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Abstract

Previous studies have argued that pre-trained
language models encode commonsense rela-
tional knowledge (e.g. that apples are ed-
ible). However, simultaneous work has re-
vealed that such models are often insensitive
to context, even ignoring overt contextual cues
such as negations. In this paper, we investigate
whether masked language models (the BERT
family) can move beyond naive associative bi-
ases (e.g., apple → edible) when the context
warrants (e.g. ranking inedible higher when
presented with the information that the apple
is rotten). We introduce the WINOVENTI pro-
cedure, which adversarially exploits generic
associations in masked language models to cre-
ate model-specific Winograd-style entailment
schemas. Using our constructed WINOVENTI
challenges set of over 2, 000 schemas, we
show that language models in the BERT fam-
ily experience a steep drop in performance
on prompts that require them to pick answers
which require reasoning about context (e.g.,
from 89.8% to 18.4% for BERTLARGE). We
present evidence that language models exhibit
different associative biases, suggesting a need
for future work in developing and analyzing
frameworks similar to WINOVENTI that are
tuned to model-specific weaknesses.

1 Introduction

Humans exhibit commonsense knowledge through
their ability to identify generics (e.g., that a dog has
four legs) while still recognizing that exceptions
to such rules are possible (e.g., that there are cases
of three-legged dogs) (Greenberg, 2007), and that
the probability of such exceptions can vary based
on the context (e.g. “the dog is running” vs. “the
dog is hobbling”). A prerequisite to comparing a
machine’s performance to human intelligence is,
hence, the verification that machines can exhibit
a sensitivity to context that would allow them to

perform as well on cases that require reasoning
about exceptions as on cases that require recalling
generic associations.

Recent work (Petroni et al., 2019) has shown
that large pretrained language models, in partic-
ular Masked Language Models (MLMs) such as
BERT (Devlin et al., 2018) are competent at asso-
ciating entities with their common characteristics.
For example, BERTLARGE readily recalls apple→
edible and charcoal→ hot. However, as demon-
strated by Ettinger (2020) and Kassner and Schütze
(2019), BERT is insensitive to various overt con-
textual cues, notably negation. For example, given
the context “The shower is ,” BERTLARGE pre-
dicts the words “cold”, “long”, and “empty”, the
same top 3 predictions it makes given the context
“The shower is not ”. Such results suggest that
while language models like BERT capture many
commonsense patterns, such success might be lim-
ited to inferences involving common generaliza-
tions (appearing in an affirmative context, or using
common lexical associations) and not those involv-
ing exceptions (appearing in a negative context,
or requiring the models to choose less frequently
associated lexical items).

In this paper, we investigate whether it is indeed
the case that the “commonsense reasoning” exhib-
ited by MLMs is limited to frequent generalizations
as opposed to exception cases. We make three main
contributions. First, we present the WINOVENTI

procedure (§2) for identifying model-specific asso-
ciative biases and adversarially building Winograd-
style challenges (Levesque et al., 2012) to test mod-
els’ commonsense inference ability. Second, we
apply the WINOVENTI procedure to evaluate the
commonsense inference performance of a suite
of pre-trained MLMs (§3). We find that all the
evaluated models experience dramatic performance
drops on prompts that require the models to rea-
son about exceptions to commonsense generaliza-
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WINOVENTI Procedure Summary
Step 1: Identifying Generic Associations
Sample In: { honey, tarantula }
Sample Out (BERTLARGE): honey→ good,

tarantula→ poisonous,
tarantula→ female

See Table 3

Step 2: Collecting Exceptions of Associations
Sample Out: (honey, good)→ terrible

(tarantula, poisonous)→ safe
(tarantula, female)→ male

Step 3: Adversarial Filtering
Sample Out (BERTLARGE): True, True, False
Rationale: In the last example, BERTLARGE
associates the exception characteristic (male)
with the entity (tarantula) more strongly than
the generic association (female).

Step 4: Collecting Premises
Sample Prompt:

(1) The honey is [good/terrible].
(2) The tarantula is [poisonous/safe].

Sample Out: (1) After adding honey to my tea,
it was (delicious/oversweet).
(2) Kim was (terrified/thrilled) when
he asked her to hold the tarantula.

Step 5: Challenge Set Validation
Sample Out: False, False
Rationale: In the first example, word association
can be used to select the correct answer. In the
second, the property-to-association mapping
is not one-to-one, causing ambiguity.

Table 1: Summary of the WINOVENTI pipeline for con-
structing common sense inference challenge set.

tions. Humans, in contrast, perform consistently
well (∼90%) across inferences in our data. Third,
we release our human-curated evaluation dataset
of 2, 176 sentence pairs probing inferences about
commonsense generalizations and exceptions. All
of our code and data are available at http://http:
//commonsense-exception.github.io.

2 WINOVENTI Procedure

2.1 Overview

The WINOVENTI procedure aims to produce
Winograd-style sentence pairs to test models’ abil-
ity to reason about common sense generics and
exceptions. For example, a sentence pair might

look like the following:

sg: Zeke says that the apple is delicious. The
apple is [MASK].→ edible > inedible

se: Zeke says that the apple is rotten. The apple
is [MASK].→ inedible > edible

That is, we seek to generate pairs of sentences–
which we call sg and se, for generic and exception–
which differ by a single word (wg/we), such that
that difference should lead to a change in the rela-
tive probability of other words (og/oe) in the con-
text. For example, the presence of we = “rotten”
causes oe = “inedible” to be more probable given
se than given sg. We seek to generate such pairs
adversarially, meaning that, in the example above,
we want to ensure that the model generally asso-
ciates “edible” with “apple” and thus performing
correctly on se requires using context to override
this prior association.

Our five-step procedure is summarized in Table
1. First (§2.2), given a model and a target noun, we
identify the model’s generic associations (or just
generics), i.e., the characteristics that the model
tends to associate with the noun in a generic con-
text. For example, given a target noun “apple”,
we might identify “edible” as one such associa-
tion. Second (§2.3), crowd workers are asked to
provide contrasting characteristics (or exceptions)
that could plausibly describe the noun. For exam-
ple, workers might provide “inedible” or “plastic”
as characteristics that contrast with “edible” in the
context of “apple”. Third (§2.4), we perform an
adversarial post-processing step in which we filter
out worker-provided exceptions that the model as-
sociates with the target more strongly than the orig-
inal generic. That is, if a worker provides the char-
acteristic “poison” and it turns out that the model
associates “poison” with “apple” more strongly
than it associates “edible” with “apple”, we would
filter “poison” out of our list of exceptions. Fourth
(§2.5), we crowdsource premise pairs that would
ideally effect the relative probability of the generic
characteristic vs. the exception characteristic, such
as those shown in sg and se above. Finally (§2.6),
the schemas are validated by human annotators, af-
ter which we filter out annotations that are trivial or
ambiguous. Using this five-step procedure, we con-
struct the WINOVENTIBERT LARGE challenge set of
2,176 sentence pairs.1

1Available at:
http://commonsense-exception.github.io.

http://http://commonsense-exception.github.io
http://http://commonsense-exception.github.io
http://commonsense-exception.github.io
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Prompt pairs Generic/Exception Outcomes
sg = Regina screamed when she picked up the pan. The pan is . hot / cold
se = Regina shivered when she picked up the pan. The pan is . hot / cold
sg = Tonight Mike’s pets would be happy. The pet food is . available / unavailable
se = Tonight Mike’s pets would be hungry. The pet food is . available / unavailable

Table 2: Examples of our schemas. Each prompt contains a premise with an underlined special word (first
sentence) and an outcome sentence. sg = generic prompt. se = exception prompt. All prompts and excep-
tion outcomes are crowdsourced, whereas generic outcomes are generic associations identified in some MLM
(BERTLARGE, in our paper). Correct answers are in bold.

We draw our target nouns from the THINGS
dataset (Hebart et al., 2019) which consists of 1,854
concepts from 27 semantic categories. All of our
crowdsourcing tasks are run on Surge (surgehq.
ai), a high-quality crowdsourcing platform similar
to Amazon Mechanical Turk. For the exception
and premise generation stages (§2.3 and §2.5), we
recruited 100 workers through a qualification task
that required the workers to walk through the entire
WINOVENTI pipeline. The validation annotation
(§2.6) could be performed by anyone on the Surge
platform. The pay per response for the crowdsourc-
ing stages is as follows, chosen based on difficulty
and time taken to complete the task: (1) exception
generation (§2.3): $0.1, (2) premise generation
(§2.5): $0.3, (3) challenge set validation (§2.6):
$0.2, and (4) human performance: $0.03.

2.2 Step 1: Identifying Generic Associations

Given a set of target nouns, our first step is to find a
set of generic associations which models associate
with the noun regardless of context. To do this,
we focus on the widely-used BERTLARGE model
(Devlin et al., 2018), specifically the HuggingFace
cased, whole word masking implementation (24-
layer, 1024 hidden dimension, 16 attention heads,
336M parameters). We base our procedure off of
the insight from Ettinger (2020), which demon-
strated BERT’s insensitivity to negation. For exam-
ple, given the contexts “A robin is (not) a [MASK],”
BERT’s top two predictions would share {bird,
robin} in common, or given the contexts “A daisy
is (not) a [MASK],” BERT’s top three predictions
would share {daisy, rose, flower} in common. Our
experiments show that this behavior holds consis-
tent for other MLMs such as RoBERTa (Liu et al.,
2019), ALBERT (Lan et al., 2019), Longformer
(Beltagy et al., 2020), SqueezeBERT (Iandola et al.,
2020), and MobileBERT (Sun et al., 2020). Thus,
to identify context-invariant associations, we feed

in both affirmative and negated templates2 of the
form “The [ENTITY] is (not) [MASK]”. We then
define the models generic associations to be the
set of words that are in common between the top-k
predictions in the affirmative context and the top-k
predictions in the negative context. We experiment
with k ∈ {1, 3, 5, 8}. Table 3 shows generic asso-
ciations generated for BERTLARGE in this way for
different values of k.

k Generic Associations for BERTLARGE
1 desk→ empty, tarantula→ poisonous,

couch→ comfortable, syrup→ sweet,
honey→ sweet, compass→ accurate

3 desk→ there, tarantula→ edible,
couch→ empty, syrup→ bitter,
honey→ good, compass→ true

5 desk→ full, tarantula→ {female, male},
couch→ warm, syrup→ edible
honey→ edible, compass→ right

8 desk→ {mine, clean}, tarantula→ small
couch→ {clean, big}, syrup→ orange,
honey→ {delicious, there, honey}
compass→ wrong

Table 3: Examples of BERTLARGE generic associations
for different values of k. Generic associations are cu-
mulative across different k values (e.g., in the end, we
have compass→ { accurate, true, right, wrong }).

How similar are associations across models?
Since our dataset is constructed in particular to
be adversarial against BERTLARGE, it is relevant to
ask whether such a dataset will be equally adver-
sarial against all models in the BERT family. To
quantify whether models in the BERT family (de-
scribed in §3.2) differ in the generic associations

2We use a simple set S of two templates that
differ in the ending punctuation (S = {“The
[ENTITY] is [MASK].’’, ‘‘The [ENTITY]
is [MASK],’’}).

surgehq.ai
surgehq.ai
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Model name k = 1 k = 3 k = 5
BERTBASE 0.59 0.26 0.17
BERTLARGE 1 1 1
RoBERTaSMALL 0.61 0.2 0.11
RoBERTaLARGE 0.57 0.19 0.12
DistilRoBERTa 0.53 0.15 0.08
DistilBERT 0.57 0.18 0.12
SqueezeBERT 0.6 0.23 0.13
MobileBERT 0.65 0.28 0.16
ALBERTBASE 0.42 0.07 0.04
ALBERTLARGE 0.51 0.1 0.07
ALBERTXLARGE 0.59 0.18 0.08
ALBERTXXLARGE 0.48 0.13 0.07

Table 4: Jaccard similarity of Generic Associations
made by models with respect to BERTLARGE. The
closer to 1, the more similar.

identified using this procedure, we compute the
Jaccard similarity–i.e., |A∩B|

|A∪B| , with A and B being
the set of associations made by two models. Table
4 shows the results for k = 1, 3, and 5. BERTBASE
and BERTLARGE have the highest similarity (with
a mean Jaccard score of 0.72). Most other models
only share roughly half of the generic associations
with another model. As k increases, generic associ-
ations start to differ across models (signified by a
decrease in the Jaccard similarity score). This sig-
nifies that models differ significantly in the generic
associations that they make.

Qualitatively, associations made by BERT-
family, RoBERTa-family and other models differ
from one another. While the evaluated RoBERTa-
family models display a slight tendency to asso-
ciate the words “empty”, “broken”, “dead” with
many nouns, the BERT-family models tend to
make other associations such as “used”, and “edi-
ble”. ALBERT models, on the other hand, make
quite different associations from all other mod-
els, such as “adjustable”, “gone”, “a”, and “cov-
ered” (with a full 41% of the associations made by
ALBERTXXLARGE being “adjustable”).

As we base this study on the associations made
by BERTLARGE, future work is to be done to extract
the different associations made by other MLMs to
pose a harder and richer set of challenges for those
models.

2.3 Step 2: Crowdsourcing Exceptions to
Generic Associations

Given the identified associative biases, we then use
crowdsourcing to find alternative characteristics
that can be true of the noun, but are perhaps less
stereotypically associated (e.g., “apples” can be

“inedible” if, for example, they are made of plastic,
or are poisoned). Workers are given statements of
the form “The [NOUN] is [PROPERTY]” where
[PROPERTY] is one of the generic associations
collected as described above (e.g., “The apple is
edible”), and then is asked to provide up to three
adjectives that would describe [NOUN] in the case
where it is not [PROPERTY] (e.g., in the case
that the “apple” is not “edible”). To increase the
quality of tasks presented to workers in later stages,
we also ask workers in this stage whether or not
a presented statement makes sense, and filter out
any sentences which workers flag as nonsensical.
Of the noun-property associations generated in our
first step, 10.45% are filtered out in this step.

The model-generated associative pairs can be
noisy. Particularly, we note that as we increase k,
the model becomes more likely to generate non-
sense pairs (e.g., glass → glass, dart → legal,
triangle → circular), and that the stereotypical
strength of association decreases (as shown in Ta-
ble 3). Thus, to increase the quality of the final
challenge set and minimize workers’ confusion,
our pipeline uses two main criteria to select which
association pairs to present to workers. First, as-
sociations are selected in an increasing order of k,
meaning we would include all associations at k = 1
first, and then those at k = 3, and so on. Second,
the templated statements presented to workers are
ranked according to perplexity scores assigned to
them by a unidirectional language model. For each
k of interest, we identify the inflection point in the
perplexity score, and only retain samples for which
the perplexity is below this point. At the end when
we have gathered more samples than we plan to
post, we perform a final round of inflection point
identification and retention. This leaves us with
1990 entity-association pairs.

To construct WINOVENTIBERT LARGE, we se-
lected 1990 entity-bias pairs to present to work-
ers (331 pairs were of 1-associative biases, 780 of
3-associative biases, 825 of 5-associative biases,
and 54 of 8-associative biases). 28 workers partici-
pated in this stage, and for each task workers were
paid $0.1. At the end, we received 2, 994 valid
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exception annotations from crowd workers.

2.4 Step 3: Adversarial Filtering

The goal of adversarial filtering is to make sure
that a model clearly favors the generic association
with a target noun (identified by an MLM) over an
exception association (crowdsourced) without any
additionally introduced context. A triplet of (Target
Noun, Generic Association, Exception Association)
passes our adversarial filtering stage if the proba-
bility that the model associates the Generic Asso-
ciation with the Target Noun (through statements
of template “The [NOUN] is ”) is higher than
that which the model associates with the Exception
Association.

This filtering is adversarial in that, by making
sure that a model innately favors one association
(e.g., edible) with a target noun (e.g., apple) over
another (e.g., inedible), the model has to demon-
strate a strong enough sensitivity to context to se-
lect the other association over the one that it in-
nately prefers (e.g., when presented with the infor-
mation that the apple is rotten).

In the construction of WINOVENTIBERT LARGE,
after adversarially filtering using BERTLARGE, we
retained 2, 745 (Target Noun, Generic Association,
Exception Association) triplets. Some examples of
triplets that were filtered out (in the same format)
are: (stair, long, short), or (mug, full, empty).

2.5 Step 4: Crowdsourcing Premises

As a result of Step 3, we have a set of (noun, generic
associations, exception associations) triplets that
have met our adversarial filtering criteria. We then
ask workers to create a minimal pair of premise
sentences (sg/se) differing by exactly one word
(wg/we) which differ in whether the generic out-
come (og) or the exception outcome (oe) is the most
probable continuation. For example, given the
triplet (“apple”, “edible”, “inedible”), our sen-
tence pair might be sg =“the apple is sweet and
se =“the apple is rotten. To minimize the cogni-
tive load on crowdworkers while still communicat-
ing these requirements, we provided examples of
two good and two bad premise pairs with a brief ex-
planation each of why each was good/bad, covering
all the requirements above.3 We also encouraged
workers to be creative and provide premises that
have diverse sentence structures. In total, 2, 745

3Our exact instructions and examples given to workers are
provided in Appendix A.2

premise pairs were collected. Table 5 shows several
examples of contexts generated in this way.

Crowdsourced Premises
Given: The mail is [anonymous/identifiable].
Annotation: I received a letter in the mail
from a (stranger/friend).

Given: The pill is [safe/unsafe].
Annotation: You will feel (better/worse) if
you take the pill.

Given: The paper bag is [empty/full].
Annotation: I took a (folded/heavy) bag to
the store.

Given: The timer is [accurate/inaccurate].
Annotation: Jim was (early/late) to work
of his timer.

Given: The bed is [comfortable/uncomfortable].
Annotation: Lola slept [soundly/miserably].

Table 5: Premise annotations collected given a target
noun and the identified generic/exception associations,
combined into a natural language sentence of format
“The is ” presented to workers.

2.6 Step 5: Challenge Set Validation
We evaluate each sentence pair using two criteria.
First, is it the case that the contexts differentiate the
probabilities of og and oe such that og only makes
sense given sg and oe only makes sense given se.
E.g., given “Matthew says that the apple is rotten.
The apple is [MASK]”, can edible be a sensible
answer)? Second, we ensure that the special words
are not synonymous with the outcomes, i.e., that
wg and og are not synonyms, nor are we and oe.
If the majority of workers (out of three) judge the
sentence pairs to pass the above criteria, the pair
is deemed valid. Criterion 1 is to ensure that the
outcomes are unambiguous to humans, while crite-
rion 2 is to ensure that synonymy can not be used
to trivially find the correct answer. For example,
criterion 1 filtered out prompts such as “Mary made
popsicles out of vitamins. The popsicle is [MASK].”
where both the choices (edible / nutritious) could
apply. Criterion 2 filtered out prompts like “The
doctor used a loaded test tube. The test tube is
[MASK].” where the correct answer (filled/hollow)
could easily be selected using word association.
Of the 2, 678 prompt pairs posted for evaluation,
502 were filtered out for failing at least one of the
two aforementioned criteria, leaving us with the
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final challenge set of 2, 176 prompt pairs (4, 352
prompts in total).

2.7 WinoVenti Challenge Set

To summarize, the final WINOVENTIBERT LARGE
challenge set consists of 2, 176 prompt pairs
(4, 352 challenge prompts in total) about 978 dis-
tinct entities. Each entity has at most 5 generic
associations, for a total of 186 distinct generic
associations identified by BERTLARGE across all
entities. The length of premises are on average
8 words. Using SpaCy’s Part of Speech tagger,
we identified that the special words (wg and we)
across different premises are predominantly ad-
jectives (apprx. 34%), nouns (apprx. 30.3%),
and verbs (apprx. 22.4%), with the presence of
other parts of speech such as adverbs, adpositions,
numbers, determiners, proper nouns, or pronouns.
Approximately 54.5% of the premises have the
special words in the last third, 28.4% in the mid-
dle third, and the rest 16.9% in the first third of
the premise. The challenge set is available at
http://commonsense-exception.github.io/.

3 Experiments

3.1 Task Definition

The task is defined as: given a pair of sentences
(sg, se) with the format in Table 2, and the pair of
single-word candidate outcomes (og, oe), does the
model correctly rank og as more probable than oe
given sg (general test), and, symmetrically, rank oe
as more probable than og given se (exception test).
An MLM’s performance is reported as the percent-
age of sentences for which the language model
successfully gives the correct answer a higher prob-
ability of filling in the blank than the incorrect
answer. Each model is evaluated on three dif-
ferent subsets of the full WINOVENTIBERT LARGE
dataset, as follows: All refers simply to the en-
tire WINOVENTIBERT LARGE challenge set (which
is only adversarially filtered using BERTLARGE);
Individual refers to a model-specific subset of
WINOVENTIBERT LARGE, specifically those pairs
which result after additionally model-specific ad-
versarial filtering; Intersection refers to the set of
188 prompts (94 each for the general test and the
exception test) that result when we take the intersec-
tion of each of the model-specific subsets generated
described in Individual. Note that both Individual
and Intersection reflect the performance of models
in an adversarial setting, and we do not expect these

subsets to show meaningfully different results. We
include Intersection simply so that we can compare
all models on a fixed test set in an apples-to-apples
setting, since the Individual subsets will vary from
one model to the next.

3.2 Models

We study the performance of the following pre-
trained models (HuggingFace implementation) on
our WINOVENTIBERT LARGE challenge set:

BERT-family We used BERTBASE (cased) and
BERTLARGE (cased, trained with a whole word
masked language modeling objective) models (De-
vlin et al., 2018). We also evaluated DistilBERT
(Sanh et al., 2019) (cased), which has 40% less
parameters than BERT while still performing al-
most as good as the original model. MobileBERT
(Sun et al., 2020), similarly seeking to compress
and accelerate the BERT model, is also included
in our experiments (uncased). Additionally, our
experiments also evaluated SqueezeBERT (Iandola
et al., 2020) (uncased), which has a similar bidi-
rectional transformer architecture like BERT, but
uses grouped convolutions instead of certain fully-
connected layers.

RoBERTa-family Our experiments also evalu-
ate RoBERTaBASE and RoBERTaLARGE (Liu et al.,
2019) versions that were trained on a masked mod-
eling objective. RoBERTa build on BERT, differing
in hyperparameter choices and pre-training objec-
tive. We also used DistilRoBERTa (Sanh et al.,
2019), which follows the same training and distilla-
tion process as DistilBERT, but based on RoBERTa
instead.

ALBERT-family We additionally evaluated
ALBERT{BASE, LARGE, XLARGE, XXLARGE} models
(Lan et al., 2019). Built off of BERT, ALBERT
is designed to reduce the number of parameters
and perform better on downstream tasks with
multi-sentence inputs.

3.3 Finetuning

To evaluate how the models perform after be-
ing fine-tuned on datasets that contain excep-
tions in similar sentence structures to our chal-
lenge set, we fine-tuned a subset of the mod-
els in question (BERTBASE, RoBERTaBASE, Dis-
tilRoBERTa, SqueezeBERT, MobileBERT, and
ALBERTBASE) on two subsets of our dataset, the
half and the full exception train sets. The half

http://commonsense-exception.github.io/
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All Individual Intersection
Model name Generic Exceptn Generic Exceptn N Generic Exceptn

BERTBASE 83.0 23.1 89.3 16.7 1871 96.0 8.3
BERTLARGE 89.8 18.4 89.8 18.4 2176 97.4 11.4

RoBERTaBASE 79.5 27.2 87.3 18.8 1801 95.6 12.7
RoBERTaLARGE 81.3 29.2 91.1 18.9 994 95.6 17.5
DistilRoBERTa 78.3 26.5 91.1 13.1 948 93.9 14.0

DistilBERT 85.8 19.4 89.8 15.2 1628 94.8 12.7
SqueezeBERT 85.5 21.1 92.1 13.6 1823 97.4 7.9
MobileBERT 82.7 23.0 89.8 15.6 1856 96.9 7.0

ALBERTBASE 77.4 28.0 87.2 18.4 1525 94.3 11.0
ALBERTLARGE 79.6 26.8 87.6 18.9 1324 93.9 12.2

ALBERTXLARGE 80.7 31.9 89.0 23.5 777 96.1 13.1
ALBERTXXLARGE 77.7 32.4 80.0 32.4 959 83.8 31.9

Human performance 91.1 90.2 - - - - -

Table 6: Models’ performance on our generic and exception prompts. Generic tests evaluate whether, given
a generic prompt, the model would rank the generic outcome og higher than the exception oe). Exceptn tests
similarly check if the exception outcome oe is ranked higher than the generic og given an exception context.

exception set is created by selecting half of the
WINOVENTIBERT LARGE challenge set (2176 out of
4352 schemas). 50% of the training schemas (1088
out of 2176) are selected to be generic schemas,
and the rest are exception schemas. With this con-
figuration, models are fine-tuned on both generic
and exception schemas, and are sequentially evalu-
ated on unseen challenges (with a similar distribu-
tion of 50% generic schemas and 50% exception).

With the full exception train set, models are fine-
tuned exclusively on exception schemas. From the
set of exception challenges (2176 schemas), we per-
formed a 80-20 train-test split to select the full ex-
ception train set. To evaluate models trained on the
full exception train set, in addition to evaluating the
model accuracy on the held out exceptions (20% -
435 of the 2176 exception schemas), we also eval-
uate the fine-tuned models’ on (1) all the generic
challenges (2176 schemas), and (2) on a test set
similar to the above where half of the schemas are
generic challenges and another half are unseen ex-
ception challenges (870 schemas). The different
test scenarios help us understand how finetuning
on exception challenges influences models’ perfor-
mance on not only unseen exception challenges,
but also on generic challenges.

3.4 Results and Analysis

Table 6 shows each model’s performance across
each data subset (All, Individual, and Intersection)
broken down by task (i.e., generic vs. exception

test). Across the board, models perform signifi-
cantly better on the generic tests than on the ex-
ception tests (where accuracies are well below the
random baseline of 50%). This provides strong ev-
idence that models do not truly encode “common
sense”, but rather simply recall generic associations
in a context-agnostic manner.

Looking closely at the results on the All subset,
we see that models’ performance on the generic
test is overall lower and the performance drop on
the exception test is less dramatic, compared to the
results on the Individual and Intersection subsets.
This trend is expected, since, after adversarial fil-
tering, each model is only evaluated on prompts
where the model is inherently (before being intro-
duced to any additional context) skewed towards
choosing the generic association as a description of
the target noun. Even so, the numbers on this All
set are informative: they emphasize that models’
apparent success at recalling “commonsense” asso-
ciations is likely largely driven by artifact. That is,
when assessed on a set of common sense inferences
that don’t necessarily involve words from the top
of a model’s distribution in a given context, perfor-
mance is quite poor. On inspection, we see that,
for models outside the BERT family, the poor per-
formance is often attributable to low probabilities
for both the generic and exception outcomes (og
and oe) in both contexts, meaning the difference
between the probabilities is often small. In other
words, these models don’t encode the same generic



2068

associations that BERTLARGE encodes and, more-
over, don’t encode much difference at all between
og and oe.

Error Analysis Looking closely at specific
prompts on which models succeed and fail reveals
some interesting trends. For each model, we look
at the top 20 sentences from the exception test on
which the model exhibited the largest errors, where
the size of the error is measured by the difference
in the probability that the model assigns to the in-
correct outcome (in this case og) compared to the
correct outcome (oe). For BERTLARGE, we find that
55% of these top 20 failures involve strong generic
associations (i.e., those generated with k = 1). A
full 65% are cases when og is “empty”, suggesting
that BERTLARGE prefers to assign high probabil-
ity to this word across all contexts (see §2.2). In
contrast, looking at the top 20 sentences on which
BERTLARGE performed best, we learn that only
one involves og =“empty”, and only four involve
strong generic associations (k = 1).

Performing similar analysis for the other BERT-
family models (BERTSMALL, DistilBERT, Mobile-
BERT, SqueezeBERT), we see that the major-
ity of the successes involve non-associative noun-
characteristic pairs (i.e., pairs where the characteris-
tic is not identified as a generic association with the
noun by our procedure described in Section 2.2).
For BERTSMALL and DistilBERT, 40% of their 20
most successful cases involved nouns for which
the models did not encode any generic associations.
For SqueezeBERT and MobileBERT, it is 55% and
60%, respectively. This may signify stronger a rela-
tionship between a model not identifying a generic
association with a target noun and that model being
sensitive to a change in context about that target
noun.

Fine-tuning Analysis The results of our fine-
tuning experiments are shown in Figure 1 (with
additional results in §A.1). We see that, in general,
fine-tuning models on a dataset that contains ex-
ceptions (where the challenge format remains the
same between the train and test sets) can increase
the performance on unseen exceptions, but does so
at the expense of performance on generic prompts.
Specifically, when we train on a mix of generic
and exception schemas (our half exception set), the
model improves only slightly in performance on
exceptions, and converges to the same trend as the
un-finetuned model: i.e., performance on generics

far exceeds that on exceptions. In contrast, when
we train on only exception schemas (our full ex-
ception set), the performance on unseen exception
challenges increases faster and more significantly,
but this increase is at the expense of the rapid de-
crease of performance on generic challenges.

This poor performance on exceptions (at the ex-
pense of their performance on generics), suggests
that the conceptual associations encoded by MLM
models is fairly shallow: even with finetuning, the
models are not able to differentiate these types of
context-specific associations in a way that allows
them to perform well on both types of inferences
simultaneously. Future work is needed to develop
models with different architectures or loss func-
tions that might be capable of encoding more nu-
anced conditional associations.

4 Related Work

Ettinger et al. (2017) bring up the fundamental
problem of NLP models ignoring rare language
phenomena, as they typically rely on independently
and identically distributed probably-approximately-
correct model of learning, and as they often use
overly simplistic loss functions. Complementary to
our project, Ettinger et al. (2017) encourage robust
error analysis of NLP systems through developing
challenges that are based on linguistic phenomena,
and that have a low barrier to entry.

Common sense and probing. NLP has been in-
terested in encoding commonsense relations for a
long time (Liu and Singh, 2004). Recent work has
shown how pre-trained LMs exhibit common sense
knowledge even before fine-tuning (Petroni et al.,
2019), and that they can be built and used to mine
more commonsense information (Bosselut et al.,
2016; Davison et al., 2019). While this signifies
how LMs encode some common sense and pro-
totypical properties of nouns (Weir et al., 2020),
many researchers are pointing out these models’
insensitivity to context (Ettinger, 2020; Ravichan-
der et al., 2020), which is antithetical to common
sense.

Challenge Sets Many existing challenge sets
have provided concrete frameworks to evaluate
models inference ability, through coreference res-
olution (notably Winograd Schema Challenge -
WSC (Levesque et al., 2012)) or pronoun resolution
(notably in PDP (Morgenstern et al., 2016)). In this
work, similar to the Winograd Schemas (Levesque
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Figure 1: Left: Fine-tuning BERTBASE on a dataset that contains both generics and exceptions results in a minimal
increase in performance on exceptions. Right: Fine-tuning BERTBASE on a dataset containing only exceptions
results in an increase in performance on exceptions, at the expense of the accuracy on generics.

et al., 2012), we also generate pairs with a simi-
lalr structure (pairs of premises that differ in one
word that would determine the answer). However,
while Winograd schemas are model-agnostic, our
approach factors in models’ behavior in the design
of schemas in order to guarantee models’ bias to-
wards one specific answer (for each prompt).

Sakaguchi et al. (2020) build the WINOGRANDE

adversarial challenge set through using language
models to detect and filter out schemas with
language-based biases that would trivialize the task
of picking the correct answer. WINOGRANDE aims
to minimize the chance of models getting the right
answers for the wrong reasons (through leveraging
simple lexical associations that are annotation ar-
tifacts by human annotators). Our key motivation,
meanwhile, is to adversarially leverage the biases
that models associate with entities to “trick” them
into choosing incorrect answers. Our work uses
adversarially constructed test sets to expose heuris-
tics that models use. This technique has been used
widely in probing/analysis work, e.g., (Glockner
et al., 2018; Naik et al., 2018; Jia and Liang, 2017;
Nie et al., 2019; McCoy et al., 2019). The idea of
improving models performance on “exceptions” to
“generalizations” also shares much in common with
work on bias and fairness in NLP (Rudinger et al.,
2018; Zhao et al., 2018, 2019).

Gardner et al. (2020) propose the development of
contrast sets, which can be developed by manually
perturbing existing datasets in small but meaning-
ful ways that would change the gold label. Our
work, in contrast, factor in models’ insensitive as-
sociations into the construction of challenges in
addition to a slight change in context that is lever-

aged by contrast sets. Kaushik et al. (2019) sim-
ilarly propose using counterfactually-augmented
data to make models more robust against spuri-
ous associations. Our work adds to this work by
demonstrating that fine-tuning on exception chal-
lenges can increase the performance of models on
tail cases at the expense of the performance on
generic prompts.

5 Conclusion

We present the WINOVENTI procedure, which
adversarially exploits generic associations in
masked language models to create model-specific
Winograd-style schemas. Using our constructed
WINOVENTIBERT LARGE challenge set, we test
whether MLMs can move beyond their naive as-
sociations to select the more likely outcomes de-
pending on the input context. We find a steep drop
in models’ performance on our challenges that re-
quire a sensitivity to context. We present evidence
that generic associations differ from one model
to another, highlighting the need for other model-
specific challenge sets that are tuned to associative
biases of models other than BERTLARGE, and to (2)
develop and analyze frameworks like WINOVENTI.
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Figure 3: Top Left: Exception Association Collection - Instructions. Top Right: Exception Association Collection
- Examples. Bottom Left: Premise Collection - Instructions. Bottom Right: Premise Collection - Examples.
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Figure 4: Top Left: Challenge Set Validation - Instructions. Top Right: Challenge Set Validation - Task Sample.
Bottom Left: Human Performance Collection - Instruction and Examples. Bottom Right: Human Performance
Collection - Task Sample.


