
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 210–218
August 1–6, 2021. ©2021 Association for Computational Linguistics

210

CoDesc: A Large Code–Description Parallel Dataset

Masum Hasan1∗, Tanveer Muttaqueen1∗, Abdullah Al Ishtiaq1

Kazi Sajeed Mehrab1, Md. Mahim Anjum Haque1, Tahmid Hasan1

Wasi Uddin Ahmad2, Anindya Iqbal1, Rifat Shahriyar1

1Bangladesh University of Engineering and Technology (BUET)
2University of California, Los Angeles

masum@ra.cse.buet.ac.bd, 1505002.tm@ugrad.cse.buet.ac.bd

rifat@cse.buet.ac.bd

Abstract

Translation between natural language and

source code can help software development

by enabling developers to comprehend, ideate,

search, and write computer programs in natu-

ral language. Despite growing interest from

the industry and the research community, this

task is often difficult due to the lack of

large standard datasets suitable for training

deep neural models, standard noise removal

methods, and evaluation benchmarks. This

leaves researchers to collect new small-scale

datasets, resulting in inconsistencies across

published works. In this study, we present

CoDesc - a large parallel dataset composed

of 4.2 million Java methods and natural lan-

guage descriptions. With extensive analysis,

we identify and remove prevailing noise pat-

terns from the dataset. We demonstrate the

proficiency of CoDesc in two complementary

tasks for code–description pairs: code summa-

rization and code search. We show that the

dataset helps improve code search by up to

22% and achieves the new state-of-the-art in

code summarization. Furthermore, we show

CoDesc’s effectiveness in pre-training–fine-

tuning setup, opening possibilities in building

pretrained language models for Java. To fa-

cilitate future research, we release the dataset,

a data processing tool, and a benchmark at

https://github.com/csebuetnlp/CoDesc.

1 Introduction

Neural models for natural language processing

have benefited from large datasets and standard

evaluation benchmarks (Wang et al., 2019b,a; Ra-

jpurkar et al., 2016; Hermann et al., 2015; Com-

monCrawl). However, the programming language

counterpart is lagging behind due to a lack in

such large datasets and benchmarks. To put this

into perspective, the original Transformer network

∗Equal contribution.

(Vaswani et al., 2017) was trained on WMT’14

English–German and English–French datasets (Bo-

jar et al., 2014) containing 4.5 million and 36 mil-

lion parallel sentences, respectively, whereas a sim-

ilar network that achieved state-of-the-art results

in source code summarization has been trained on

only 69 thousand code-description pairs (Ahmad

et al., 2020). We argue that the existing models

used for programming language tasks in the litera-

ture have a significant scope of improvement given

a large, good-quality dataset, and such a dataset

is the missing link for effectively applying deep

learning methods on programming languages.

In this work, we collect and release a large (4.2

million) Java source code - natural language (NL)

parallel dataset along with denoising methods and

baseline results. We apply our dataset to estab-

lished works in both training from scratch and pre-

training–fine-tuning setting and we demonstrate

a notable performance gain in both settings. We

gain 10% to 22% improvement over baseline code

search models using CoDesc, and attain perfor-

mances comparable to models having 8× more pa-

rameters. We achieve a new state-of-the-art BLEU

score of 45.89 in code summarization by pretrain-

ing a Transformer network with our dataset for

two epochs. With extensive empirical analysis, we

propose a set of noise removal techniques for the

source code and the NL descriptions in our dataset.

Our work brings together several datasets and

multiple tasks on the intersection of Natural Lan-

guage Processing (NLP) and Software Engineering

(SE), such as code summarization, code search

and code synthesis, and allows researchers to com-

pare their methods on the same benchmark. It also

opens the door for building large pretrained models

to jointly learn code and NL representations that

can be leveraged in downstream tasks that do not

have adequate data, such as, code refactoring, clone

detection, etc. as done by Feng et al. (2020).

https://github.com/csebuetnlp/CoDesc

211

Source #Projects
#Raw

data

#Clean

data

Code Description

#Unique

tokens

Avg

len
≤200

#Unique

tokens

Avg

len
≤50

CSN-Java N/A 542,991 490,169 284,214 140.41 83.42 168,507 25.14 89.42

DeepCom 9,714 588,108 424,028 306,422 128.35 84.04 91,933 17.80 94.76

FunCom 28,000 2,149,121 2,130,247 469,354 51.30 99.83 399,338 15.52 95.87

CONCODE 33,000 2,184,310 733,040 131,852 33.75 99.99 166,239 14.87 96.27

CSN-Py2Java N/A 456,000 434,032 414,018 163.78 72.32 223,277 57.11 68.69

CoDesc (All) N/A 5,920,530 4,211,516 1,128,909 77.97 93.53 813,078 21.04 92.28

Balanced train-valid-test split for CoDesc data

train - - 3,369,218 991,395 78.01 93.53 718,204 21.05 92.28

valid - - 421,149 269,435 77.73 93.51 188,145 21.08 92.26

test - - 421,149 269,318 77.88 93.55 187,230 20.97 92.33

Table 1: Statistics of CoDesc datasets and a balanced train-valid-test split. ≤200 and ≤50 indicates the percentage

(%) of data where source code and description are smaller than 200 and 50 tokens, respectively.

2 Related Works

Code-Description Parallel Datasets With the

advent of data-driven code search and code sum-

marization methods, several datasets are proposed

to facilitate research in code-NL parallel tasks.

Husain et al. (2019) introduced CODESEARCH-

NET (CSN), a benchmark for code search tech-

niques with 2.1 million code-NL parallel data in 6

programming languages, 6.4 million monolingual

code data, a leader-board, and baseline results with

5 code search techniques. CONCODE (Iyer et al.,

2018), DEEPCOM (Hu et al., 2018a), FunCom

(LeClair and McMillan, 2019) are some notable

dataset papers that released 2.18 million, 2.15 mil-

lion, and 0.59 million parallel data respectively.

Clement et al. (2020) released a parallel corpus of

26 million monolingual Python methods and 7.7

million method-docstring pairs. CoNaLa (Yin et al.,

2018) is a Python line by line natural language de-

scription dataset containing nearly 3k parallel data.

Code Search and Summarization CODE-NN

(Iyer et al., 2016) is a pioneering work in data-

driven code summarization. The CodeSearchNet

dataset paved the way for CodeBERT (Feng et al.,

2020), a pretrained BERT (Devlin et al., 2019)

model trained on CSN data with Masked Language

Modeling (MLM) (Devlin et al., 2019) and Re-

placed Token Detection (RTD) (Clark et al., 2020)

objective that achieved a high performance in the

CSN benchmark. Wei et al. (2019) proposed a dual

learning method that simultaneously trained code

summarization and code generation and improved

both of them using 60k parallel data. In the same

dataset, Ahmad et al. (2020) achieved state-of-the-

art results in source code summarization using a

Transformer network (Vaswani et al., 2017). Along

with the mentioned dataset, Clement et al. (2020)

presented PyMT5, a text to text transformer that no-

tably improved method generation and code sum-

marization. Ahmad et al. (2021) collected more

than 300 GB monolingual code and NL data, and

trained PLBART, a pretrained seq2seq model for

both program understanding and comprehension.

3 CoDesc Dataset

3.1 Data Sources

We collect our data from several sources and for-

mulate rules for data cleaning. 5 of the authors

spent 45-50 man-hours manually going over the

dataset to identify patterns of noises in different

data sources. Upon group discussion, common pat-

terns were identified and a noise removal method

was established. Details about these noise patterns

are provided in Appendix A.

One of the datasets used in CoDesc is CODE-

SEARCHNET (CSN)1 (Husain et al., 2019) - a

parallel method-description dataset for code search.

Furthermore, other datasets used are DeepCom2

(Hu et al., 2018a), CONCODE3 (Iyer et al., 2018),

FunCom4 (LeClair and McMillan, 2019) - datasets

created for code summarization. The CODE-

SEARCHNET dataset originally contained 6 pro-

gramming languages, from which the Java methods

are directly used in CoDesc, however, the Python

methods are used after being automatically trans-

lated to Java. We combine all aforementioned

datasets to create CoDesc. Appendix B shows a

1https://github.com/github/CodeSearchNet
2https://github.com/xing-hu/DeepCom
3https://github.com/sriniiyer/concode
4http://leclair.tech/data/funcom/

https://github.com/github/CodeSearchNet
https://github.com/xing-hu/DeepCom
https://github.com/sriniiyer/concode
http://leclair.tech/data/funcom/

212

sample code-description parallel data from each of

these datasets. Table 1 describes our data sources

and their characteristics in detail.

CSN Python to Java Translation To utilize

maximum possible data from the CSN CORPUS,

we translate the Python methods to Java using

TransCoder (Lachaux et al., 2020), a state-of-the-

art, neural source-to-source compiler. We modi-

fied and re-released the open-source implementa-

tion of TransCoder5, enabling it to translate data

in batches instead of one at a time, and resulting

in a 16X faster translation. Upon empirical inspec-

tion, we found that the converted Java codes are

human-readable and bear a strong resemblance to

the original Python code intent. The converted

codes seem correct to the human eye and their syn-

tax matches with Java syntax. However, a few cases

the transcompiler suffers are – converting to Java li-

brary methods, and converting from Python coding

conventions that does not have a Java equivalent

(e.g. use of SELF). These conversion errors, how-

ever, were not severe enough to affect our model to

learn the NL-source code mapping.

3.2 Data Cleaning and Noise Removal

We created an easy-to-use, parameterized data pro-

cessing tool for removing the different types of

noise that we observed in our dataset. From the

natural language descriptions, we remove symbols

and characters that do not carry a meaning in a nat-

ural language description, such as, comment tags

(e.g., //, /*, */), stray code characters (e.g.,

@, #, {, }, etc.), HTML and XML tags, non-

ASCII and escape characters, and some patterns

of autogenerated tags (e.g., @param, @return,

@throws, etc.). From source code, we remove

comments and the non-ASCII and escape charac-

ters. In previous studies, many meaningful data

are discarded due to having some noisy pattern-

s/symbols either in the code or description (Husain

et al., 2019; Iyer et al., 2018; LeClair and McMil-

lan, 2019). We identify and remove the noisy part

of the data points without excluding them from the

dataset to reduce data loss during preprocessing.

For both source code and NL description, we

split CamelCase and snake case code tokens into

subtokens (e.g., Camel Case, snake case) and sep-

arate linked alphabets and numbers (e.g., var0 to

var 0) (Ahmad et al., 2020; LeClair and McMillan,

5https://github.com/csebuetnlp/TransCoder

2019). After the aforementioned processing, we re-

move the data points where the source code is less

than 3 tokens, or the description contains less than

2 alphabets (Husain et al., 2019). We lowercase the

natural language as the case is not necessary for

describing codes. We release our data processing

tool along with the CoDesc dataset for applying the

dataset to diverse tasks.

3.3 Dataset Characteristics

After the previous steps, we are left with nearly 4.2

million Java method and description parallel data.

Table 1 presents the statistics characteristics of our

dataset. The combined CoDesc dataset consists of

more than one million unique tokens, which is sig-

nificantly larger than natural language vocabulary

(Chen et al., 2019). This can be partially attributed

to inseparable multi-words (e.g. ‘updateproduct-

variationlocalizeddeltaprice’) in our dataset. Hence,

we perform BPE (Sennrich et al., 2016) tokeniza-

tion in our preprocessing pipeline. We also see that

although the average token length of Java source

codes vary in the different dataset sources, the natu-

ral language descriptions have a relatively uniform

length. We create a balanced, deduplicated, and

representative train–valid–test dataset by splitting

individual source-dataset in 8:1:1 ratio (Table 1).

4 Experiments

We evaluate our code-description corpus in two

well-known complementary tasks: source code

summarization and natural language code search.

In this section, we demonstrate that models trained

on CoDesc bring about a noticeable improvement

over two established baselines in code search and

code summarization. Each benchmarking follows

a standard cleaning, preprocessing, and train-test

de-duplication process.

4.1 Natural Language Code Search

We use the code search models used by Husain

et al. (2019) that jointly trains a source code and an

NL encoder networks to minimize their encoded

vector distance (Figure. 1). We apply our dataset

on the CODESEARCHNET (CSN) (Husain et al.,

2019) – a well-studied benchmark in the semantic

code search literature. We train 5 different encoder

networks (Table. 2) with the CSN Java dataset,

and CoDesc respectively. We compare our results

with CodeBERT and RoBERTa (code) (Feng et al.,

2020), two pretrained models achieving state-of-

https://github.com/csebuetnlp/TransCoder

213

 Encoder

Encoder

 Distance

tok1
c
, … , tokn

c

tok1
q
, … , tokm

q

Code Embedding

Query Embedding

Code Tokens

Query Tokens

Figure 1: Code search model architecture; code and NL

(query) encoders jointly train to reduce their embedded

distance. During search, we select the code that is clos-

est to the query in their shared embedding space.

Model #Param
CSN test MRR

CSN-Java CoDesc

NBOW 11.6 M 0.589 0.683

RNN 12.6 M 0.582 0.679

Sel-attn 13.6 M 0.583 0.723

1D Conv 16.4 M 0.520 0.686

Conv self-attn 16.0 M 0.509 0.729

State-of-the-art models

RoBERTa (code) 125 M 0.721

CodeBERT 125 M 0.748

Table 2: Baseline models trained with default dataset

and CoDesc, along with, comparison with SoTA pre-

trained models in CSN Java test set. Training on

CoDesc outperforms training on CSN-Java only, and

it is comparable to SOTA with 8x fewer parameters.

the-art results in CSN Benchmark. They are trained

with a Masked Language Modeling (MLM) (De-

vlin et al., 2019) objective on 2.1 million bimodal

code-NL data, and 6.4 million unimodal data re-

leased with CODESEARCHNET.

Results We use Mean Reciprocal Rank (MRR)

– the commonly used evaluation metric for code

search (Husain et al., 2019; Sachdev et al., 2018;

Cambronero et al., 2019) as the evaluation criteria

for code search. Table 2 shows our results, along

with state-of-the-art models (Liu et al., 2019; Feng

et al., 2020) that have nearly 8-10 times more pa-

rameters than the baseline networks and a more

complex training objective. We achieve remark-

ably close performance with the state-of-the-art

models with much simpler and smaller networks.

4.2 Source Code Summarization

For this task, we follow the methodology proposed

by Ahmad et al. (2020). They used a seq2seq Trans-

former (Vaswani et al., 2017) network with 77M

parameters with relative positional encoding (Shaw

Methods BLEU METEOR ROUGE-L

Transformer 44.58 26.43 54.76

CoDesc pretrained 45.89 28.01 56.59

Table 3: Code summarization with Ahmad et al. (2020)

proposed Transformer network with and without pre-

training with CoDesc.

et al., 2018) and copying mechanism (See et al.,

2017) and achieved state-of-the-art results.

Data preparation Ahmad et al. (2020) used a

Java dataset released by Hu et al. (2018b) and pre-

processed by Wei et al. (2019) consisting of train-

ing, validation, and test datasets of size 69,708,

8,714, and 8,714 respectively. We refer to this

training data as train-small. We create a new

dataset CoDesc-train by combining train-small

with CoDesc. We replace all literals as Wei et al.

(2019) and tokenize the dataset using Character

BPE Tokenization (Sennrich et al., 2016) to create

the same size vocabulary as the previous works.

Training We train a Transformer model pro-

posed by Ahmad et al. (2020) with CoDesc-train

dataset. We use Adam optimizer with an initial

learning rate of 10−4, mini-batch size of 32, and

dropout rate 0.2, vocabulary size 50k for code

and 30k for NL. However, we use maximum in-

put length of 200 token instead of 150 based on

our observation of CoDesc dataset from Table 1.

Each epoch of the model took nearly 8 hours in

an NVIDIA V100 16GB GPU. In comparison, the

train-small dataset took 8.5 minutes only. For limi-

tation of computational resource, we saved the net-

work weights after training it with the large dataset

for two epochs, and to be consistent with the origi-

nal implementation, trained them further with the

train-small dataset for a maximum of 198 more

epochs. We perform an early stop if the valida-

tion performance does not improve for consecutive

20 epoch. The pretraining provides the network

parameters a more favorable initialization than ran-

dom, helping the network find better local minima.

Results Table 3 shows that our two epoch pre-

training with CoDesc significantly improves the

state-of-the-art code summarization methods in all

three evaluation metrics – BLEU (Papineni et al.,

2002), METEOR (Banerjee and Lavie, 2005), and

ROUGE-L (Lin, 2004). We observe that the pre-

trained model often generates more descriptive

summary even when it achieves lower BLEU score

(Fig. 2). We believe the model has more room for

214

public void makeImmutable(){

if(mutable){

if(results ! = null){

int length = results.size();

for(int i = NUM; i < length; i + +){

Result result = (Result)results.get(i); result.makeImmutable();

} results = Collections.unmodifiableList(results);

} mutable = BOOL; } }

Human written: makes the object immutable

Transformer prediction (BLEU: 1.0): makes the object immutable

CoDesc pretrained model prediction (BLEU: 0.12): if there are any object in the list then the object is not immutable

Figure 2: CoDesc pretrained model generates more descriptive summary, even in cases it achieves lower score.

Dataset
Raw

data

Clean

data
Inc. (%)

CSN (Java) 0.5870 0.6427 5.57

DeepCom 0.4677 0.6069 13.92

FunCom 0.5379 0.6366 9.87

CONCODE 0.5444 0.6234 7.90

CSN (Python2Java) 0.5081 0.5546 4.65

CoDesc (All) 0.5852 0.6826 9.74

Table 4: MRR of individual datasets (Section 3.1) be-

fore and after noise removal.

improvement with further pretraining and we wish

to validate this in future work.

4.3 Ablation & Analysis

To quantify the effect of individual data sources

and our noise removal methodology, we train each

dataset before and after applying our data cleaning

method using an NBOW model and test them in

the CSN benchmark using their released test set.

Although our collected data was already cleaned

by the respective authors, Table 4 shows that the

performance of every dataset improves drastically

after our noise removal. Interestingly, without our

extra layer of data cleaning, CoDesc dataset per-

forms worse than training with only CSN data al-

though being significantly larger. This shows the

importance of a standard cleaning and processing

method. Moreover, CSN (Java) have the highest

accuracy, which can be attributed to the fact that

it came from the same distribution of data as the

evaluation and test sets, and hence contains similar

tokens and patterns (Husain et al., 2019). We can

see from Table 4 that the model trained with CSN

(Python2Java) achieves an MRR score of 0.5548.

Although this score is lower than other datasets, it

is still a good indication that the translated data is

helping the model is to learn NL-code association.

New Benchmark Results in Code Search We

provide a new set of benchmark results for CoDesc

dataset in natural language code search. We train,

validate, and test an NBOW, an RNN, and a Self-

attn code search network with the balanced train,

validation, and test data shown in Table 1. The

three models achieve MRR score of 0.812, 0.766,

and 0.839 respectively.

5 Discussion and Conclusion

In this work, we have accumulated CoDesc – a

large code-description parallel dataset and estab-

lished baseline results. CoDesc brings a noteworthy

improvement in two tasks: code search and code

summarization. We believe CoDesc will serve as

a base for future studies on code-description joint

tasks. We also show that automatically translated

source code from a source-to-source compiler can

be applied in a code-NL parallel task, suggesting

that, translating our Java dataset to other program-

ming languages can also be helpful.

The most striking finding of our study is that, by

training with 2X larger parallel data, we achieve

equivalent performance to models having 8X pa-

rameters (Feng et al., 2020) in code search. This

raises an interesting question: are we fully utilizing

the model capacities in code–description studies?

From our pretraining results in code summariza-

tion, it can be reasonably assumed that pretraining

with our large dataset the larger models will also

improve further. In future works, we wish to apply

new techniques for code search, code summariza-

tion, along with exploring our dataset for general-

purpose code synthesis, where the best models are

still struggling in accuracy (Wei et al., 2019; Yin

and Neubig, 2017).

Acknowledgement

We thank the ICT Division, Bangladesh for funding

the project and Intelligent Machines Limited for

providing the cloud support.

215

References

Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and
Kai-Wei Chang. 2020. A transformer-based ap-
proach for source code summarization. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 4998–5007,
Online. Association for Computational Linguistics.

Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and
Kai-Wei Chang. 2021. Unified pre-training for pro-
gram understanding and generation. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 2655–2668,
Online. Association for Computational Linguistics.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An automatic metric for MT evaluation with im-
proved correlation with human judgments. In Pro-
ceedings of the ACL Workshop on Intrinsic and Ex-
trinsic Evaluation Measures for Machine Transla-
tion and/or Summarization, pages 65–72, Ann Ar-
bor, Michigan. Association for Computational Lin-
guistics.

Ondřej Bojar, Christian Buck, Christian Federmann,
Barry Haddow, Philipp Koehn, Johannes Leveling,
Christof Monz, Pavel Pecina, Matt Post, Herve
Saint-Amand, Radu Soricut, Lucia Specia, and Aleš
Tamchyna. 2014. Findings of the 2014 workshop on
statistical machine translation. In Proceedings of the
Ninth Workshop on Statistical Machine Translation,
pages 12–58, Baltimore, Maryland, USA. Associa-
tion for Computational Linguistics.

Jose Cambronero, Hongyu Li, Seohyun Kim, Koushik
Sen, and Satish Chandra. 2019. When deep learn-
ing met code search. In Proceedings of the 2019
27th ACM Joint Meeting on European Software En-
gineering Conference and Symposium on the Foun-
dations of Software Engineering, ESEC/FSE 2019,
pages 964–974.

Wenhu Chen, Yu Su, Yilin Shen, Zhiyu Chen, Xifeng
Yan, and William Yang Wang. 2019. How large a
vocabulary does text classification need? a varia-
tional approach to vocabulary selection. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 3487–3497, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: Pre-
training text encoders as discriminators rather than
generators. In ICLR.

Colin Clement, Dawn Drain, Jonathan Timcheck,
Alexey Svyatkovskiy, and Neel Sundaresan. 2020.
PyMT5: multi-mode translation of natural language
and python code with transformers. In Proceed-
ings of the 2020 Conference on Empirical Methods

in Natural Language Processing (EMNLP), pages
9052–9065, Online. Association for Computational
Linguistics.

CommonCrawl. Common crawl. https://

commoncrawl.org/. Accessed: 2021-01-31.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
BERT: A pre-trained model for programming and
natural languages. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
1536–1547, Online. Association for Computational
Linguistics.

Karl Moritz Hermann, Tomáš Kočiský, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In Proceedings of the 28th Inter-
national Conference on Neural Information Process-
ing Systems (NIPS 2015), pages 1693–1701, Mon-
treal, Canada.

Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018a.
Deep code comment generation. In Proceedings
of the 26th Conference on Program Comprehension,
ICPC ’18, page 200–210.

Xing Hu, Ge Li, Xin Xia, David Lo, Shuai Lu, and Zhi
Jin. 2018b. Summarizing source code with trans-
ferred api knowledge. In Proceedings of the Twenty-
Seventh International Joint Conference on Artificial
Intelligence, IJCAI-18, pages 2269–2275. Interna-
tional Joint Conferences on Artificial Intelligence
Organization.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis
Allamanis, and Marc Brockschmidt. 2019. Code-
searchnet challenge: Evaluating the state of seman-
tic code search. arXiv preprint arXiv:1909.09436.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and
Luke Zettlemoyer. 2016. Summarizing source code
using a neural attention model. In Proceedings
of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2073–2083, Berlin, Germany. Association for
Computational Linguistics.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and
Luke Zettlemoyer. 2018. Mapping language to code
in programmatic context. In Proceedings of the
2018 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1643–1652, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

https://doi.org/10.18653/v1/2020.acl-main.449
https://doi.org/10.18653/v1/2020.acl-main.449
https://www.aclweb.org/anthology/2021.naacl-main.211
https://www.aclweb.org/anthology/2021.naacl-main.211
https://www.aclweb.org/anthology/W05-0909
https://www.aclweb.org/anthology/W05-0909
https://www.aclweb.org/anthology/W05-0909
https://doi.org/10.3115/v1/W14-3302
https://doi.org/10.3115/v1/W14-3302
https://doi.org/10.1145/3338906.3340458
https://doi.org/10.1145/3338906.3340458
https://doi.org/10.18653/v1/N19-1352
https://doi.org/10.18653/v1/N19-1352
https://doi.org/10.18653/v1/N19-1352
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://doi.org/10.18653/v1/2020.emnlp-main.728
https://doi.org/10.18653/v1/2020.emnlp-main.728
https://commoncrawl.org/
https://commoncrawl.org/
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://papers.nips.cc/paper/2015/file/afdec7005cc9f14302cd0474fd0f3c96-Paper.pdf
https://papers.nips.cc/paper/2015/file/afdec7005cc9f14302cd0474fd0f3c96-Paper.pdf
https://doi.org/10.1145/3196321.3196334
https://doi.org/10.24963/ijcai.2018/314
https://doi.org/10.24963/ijcai.2018/314
https://arxiv.org/abs/1909.09436
https://arxiv.org/abs/1909.09436
https://arxiv.org/abs/1909.09436
https://doi.org/10.18653/v1/P16-1195
https://doi.org/10.18653/v1/P16-1195
https://doi.org/10.18653/v1/D18-1192
https://doi.org/10.18653/v1/D18-1192

216

Marie-Anne Lachaux, Baptiste Roziere, Lowik
Chanussot, and Guillaume Lample. 2020. Unsu-
pervised translation of programming languages. In
Proceedings of the 34th International Conference on
Neural Information Processing Systems (NeurIPS
2020).

Alexander LeClair and Collin McMillan. 2019. Rec-
ommendations for datasets for source code summa-
rization. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 3931–3937, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

C. Lopes, S. Bajracharya, J. Ossher, and P. Baldi. 2010.
UCI source code data sets.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Saksham Sachdev, Hongyu Li, Sifei Luan, Seohyun
Kim, Koushik Sen, and Satish Chandra. 2018. Re-
trieval on source code: a neural code search. In Pro-
ceedings of the 2nd ACM SIGPLAN International
Workshop on Machine Learning and Programming
Languages, MAPL 2018, page 31–41.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073–
1083, Vancouver, Canada. Association for Computa-
tional Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani.
2018. Self-attention with relative position represen-
tations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 464–468,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of the 31st International
Conference on Neural Information Processing Sys-
tems (NIPS 2017), page 6000–6010, Long Beach,
California, USA.

Alex Wang, Yada Pruksachatkun, Nikita Nangia,
Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel Bowman. 2019a. SuperGLUE: A
stickier benchmark for general-purpose language un-
derstanding systems. In Proceedings of the 33rd In-
ternational Conference on Neural Information Pro-
cessing Systems (NeurIPS 2019), pages 3266–3280,
Vancouver, Canada.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019b.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In 7th
International Conference on Learning Representa-
tions, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019. OpenReview.net.

Bolin Wei, Ge Li, Xin Xia, Zhiyi Fu, and Zhi Jin.
2019. Code generation as a dual task of code sum-
marization. In Proceedings of the 33rd International
Conference on Neural Information Processing Sys-
tems (NeurIPS 2019), pages 6563–6573, Vancouver,
Canada.

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan
Vasilescu, and Graham Neubig. 2018. Learning to
mine aligned code and natural language pairs from
stack overflow. In International Conference on Min-
ing Software Repositories, MSR, pages 476–486.
ACM.

Pengcheng Yin and Graham Neubig. 2017. A syntactic
neural model for general-purpose code generation.
In Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 440–450, Vancouver, Canada.
Association for Computational Linguistics.

https://proceedings.neurips.cc/paper/2020/file/ed23fbf18c2cd35f8c7f8de44f85c08d-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/ed23fbf18c2cd35f8c7f8de44f85c08d-Paper.pdf
https://doi.org/10.18653/v1/N19-1394
https://doi.org/10.18653/v1/N19-1394
https://doi.org/10.18653/v1/N19-1394
https://www.aclweb.org/anthology/W04-1013
https://www.aclweb.org/anthology/W04-1013
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
http://www.ics.uci.edu/~lopes/datasets/
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.1145/3211346.3211353
https://doi.org/10.1145/3211346.3211353
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/N18-2074
https://doi.org/10.18653/v1/N18-2074
https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://proceedings.neurips.cc/paper/2019/file/e52ad5c9f751f599492b4f087ed7ecfc-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/e52ad5c9f751f599492b4f087ed7ecfc-Paper.pdf
https://doi.org/https://doi.org/10.1145/3196398.3196408
https://doi.org/https://doi.org/10.1145/3196398.3196408
https://doi.org/https://doi.org/10.1145/3196398.3196408
https://doi.org/10.18653/v1/P17-1041
https://doi.org/10.18653/v1/P17-1041

217

Supplementary Material: Appendices

A Dataset Details

CodeSearchNet (CSN) Corpus is a code search

dataset for 6 programming languages (Husain

et al., 2019).6 Despite the authors’ effort for data

cleaning, in our observation, CSN CORPUS is

one of the noisiest. The dataset contains dupli-

cate descriptions, inseparable multi-words (e.g.,

updateproductvariationlocalizedde-

ltaprice, updatelocationinventory),

XML tags (e.g., <tt>, <soup>, <sub>),

non-English documentation, non-ASCII and

escape characters, unwanted symbols (e.g., @,

#, {, }), deprecated methods and descriptions,

comments inside code, annotations (e.g., @link,

@code, @inheritdoc) in description, etc.

Datapoints truncated by TransCoder during Python

to Java translation (total 27,471) are marked with a

special flag in our released corpus.

DeepCom Hu et al. (2018a) released a dataset

of 588,108 Java method and documentation pairs

collected from 9,714 GitHub projects for code sum-

marization7. Similar to CODESEARCHNET (Hu-

sain et al., 2019), they considered the first sentence

of a documentation as the summary of the method

as it typically describes the functionalities of Java

methods. They filter out empty and single world

descriptions and the setter, getter, constructors, and

test methods, since they are easy for a model to

summarize. In our manual analysis, we found

HTML tags (e.g. <tt>, <p>, <p class =

...> , ,), comment tags, annota-

tions, escape characters inside descriptions, empty

parentheses as descriptions, repetitive and non-

meaningful descriptions, comments inside source

code, etc. Despite the authors’ claim, we found

numerous test methods in the dataset, which were

mostly meaningful data.

CONCODE Iyer et al. (2018) released a dataset

named CONCODE, collected by mining nearly

33,00 GitHub repositories8. In their preprocessed

dataset, they replaced the names of the identifier

and method names with generic terms, (e.g., arg0,

loc0, function, etc.) and replaced all string

literals with constants. This created a discrepancy

with the other datasets, hence, we opted for their

6https://github.com/github/CodeSearchNet
7https://github.com/xing-hu/DeepCom
8https://github.com/sriniiyer/concode

unprocessed dataset rather than the processed ver-

sion. The unprocessed dataset released with CON-

CODE contained approximately 2.1 million Java

methods and lowercased Javadoc-style document

pairs. Upon duplicate removal, we were left with

733,878 datapoints.

Although some noises were present in this

dataset, we found this data to be least noisy in

manual observation. We find that because of lower

casing the documentations, some CamelCase to-

kens became inseparable. The dataset also con-

tained non-English comments with English alpha-

bets (mostly Italian). We found these documents

hard to identify and remove.

FunCom LeClair and McMillan (2019) released

a dataset of over 2.1 million pairs of Java methods

and one-sentence method descriptions from over

28k Java projects9. They collected this dataset by

filtering over 51 million Java methods from UCI

Source Code datasets (Lopes et al., 2010). In their

preprocessing step, LeClair and McMillan (2019)

removed all datapoints where the method is more

than 100 tokens long, or the method description is

over 13 tokens or below 3 tokens.

In our observation of this dataset, we found

method descriptions containing HTML tokens

(e.g. <tt>, annotations (e.g., @link, @param),

comment tokens, unwanted symbols, solely non-

alphabetic characters, etc. It also contained com-

ments inside methods, and a large portion of

the data were getter, setter, tester, and

toString methods.

B Sample Data

protected void hideTabs(){

if (getPageCount() <= 1) {

setPageText(0,"");

if (getContainer() instanceof

CTabFolder) {

((CTabFolder)getContainer())

.setTabHeight(1);

Point point =

getContainer().getSize();

getContainer().setSize(point.x,

point.y + 6);

}

}

}

Description: if there is just one page in the multi - page editor
part , this hides the single tab at the bottom. (DeepCom)

9http://leclair.tech/data/funcom/

https://github.com/github/CodeSearchNet
https://github.com/xing-hu/DeepCom
https://github.com/sriniiyer/concode
http://leclair.tech/data/funcom/

218

@Exported

public boolean isIdle() {

lock.readLock().lock();

try {

return workUnit == null &&

executable == null;

} finally {

lock.readLock().unlock();

}

}

Description: returns true if this executor is ready for action.
(CodeSearchNet)

public static void dbCommand(ParserArgs

args){

final Synergy synergy

=(Synergy)args.get("synergy");

if(synergy.reset){

synergy.resetDb();

synergy.update = true;

}

if(synergy.update){

synergy.updateDb();

}

}

Description: manages synergy db state (CodeSearchNet-
Python to Java)

Object getBean(String beanName){

if(null == beanName){

return null;

}

return

applicationContext.getBean(beanName);

}

Description: this method is used to retrieve a bean by its name.
note that this may result in new bean creation if the scope is
set to “prototype” in the bean configuration file. (CONCODE)

public void sort (boolean

transformChanged) {

if (list Size > 1){

if (tlist == null || tlist.length

!= list.length){

tlist = list.clone();

} else {

System.arraycopy(list, 0,

tlist, 0, list.length);

}

if (transform Changed) {

for(int i = 0; i < listSize;

i++) {

list[i]

.computeLastDistance(owner);

}

}

SortUtil.msort(tlist, list, 0,

list Size - 1, c);

}

}

Description: sorts the elements in the list acording to their
comparator. there are two reasons why lights should be
resorted. first, if the lights have moved, that means their

distance to the spatial changed. second, if the spatial itself
moved, it means the distance from it to the individual lights
might have changed. (FunCom)

