to incor-
porate the learned context-specific causal pat-
terns into target ECI model for identification.

» Experimental results on two benchmarks show
that our model achieves the best performance.

2 Related Work

Event Causality Identification Up to now, iden-
tifying the causality implied in the text has at-
tracted more and more attention (Hu and Walker,
2017a; Riaz and Girju, 2014b; Hashimoto et al.,
2014; Riaz and Girju, 2014a, 2010; Do et al., 2011;
Hidey and McKeown, 2016; Beamer and Girju,
2009; Hu et al., 2017; Hu and Walker, 2017b). Re-
cently, some benchmarks on the event causality
have been released. Mirza et al. (2014), Mirza and
Tonelli (2016) extracted causal relation of events
with a rule-based multi-sieve approach incorporat-
ing with event temporal relation. Mirza and Tonelli
(2014) annotated the Causal-TimeBank of event
causal relations. Caselli and Vossen (2017) anno-
tated the EventStoryLine Corpus for event causal-
ity identification in 320 short stories based on the
temporal and causal relations annotated dataset
(Mostafazadeh et al., 2016). Dunietz et al. (2017)
presented BECauSE 2.0, a new version of the BE-
CauSE (Dunietz et al., 2015) of causal relation and
other seven relations.

Based on the above benchmarks, Gao et al.
(2019) modeled document-level structures to iden-
tify the causalities of events. Liu et al. (2020) iden-
tified event causalities with the mention masking
generalization and external KBs. Zuo et al. (2020)
improved the performance of ECI with the distantly
automatically labeled training data. However, these
methods only rely on a small scale of labeled data.
In this paper, we introduce external causal state-
ments to help identify event causalities.

Self-Supervised  Representation Learning
Self-supervised representation learning cares about
producing good features generally helpful for many
tasks (Weng, 2019). Wu et al. (2018) proposed
MemoryBank, which stores representations of
all the data and samples a random set of keys
as negative examples. He et al. (2020) provided
a framework, MoCo, of unsupervised learning
visual representation as a dynamic dictionary
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Figure 2: The learning and transfer processes of the

look-up. Chen et al. (2020) proposed the SImCLR
which learns representations for visual inputs
by maximizing agreement between differently
augmented views of the same sample via a
contrastive loss. Grill et al. (2020) claimed a novel
representation learning framework relies on two
neural networks, BYOL, without using negative
samples. CURL (Srinivas et al., 2020) applies the
above ideas in reinforcement learning. Inspired by
them, we design a self-supervised framework to
learn context-specific causal patterns from external
causal statements and adopt a contrastive transfer
strategy to incorporate them into target ECI model.

3 Methodology

As shown in Figure 2, the whole pipeline process
of CauSeRL is divided into two major stages.

* Self-supervised causal representation
learning (SelfRL, Sec. 3.1). In this stage,
we design a self-supervised representation
learning module to learn enhanced causal
representations by iteratively sampling two
external causal statements, taking each of
them as a target to learn their commonalities
which reflect context-specific causal patterns.

Contrastive  representation  transfer
(ConRT, Sec. 3.2). In this stage, we employ
a contrastive transfer module to transfer the
learned context-specific causal patterns into
the ECI target model, the event causality
identifier, via incorporating the enhanced
causal representations from SelfRL.

proposed CauSeRL for ECI. ”//” means stop-gradient.

3.1 Self-Supervised Causal Representation
Learning (SelfRL)

SelfRL aims to train a module that masters context-
specific causal patterns from external causal state-
ments by learning their enhanced causal represen-
tation with a self-supervised framework.

Self-Supervised Representation Learning Mod-
ule We design a self-supervised module to cap-
ture the context-specific causal patterns from exter-
nal causal statements via learning their enhanced
causal representation. However, there are no ECI-
specific event annotations in the external causal
statements, which makes them unable to be directly
used as training data to train the ECI model. To han-
dle this problem, inspired by Grill et al. (2020), we
iteratively sample two external causal statements,
take each of them as a target to learn their common-
alities, that is, the causal representations, which
reflect context-specific causal patterns.

In specific, as shown in Figure 2, we configure
two networks for SelfRL, an online network, and
a target network. The target network provides re-
gression targets to train the online network which
makes it learn the commonalities among two input
causal statements, that is, the causal representations
reflecting different context-specific causal patterns.
Structurally, the online network is defined as a set
of weights 6 which is comprised of three submod-
ules: an encoder Ency, a projector Projg and a
predictor Predy. And the target network has the
same architecture as the online network, but no
predictor and uses a different set of weights 6.

In specific, we iteratively sample two external
causal statements, initially encode them by BERT
(Devlin et al., 2019), and input them into two net-
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works respectively. After encoding and projection,
the online network and target network respectively
output a projection zg and z5. Then the online
network outputs a prediction yg, and takes the fol-
lowing mean square error between f3-normalized
¥o and Z§ as the training objective to learn the
commonalities of two causal statements, that are
regarded as the context-specific causal patterns.

)
1yl - H'ZSHQ7

(1)
o = vo/ lyoll» 25 2 25/ ||25], - @

Los 2 |30~ 22 =22

To reduce the bias, we symmetrize the Lg 5 by
swapping the input causal statements of the online
and target networks to compute Lg 5.

Learning of SelfRL.  For the learning of SelfRL,
at each step, as shown in Algorithm 1, we minimize
the Effg to stochastic gradient update the online
network respect to the parameters 6 only. For the
target network, the parameters J are an exponential
moving average of the parameters 6 of the online
network (Lillicrap et al., 2016):

Ly§ = Los+ Loy.s, 3)
0 < NteaVoLys 4)
§— 10+ (1—1)0, (5)

where, 7, is the learning rate of the online net-
work, and 7 € [0,1] is the decay rate that deter-
mines the degree of the movement of 6 to 4. As
shown in Figure 2, when learning, BERT is only
used to provide an initial representation for the in-
put statements, and its parameters are not updated.

According to the theoretical analysis by Grill
et al. (2020), the addition of a predictor on the
online network and the usage of a slow-moving av-
erage of the online parameters as the target network
encourage SelfRL to encode a more informative
causal representation of commonalities within the
online projection and avoids collapsed solutions!.

3.2 Contrastive Representation Transfer
(ConRT)

ConRT aims to incorporate the context-specific
causal patterns learned in SelfRL from external

'In this paper, collapse solution means that the model
encodes all input statements as the same representation. The
slow-moved target network keeps the predictor of the online
network always near-optimal, thus avoiding the collapse.

Algorithm 1 Two stages training of CauSeRL.

Require: External causal statements C for teacher model
and event pairs with statements P for student model.

Training:

1: Stage: CAUSAL REPRESENTATION LEARNING

2 for each batch Cpq: € C do > Learning of SelfRL
3 for any two causal statements € Cpq¢ do

4 One for online another for target;

5: Get yp from Predy in online network;

6: Get zj from Projs in target network;

7. Swap two statements into two networks;

8 Get symmetrical yg and 25;

9
10

Compute Lg,5 and Lo 5;

end for
11: Compute batch L:’ffg in equation (3);
12: Stochastic gradient update 6 in equation (4);
13: Slow-moving update ¢§ in equation (5);
14: end for
15: end Stage:
16:

17: Stage: CONTRASTIVE REPRESENTATION TRANSFER
18: for each batch Ppq: € P do > Learning of identifier

19: for any event pair with statement € Pp,; do

20: Get Tevent ANd Teyent_state from BertEncy;
21: Predict the causality of two events in one pair;
22: end for

23: Compute batch £3* in equation (6);

24: Sample Cpqt € C;

25: Get Tegternal Of ¢ € Cpqr from learned Ency;
26: Get T::)ent,state’ Te_vent,sta.te from Tevent_state;
27: Get mapped 7"5:, rP . and Teq;

28: Compute £ = L5 + L5°™ in equation (8);

29: Stochastic gradient update A in equation (9);

30: end for

31: end Stage:

causal statements into the identifier. As aforemen-
tioned, the goal of SelfRL is learning the common-
alities among different external causal statements,
which does not make the representation learning
module have the ability to distinguish the causal
and non-causal statements directly. Therefore, we
employ a contrastive transfer module to teach the
learned context-specific causal patterns to the event
causality identifier for training.

Event Causality Identifier Event causality iden-
tification is formulated as a sentence level binary
classification problem. Specifically, we design a
classifier based on BERT (Devlin et al., 2019) to
build our identifier. The input is an event pair and
its statement. As shown in Figure 2, we take rep-
resentation of events r.yen: and their contextual
statement 7Teyent_state €ncoded by BertEnc)y as
the input of top MLP predictor. Finally, the output
is a binary vector to indicate the causal relation
of the input two events expressed by their state-
ment. The parameters of the identifier are defined
as A and the optimization function is the following
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Resource Original Causal Statement Form Converted Causal Statement Form

GLU-SPE Billy finds his childhood teddy bear > C'ause/Enable > | Billy finds his childhood teddy bear, billy
Billy gives his childhood teddy bear to his daughter gives his childhood teddy bear to his daughter.

GLU-GEN Someone_A finds Something A > Cause/FEnable > | Someone_A finds Something_A, Someone_A
Someone_A gives Something_A to Someone_B gives Something_A to Someone_B.

ATOMIC PersonX follows PersonY into room > oWant > to | PersonX follows PersonY into room, to know
know why PersonX is following them why PersonX is following them.

DISTANT Fisk was shot to death by his mistress’s new lover and | Fisk was shot to death by his mistress’s new
Fisk’s ex-business partner. lover and Fisk’s ex-business partner.

Table 1: The original and converted form (the input form of SelfRL) of different causal statements from three
resources. GLU-SPE and GLU-GEN denote the specific and general statements from GLUCOSE respectively.

classification cross-entropy function:
[’itu = CROSSE(MLP([revenﬁ Irevent,smte]))- (6)

Contrastive Transfer Module As aforemen-
tioned, inspired by Tian et al. (2020), we employ a
contrastive transfer strategy to transfer the “knowl-
edge” mastered by the teacher (self-supervised rep-
resentation learning module), that is the context-
specific causal patterns, to the student (event causal-
ity identifier), which helps the latter to identify the
event causalities. The key idea of contrastive trans-
fer is intuitional: maximize the mutual information
between the teacher and the student (Tian et al.,
2020). Methodologically, we make the represen-
tation of the statements of causal events encoded
by the student model should be close to the causal
representation grasped by the teacher model. By
contrast, we keep the representation of the state-
ments of non-causal events away from it.

As shown in Figure 2, at each training step of
identifier, we sample a batch of external causal
statements into the learned Ency of the online
network to obtain their causal representation 7y
for teaching. At the same time, we also sample a
batch of event pairs with their statements into the
BertEnc) of identifier to obtain the statement rep-
resentation Teyent_state Of €ach event pair. Among
one batch, Tcyent_state cONsists of the T;;ent,state of
causal event pairs and the 7_, .., 4+ Of NON-causal
event pairs. After mapping reiiernals T
and r_,
ré’j; and 72, respectively. After that, we make r:gjg
be close to 7., in the contrastive loss function:

event_state

cvent_state INTO @ same space, we obtain 7y,

(D2 L reae)/T)

(D("'g,s rext)/T)’

(M

o 1
L = —— Z log
|7)+| p+e73+ ZpePe
where, P and P are the causal event pairs and
all event pairs in one batch respectively, T' is a
temperature that adjusts the concentration level,

and D is the /5-distance function to measure the
distance of two representation.

Learning of Event Causality Identifier For the
training of event causality identifier, we add con-
trastive loss to the basic classification loss, which
could guide the identifier to learn context-specific
causal patterns implied in the enhanced causal rep-
resentation from SelfRL. As shown in Algorithm 1,
we minimize the L) and stochastic gradient update
the X as following:

£A — Eitu _|_£§\on’ (8)
A nstuv)\ﬁ)\a (9)

where, 754, 1S the learning rate of the identifier. For
evaluation, we predict the causality of input event
pair without the contrastive transfer module. Ad-
ditionally, the 7" in £$°" indirectly plays a role in
adjusting the influence weight of £ and £5°". In
specific, for teaching, we take the learned Ency
of the online network as the encoder, freeze its
parameters, to provide the enhanced causal rep-
resentation of the external causal statements for
contrastive representation transfer.

4 Experiments

4.1 Experimental Setup

Dataset and Evaluation Metrics for ECI Our
experiments are conducted on two main bench-
marks, including: EventStoryLine v0.9 (ESC)
(Caselli and Vossen, 2017) described above; and
(2) Causal-TimeBank (CTB) (Mirza and Tonelli,
2014) which contains 184 documents, 6813 events,
and 318 causal event pairs. Same as previous meth-
ods, we use the last two topics of ESC as the de-
velopment set for two datasets. For evaluation, we
adopt Precision (P), Recall (R), and F1-score (F1)
as evaluation metrics. We conduct 5-fold and 10-
fold cross-validation on ESC and CTB respectively,
same as previous methods. All the results are the
average of three independent experiments.
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Data Preparation for Self-Supervised Causal
Representation Learning We take four types of
external causal statements from three resources.
Table 1 illustrates the original form and the con-
verted input form of SelfRL (Sec. 3.1) of the causal
statements from three different resources.

e GLUCOSE (Mostafazadeh et al., 2020): a
large-scale dataset of implicit commonsense
knowledge, encoded as causal explanatory
mini-theories inspired by cognitive psychol-
ogy. Each GLUCOSE explanation is stated
both as a specific statement (grounded in a
given context, GLU-SPE in Table 1) and
a corresponding general rule (applicable to
other contexts, GLU-GEN in Table 1).

* ATOMIC (Sap et al., 2018): an atlas of ma-
chine commonsense, as a step toward address-
ing the rich spectrum of inferential knowledge
that is crucial for commonsense reasoning.

e DISTANT (Zuo et al., 2020): the automati-
cally labeled training data for ECI via distant
supervision that expresses the causal seman-
tics between events.

Parameters Settings In implementations, all the
BERT modules are implemented on BERT-Base
architecture’, which has 12-layers, 768-hiddens,
and 12-heads. We employ the one-layer BILSTM
(Hochreiter and Schmidhuber, 1997) as Encg and
Encs. For parameters, we set the learning rate of
SelfRL (1¢eq) and identifier (1)s,,) as le-5 and 2e-5
respectively. The size of the space in the contrastive
transfer module and the hidden layer of BiLSTM
are both set as 50. And we respectively set the
decay rate 7 of moving average in SelfRL and the
temperature of the contrastive loss £$°" are 0.996
and 0.1 tuned on the development set. Moreover,
we also tune the batch size of SelfRL and identifier
as 48 and 16 respectively on the development set.
And we apply the early stop and AdamW gradient
strategy to optimize all models. We also adopt
a negative sampling rate of 0.6 for the training
of identifier, owing to the sparseness of positive
examples in the ECI datasets.

Compared Methods Same as previous methods.
For ESC, we prefer 1) S-Path (Cheng and Miyao,
2017), a dependency path based sequential method

https://github.com/google-research/
bert

Methods P R F1

EventStoryLine

S-Path (Cheng and Miyao, 2017) 340 415 374
S-Fea (Choubey and Huang, 2017) 327 449  37.8

LR+ (Gao et al., 2019) 37.0 452 407
ILP (Gao et al., 2019) 374 558 447
BERT 36.0 56.8 44.1
KnowDis (Zuo et al., 2020) 39.7 66.5 49.7
MasG (Liu et al., 2020) 419 625 50.1
KnowDis+CauSeRL (Ours) 40.1 689 50.7*
MasG+CauSeRL (Ours) 40.8 68.0 51.0%*
CauSeRLprsranT (Ours) 39.9 673 50.1*
CauSeRL aronrc (Ours) 41.0 68.1 51.2%
CauSeRL¢gru.gen (Ours) 414 678 514%*
CauSeRLgru.spr (Ours) 419 69.0 52.1*

Causal-TimeBank

Rule-B (Mirza and Tonelli, 2014) 36.8 12.3 18.4
Data-D (Mirza and Tonelli, 2014) 673 22,6 339

VerR-C (Mirza, 2014) 69.0 31.5 43.2
BERT 395 445 419

MasG (Liu et al., 2020) 36.6 556 44.1

KnowDis (Zuo et al., 2020) 423 60.5 498

MasG+CauSeRL (Ours) 42.6 62,5 50.7*
KnowDis+CauSeRL (Ours) 425 66.0 51.7*%
CauSeRLprsranT (Ours) 41.6 639 504*
CauSeRLATOMIC (OllI‘S) 4248 67.0 52.2*
CauSeRLgru.gen (Ours) 43.0 66.8 52.3%
CauSeRLgru-spr (Ours) 436 68.1 53.2%

Table 2: Results of event causality identification on two
benchmarks. Bold denotes best results; * denotes a sig-
nificant test at the level of 0.05;

that models the context between events to identify
causality; 2) S-Fea (Choubey and Huang, 2017),
a sequence model explores complex human de-
signed features for ECI; 3) LR+ and ILP (Gao
et al., 2019), document-level models adopt docu-
ment structures for ECL.

For CTB, we prefer 1) Rule-B, a rule-based sys-
tem; 2) Data-D, a data driven machine learning
based system; 3) VerR-C, a verb rule based model
with data filtering and causal signals enhancement.
These models are designed by Mirza and Tonelli
(2014; 2014) for ECI. For both two datasets, 1)
we build a baseline BERT (our basic proposed
event causality identifier); 2) We prefer MasG (Liu
et al., 2020), a BERT-Large based SOTA model
with mention masking generalization; 3) KnowDis
(Zuo et al., 2020) improved the performance of ECI
with the distantly labeled training data.

To make a fair comparison, we employ CauSeRL
to retrain MasG and KnowDis to illustrate the ef-
fectiveness of our proposed approach for ECI on
other methods. In specific, 1) MasG+CauSeRL:
we retrain MasG with L§" based on the CLU-SPE.
To be consistent with other BERT-based compared
models, we re-construct MasG based on BERT-
Base rather than the original BERT-Large of MasG;
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Methods P R F v

Methods P R F v

CauSeRLGLU,spE 41.9 69.0 52.1%* - CauSeRLGLU,spE 41.9 69.0 52.1%* -
Enco—init + ConRT 39.1 63.6 484* -37 Encyg_freeze + SelfRL 37.8 599 464* 57
BertEnca_init + ConRT 389 63.1 48.1* -4.0 Enco— finetune + SelfRL 385 609 47.2*% -49
BERT 36.0 56.8 44.1 - BERT 36.0 56.8 44.1 -
BERT+SelfRL finctune 38.5 609 47.2*% 431 BERT + ConRT g, 39.1 63.6 484* 443

Table 3: Ablation results of the self-supervised causal
representation learning (SelfRL, Sec. 3.1) of ECI on
EventStoryLine. * denotes a significant test at the
level of 0.05; V means the points lower than CauSeRL
or higher than BERT in the upper and lower parts
respectively; Encg_;ni+ + ConRT denotes a varietal
CauSeRL that removes SelfRL, directly employs an
initial Encg of the online network to encode exter-
nal causal statements into ConRT and trains it mean-
while; BertEncy_;n;+ + ConRT denotes a varietal
CauSeRL that removes SelfRL, directly employs a
same initial BertFEnc)y of identifier to encode external
causal statements into ConRT and trains it meanwhile;
BERT+SelfRL fipetune denotes a varietal CauSeRL
that removes ConRT (Sec. 3.2), and takes the learned
FEncy of the online network as the initial encoder of
identifier on the BERT baseline model.

2) KnowDis+CauSeRL: we regard the automati-
cally distantly labeled causal sentences generated
by KnowDis as causal statements to learn in Sel-
fRL, and transfer to KnowDis.

CauSeRL g iernai-Statement: To further illus-
trate the ability of CauSeRL to learn the context-
specific causal patterns for the ECI task, we make
CauSeRL learn from four types of external causal
statements shown in Table 1 for identifying the
causalities between events. External-Statement
denotes what kind of external causal statements.

4.2 Our Method vs. State-of-the-art Methods

Table 2 shows the results of ECI on EventStoryLine
and Causal-TimeBank. From the results:

1) Our CauSeRL outperforms all baseline meth-
ods and achieves the best performance on F1
value, 52.1% on ESC and 53.2% on CTB respec-
tively. Specifically, CauSeRL outperforms the
no-bert (ILP/VerR-C) and bert (MasG/KnowDis)
baseline methods by a margin of 7.4%/10.0% and
2.0%/3.4% on two benchmarks respectively. It il-
lustrates the context-specific causal patterns from
external causal statements are effective for ECI.

2) Comparing MasG+CauSeRL with MasG, we
note that even with BERT-Base, the performance
of MasG+CauSeRL is significantly higher than
that of MasG based on BERT-Large. This shows
that the context-specific causal patterns learned by
CauSeRL from external causal statements can ef-

Table 4: Ablation results of the contrastive representa-
tion transfer (ConRT, Sec. 3.2) of ECI on EventSto-
ryLine. * denotes a significant test at the level of
0.05; V means the points lower than CauSeRL or
higher than BERT in the upper and lower parts re-
spectively; Enco— freeze + SelfRL denotes a varietal
CauSeRL that removes ConRT, and takes the frozen
learned E'ncy of the online network as the encoder of
identifier; Ency— finetune denotes a varietal CauSeRL
that removes ConRT, and takes the learned Ency of
the online network as the initial encoder of identifier;
BERT + ConRT gy, denotes a varietal CauSeRL that
removes SelfRL (Sec. 3.1), directly employs an initial
FEncy of the online network to encode external causal
statements into ConRT and trains it meanwhile.

fectively alleviate the limitation of mask generaliza-
tion only relying on limited labeled causal context.

3) Comparing KnowDis+CauSeRL with Know-
Dis, we find that CauSeRL could more efficiently
make use of the automatically labeled causal state-
ments, which learns their context-specific causal
patterns to further enhance the ability of models to
identify the causalities between events.

4) Comparing different external causal state-
ments. a) GLU-SPE brings the most significant im-
provement because the specific causal statements
from GLU-SPE have complete text structures that
are more similar to ECI labeled data and make mod-
els easier to learn. There, all the ablation experi-
ments are conducted on GLU-SPE. b) The effects
of GLU-GEN and ATOMIC are similar because
these two types of statements are abstract causal
structures. Although they are similar to the context-
specific causal patterns, it is relatively difficult to
understand directly. ¢) The improvement brought
by DISTANT is relatively small because of the
effects of the noise from distantly labeled data.

5) Comparing CauSeRL with MasG+CauSeRL,
we notice that after removing the ConceptNet
knowledge enhancement employed by MasG, the
external causal statements could be better learned
and transferred. This is because MasG directly flat-
tens the event concept knowledge into the statement
sequence, which disrupts the statement structure
and affects the understanding of the statement.

6) It is worth noting that the improvement on
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Figure 3: Results of event causality identification on
EventStoryLine that directly using external causal state-
ments as the training data of ECI task.

the CTB is higher than that of the ESC, because
the amount of labeled data of the former is rela-
tively small, and more need for the help of exter-
nal causal statements. Moreover, compared with
the traditional methods based on features or rules,
all BERT-based methods demonstrate high recall
value, which is benefited from more training data,
knowledge and causal statements.

4.3 Effect of Self-Supervised Causal
Representation Learning

We analyze the effect of the self-supervised causal
representation learning (SelfRL, Sec. 3.1). As
shown in Table 3, from the results, 1) after remov-
ing SelfRL, the performance of ECI significantly
decreases. This illustrates that the context-specific
causal patterns learned by SelfRL are important
for the ECI model to understand the causality. 2)
Comparing BERT+SelfRL f;y,¢1une With BERT, the
Ency that has learned from external causal state-
ments could improve the performance of ECI to a
certain extent. This illustrates that SelfRL could
effectively capture the context-specific causal pat-
terns in the statements for identification. 3) Com-
paring Encg_;n;¢ + ConRT and Bert Ency_init +
ConRT, after representation learning, the fine-tuned
Encg could further improve the performance of
ECI. This indirectly shows that the context-specific
causal patterns learned in the SelfRL is generalized.

4.4 Effect of Contrastive Representation
Transfer

We analyze the effect of the contrastive representa-
tion transfer (ConRT, Sec. 3.2). As shown in Table
4, from the results, 1) after removing ConRT, the
performance of ECI also significantly decreases.
This illustrates that the learned causal represen-
tations from external statements are not suitable
for direct application to ECI, and needs to be ef-

—mmamd

i
EThe captain noticed the pirates five minutes ago,
H

ihe ranp; to the deck and alertedy; the crew of the emergency.
1

. cause cause
noticed —>alerted alerted — ran

l l Origianl Probability
Enhanced by ¢ Enhanced by ¢ D
GLU-SPE in Table 1. ATOMIC in Table 1. Kj
n

tv

Figure 4: Case study of the probability changes with
external causal statements enhancement.

fectively transferred that the ConRT focuses on.
2) Comparing BERT + ConRTg,,., with BERT,
even if causal representation learning is not car-
ried out in advance, adopting contrast strategy to
directly transfer the context-specific causal patterns
could also help the inference of event causality to
a certain extent. 3) Comparing Encg_ freeze + Sel-
fRL with Ency_ finetune + SelfRL, we find that
the causal representations encoded by pre-trained
BERT and BiLSTM have similar effects. Afore-
mentioned, to avoid collapse solutions (Sec. 3.1),
we choose the BiILSTM as an encoder in SelfRL
that could be initialized completely independently.

4.5 Effect of the Utilization of External
Causal Statement

As shown in Figure 3, we regard external causal
statements as positive training data for ECI and
directly use them to train the BERT baseline model.
In specific, we treat two words that play a predicate
role in the syntactic structure of each statement as
events. From the results, CauSeRL could more
effectively make use of causal statements to help
understand the causalities of events. In contrast,
directly serving as training data is not effective.

4.6 Case Study

As shown in Figure 4, with limited labeled data, the
model could not understand the causal relation be-
tween event noticed and event alerted. Fortunately,
with the support of the context-specific causal pat-
tern from GLU-SPE in Table 1, the prediction is
modified correctly. Moreover, the original model
that only trained with limited labeled data is am-
biguous about the causal relation between event
alerted and event ran. Influenced by the similar
causal statements with the example in Table 1 from
ATOMIC, the prediction confidence is improved.
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5 Conclusion

We propose a novel approach, CauSeRL, which
could leverage external causal statements to iden-
tify the causalities of events. First of all, we de-
sign a self-supervised framework to learn context-
specific causal patterns from external causal state-
ments. Then, we adopt a contrastive transfer strat-
egy to incorporate the learned context-specific
causal patterns into the target ECI model for identi-
fication. Experimental results on two benchmarks
show that our model achieves the best performance.
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