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Abstract

Because sign language is a visual language,
the translation of it into spoken language is
typically performed through an intermediate
representation called gloss notation. In sign
language, function words, such as particles
and determiners, are not explicitly expressed,
and there is little or no concept of morpho-
logical inflection in sign language. Therefore,
gloss notation does not include such linguis-
tic constructs. Because of these factors, we
argue that sign language translation is effec-
tively processed by taking advantage of the
similarities and differences between sign lan-
guage and its spoken counterpart. We thus
propose a pipeline translation method that
clearly focuses on the difference between spo-
ken Japanese and signed Japanese written in
gloss notation. Specifically, our method first
uses statistical machine translation (SMT) to
map glosses to corresponding spoken language
words. We then use three transformer-based
seq2seq models trained using a large out-of-
domain monolingual Japanese corpus to com-
plement postpositional particles and estimate
conjugations for the verbs, adjectives, and aux-
iliary verbs in the first translation. We ap-
ply the seq2seq models in sequence until the
translation converges. Our experimental re-
sults show that the proposed method performs
robustly on the low-resource corpus and is
+4.4/+4.9 points above the SMT baseline for
BLEU-3/4.

1 Introduction

It is essential to build a social infrastructure
for hearing-impaired and hearing communities
to share sufficient information so that they can
quickly obtain information necessary for daily life
and disasters and lead a safe and secure life. Sign
language used in deaf communities has differ-
ent vocabulary and grammar from spoken lan-
guage. There are two variations of sign language
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in Japan (Chonan, 2001): (1) Japanese Sign Lan-
guage (JSL) and (2) Manually Coded Japanese
(MCJ). JSL is often used by early signers, and
syntax, such as word order and language struc-
ture, is different from spoken Japanese. By con-
trast, the syntax of MCIJ is similar to that of spo-
ken Japanese in terms of word order. It is used
by late signers or acquired hearing-impaired peo-
ple. However, the two variations are said to be
used interchangeably and there is no clear bound-
ary between them. In this work, we consider an
intermediate between JSL and MCJ, and denote it
Signed Japanese (SJ) in the following discussion.

Translation from sign language to spoken lan-
guage is typically performed in two steps. First,
consecutive signs are recognized from a video sig-
nal and transformed into an intermediate represen-
tation called a gloss, then the gloss is translated
into a sentence in spoken language. Current state-
of-the-art sign language recognition and transla-
tion methods (Camgoz et al. 2020; Yin and Read
2020) require a large amount of data and pay lit-
tle attention to differences between sign language
and the corresponding spoken language. There-
fore, the success of these approaches relies heav-
ily on large paired corpora, and resource-poor sign
language studies, including SJ, cannot take ad-
vantage of such approaches. In sign language,
function words, such as pre-positional or post-
positional particles and determiners, do not tend to
be explicitly signed, and inflectional morphemes
associated with verbal predicates that express cat-
egories, such as tense, mood, and aspect, are not
manually signed, in general. For example, in SJ,
post-positional particles ‘BfiFi" are generally not
explicitly signed, and the signs associated with
verbal predicates are not conjugated, whereas in
Japanese, verbs, adjectives, and auxiliary verbs are
conjugated. Therefore, the gloss does not include
such language constructs.
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Although gloss notation is commonly used by
writing a series of spoken words that correspond
to each sign in capital letters, because of the lack
of sign language resources, its quality and size dif-
fer greatly according to the language (Bungeroth
et al., 2008). SJ signs are heavily polysemous and
their meaning is often context sensitive. Addition-
ally, there is no publicly available corpus for SJ
translation studies. Therefore, in this study, we
use an in-house corpus that uses our gloss notation
method. The details of the corpus and its notation
are described in Section 2.

To solve challenging problems, we propose a
novel pipeline method to translate from SJ written
in gloss to Japanese. In particular, we focus on the
linguistic differences between SJ and Japanese and
estimate the post-positional particles that are miss-
ing and the appropriate forms of morphological in-
flection of words. Our method assumes that the
ground truth gloss of the signed sentence is avail-
able. This assumption does not limit the availabil-
ity of the above two-step sign language translation
method. Our method first uses phrase-based statis-
tical machine translation to match the SJ gloss to
Japanese words. Then we refine the results fur-
ther using transformer-based seq2seq (Sutskever
et al., 2014) models, which are trained using a
large out-of-domain parallel corpus. Specifically,
we use three different seq2seq models (1) to com-
plement the post-positional particles, (2) to apply
morphological inflection by conjugating verbs, ad-
jectives, and auxiliary verbs, and (3) to re-estimate
the post-positional particles over the previous out-
put. We repeatedly apply these models sequen-
tially and adjust the translation results until they
converge.

The proposed method works robustly, even for
small training datasets, which are typically of the
order of thousands of pairs in a dataset, and the
results show that the state-of-the-art method is in-
ferior to the SMT baseline with the low-resource
setting. We found that iterative updates of trans-
lations are effective for improving the grammati-
cality and fluency of the translation output. Our
experimental results show that the proposed model
provides +4.4/4+4.9 higher translation performance
for BLEU3/BLEU4 scores compared with the
SMT baseline.

2 Materials

We use two corpora: one is a small in-house SJ and
Japanese parallel corpus, and the other is a large
out-of-domain Japanese monolingual corpus. We
describe the details of each corpus as follows.

2.1 SJ and Japanese parallel corpus

The locally organized in-house parallel corpus
contains 1,086 sentence pairs with >7.5K glosses
from a vocabulary of 655 words, and >11K
Japanese words from a vocabulary of >1.2K
words. The average length of a gloss sentence is
6.9 words, with a maximum length of 12 words
and minimum length of 2 words, and the aver-
age length of a Japanese sentence is 10.3 words,
with a maximum length of 21 words and mini-
mum length of 5 words. The corpus consists of
the ground truth gloss transcriptions of signs and
their translations to Japanese sentences. The sen-
tences are various spontaneous conversations that
seemingly took place at municipal offices, such
as asking for a certified copy of the resident reg-
ister, pension, and unemployment insurance. In
the corpus, a gloss word is written in the form
gN, where N corresponds to an arbitrary unique
number. We adopt this notation instead of using
Japanese words because glosses in SJ are heavily
polysemous and a sign maps to different Japanese
words depending on the context. Instead, we use
an auxiliary dictionary to map each gloss to spo-
ken words or phrases. This notation method also
helps the proposed method to select the appropri-
ate Japanese word or phrase within the phrase-
based statistical machine translation model that we
use in the study.

Because of the sparsity of the parallel corpus,
approximately 2.3% of the glosses are singletons,
so we add all gloss dictionary items as additional
parallel data to reduce OOV issues at test time.

2.2 Out-of-domain Japanese corpus

We use a subset of the Balanced Corpus of Con-
temporary Written Japanese ! as an out-of-domain
Japanese corpus to manually generate pseudo par-
allel corpora. The details of the corpus genera-
tion procedure are described in Section 3. To se-
lect the subsets, we use pattern matching to se-
lect sentences that end in a pattern such as [~
729 (question), ~ U E L7z, (admit), ~IZLWT

"https://pj.ninjal.ac.jp/corpus_center/becwijlen/
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G [2208] [220] [228] [217] [2496] null

S-pp-c & [2wvT] M b

£

Sippc [ER) [0] [ov] [

lemmatization

Sippic |G| [12] [ovT] M

7Z\»

52

remove
p.pos. particles

Sppic [E&] [PV [

[ (o] [

insert p.pos. particles (Initial estimate)

; conjugation

E (I would like to ask about pensions.)

insert p.pos. particles (Correction)

Gloss | Definition

g208 | &, 728 “year,for”

220 # B, EH “expense,money”
g28 725, DWW T “about,because”
gl7 | HH#, 23 “ask,meeting”

g496 | 95,% % “do”

g2 U720, BRL W, i & “want like”

]

Figure 1: Overall pipeline translation architecture from a gloss sequence G to a grammatical Japanese sequence
Stppic. The green and gray arrows indicate the translations by a statistical machine translation model and three
neural machine translation models, respectively. The table in the upper right corner shows an excerpt from the

gloss dictionary. (p.pos. = post-positional)

9, (ask), ~ \WE 9, (confirm), ~ UL £, (in-
tend), ~ L3 %, (desire)]. These patterns were
chosen so that the selected sentences are similar
to the target Japanese in the paired corpus. The
monolingual corpus contains >195K sentences
with >3.9M Japanese words from a vocabulary of
>70K Japanese words.

3 Methodology

The overall proposed pipeline translation system is
shown in Fig. 1. G represents a gloss sequence and
S represents a Japanese sequence. We define two
subscripts for S, that is, PP, which denotes ‘post-
positional particle,” and C', which denotes ‘conju-
gation,” with the prefix + or — for each subscript,
which denotes the existence or non-existence, re-
spectively, of post-positional particles and conju-
gation. The definition of each term is provided in
Table 1.

post-positional particles  conjugation
S_pp_c
Sipp-c YV
S_ppic v
Sipric YV v

Table 1: Definitions of terms for the variants of S

3.1 Translation method

The proposed pipeline translation consists of six
steps. Algorithm 1 shows the steps applied in se-
quence to gradually convert from G to Syppic,

which is the final translation of this algorithm. The
details of each step are as follows:

Step 0: Translate G into S_pp_¢

We use a phrase-based statistical machine transla-
tion (pbsmt) (Koehn et al., 2007) to translate G into
S_pp_c. In this step, we map each gloss phrase
to the appropriate Japanese phrases without con-
sidering the post-positional particles and conjuga-
tions of the output Japanese sequence.

Step 1: Translate S_pp_¢ into S.pp_¢

We use a transformer-based seq2seq model
(Vaswani et al., 2017) (s2s_ml) to translate
S_pp_¢c into Sipp_c. In this step, the
model estimates missing post-positional particles
in S_pp_c and inserts them to generate S.pp_c.

Step 2: Translate S, pp_¢ into S ppic

We use another transformer-based seq2seq model
(s2s_m?2) to translate Sy pp_¢ into S;ppic. In
this step, the model estimates the appropriate mor-
phological inflection or conjugated form for verbs,
adjectives, and auxiliary verbs in S; pp_¢ to gen-
erate Sy ppyc-

Step 3: Convert S, ppyc to S_ppic

In this step, we remove the previously estimated
post-positional particles in S ppic from Step 2
to generate S_pp4c.

Step 4: Translate S_pp, ¢ into S;ppi ¢

We use the other transformer-based seq2seq model
(s2s_m3) to translate S_ppc into Syppyc by
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re-estimating missing post-positional particles. In
Step 1, we estimated the post-positional particles
over a Japanese sequence in the canonical form
(S_pp_c); however, in the present step, we esti-
mate them over for the conjugated word sequence
(S—_pp+c). We assume that this will correct the
previous estimation using the conjugated form of
the word sequence obtained in the previous steps.

Step 5: Convert S;ppicto Sy pp_c

In this step, we transform Sy ppic to Sypp_c
by converting words in S ppyc to their canoni-
cal form. Steps 3, 4, 5, and 2 are repeated until

Algorithm 1 Translation of a sign gloss sequence
into a Japanese sentence

Input: G
Output: Sippic
Step0: G — S_pp_c
Step I: S_pp—c = St+pPP-C
Step 2: Sypp—c — StpPP+C
Sp're’u = (Z)
Snezt = S+PP+C
while Sprcv # Sneat do
Spreu - Snezt
Step 3: S+pp+c — SprJFc
Step4: S_ppyc = StpricC
Step 5: Sy pp+c — SypPP—cC
Step 2: Sipp-c = StpPP+C
Snezt = S+PP+C
end while
return Sycqt

the translation output converges or the number of
iterations reaches the maximum limit (10).

4 Training

4.1 Statistical machine translation model in
Step 0

We use Moses (Koehn et al., 2007) to train the
phrase-based statistical machine translation model
to translate from G to S_pp_¢ in Step 0. To train
the model, we use the parallel corpus and pre-
process the target Japanese sequences by delet-
ing post-positional particles, and convert conju-
gated words, such as verbs, adjectives, and aux-
iliary verbs, to their canonical forms using MeCab
2

Note that we leave any post-positional particles
untouched if gloss words corresponding to them
exist. For example, the Japanese word 7* ka which
is a post-positional particle bound to the end of an
interrogative sentence, has a corresponding gloss
word in SJ. The translation model is described by

>https://pypi.org/project/mecab-python3/

the following noisy-channel model to estimate the
best target Japanese word sentence s € S_pp_¢
for a source gloss sentence g € G as

Sest = argmaxs p(g|s)pram(s), (D)

where pr/(s) is a language model based on the
n-grams of S_pp_c. p(g|s) is decomposed into
a phrase-based formula using a phrase translation
table and phrase reordering model (Koehn et al.,
2007). For the language model, we use modified
3-gram Kneser—Ney smoothing.

4.2 Encoder-decoder translation models in
Steps 1, 2, and 4

For the seq2seq models used in Steps 1, 2, and 4 in
Section 3.1, we use a transformer-based encoder-
decoder model (Ott et al., 2019). For all models,
we use an encoder and decoder with an embed-
ding of size 512, FFN-embedding of size 2048,
and six layers with eight attention heads. We use
the Adam optimizer with label smoothing cross-
entropy loss with a smoothing factor of 0.1. We
set the initial learning rate to 5e-4 with a warmup
updates of 4,000 and use the inverse sqrt learning
rate scheduler. We set the maximum tokens in a
batch to 4K. We use tied embedding for the input
and output layers. We obtain the hyperparameters
from a non-exhaustive parameter search, and the
results are shown in Table 9 of the Appendix.

We randomly split the corpus into training, val-
idation, and test sets in an 8:1:1 ratio. For to-
kenization, we use byte pair encoding (Sennrich
et al., 2016), which is trained using the training
dataset. We set the number of operations to 10K
for each tokenization of the seq2seq models. For
the seq2seq model in Step 1, we pre-process the
out-of-domain monolingual corpus as follows:

e Source: preprocess Japanese sequences by
deleting post-positional particles and con-
verting all conjugated words, such as verbs,
adjectives, and auxiliary verbs, to their
canonical forms.

e Target: preprocess Japanese sequences by
leaving post-positional particles untouched
and converting all conjugated words, such as
verbs, adjectives, and auxiliary verbs, to their
canonical forms.

The pre-processed corpus becomes the pseudo-
parallel corpus to train the seq2seq model in Step
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1 to translate S_pp_¢ into Sy pp_c. The train-
ing corpora of the other seq2seq models, that is,
s2s_-m2 in Step 2 and s2s_m3 in Step 4, are sim-
ilarly preprocessed and independently trained us-
ing the pseudo-parallel corpus.

We observed that training the seq2seq model
in Step 2 took more than a few hundred epochs,
whereas training the seq2seq model in Steps 1 and
4 took less than 30 epochs. We used the models
with the lowest validation loss for the experiments.
The results on the test set demonstrated that the
BLEU4 scores were 74.20, 98.75, and 75.06 for
s2s.ml, s2s_m2, and s2s_m3, respectively. This
indicates that post-positional particle estimation is
more uncertain compared with the estimation of
morphological inflection.

S Experiments

To evaluate the proposed method, we conducted
100 experiments and for each test, we randomly
selected 10 samples from the parallel corpus for
testing and used the remaining samples to retrain
the statistical machine translation model in Step 0.
For each test, we finetuned the parameters of the
seq2seq model (s2s_ml, s2s_m2, s2s_m3) by the
training data and we used a beam size of 5 for de-
coding of the models. We averaged the 100 results
to calculate the metrics of the performance.

We denote the proposed method in Section
3.1 by SMT+lIterative_s2s and compared its per-
formance with the following baselines (naive,
LSTMs, and SMT), the variants of the proposed
method (SMT+I1step_s2s and SMT+2step_s2s)
and the transformer-based end-to-end Gloss2Text
(G2T) model proposed by Yin and Read (2020).
The followings are the brief explanations of each
model.

e naive: This baseline replaces each gloss
word with a Japanese word using the gloss
dictionary. If more than one Japanese word
is defined for a gloss, the first word is used.

e LSTM: This baseline uses encoder-decoder
LSTM with an attention mechanism (Bah-
danau et al., 2015) to directly translate G into
St pp+c. The model is trained using the par-
allel corpus without using the out-of-domain
corpus and is configured with several differ-
ent hyperparameter settings.

e SMT: This baseline uses only the statistical
machine translation model to directly trans-

late G into S;ppyc. This model is trained
using the parallel corpus and without using
the out-of-domain corpus.

e SMT+1step_s2s: This model is a variant of
the proposed model which first executes Step
0 of Algorithm 1 to translate G into S_pp_¢.
Then it uses another seq2seq model trained
using the out-of-domain corpus to directly
translate S_pp_¢ into Sy pprc. We com-
pared the performance of this model, which
jointly estimates post-positional particles and
conjugations, with the model that estimates
them separately using different models.

o SMT+2step_s2s: This model is another vari-
ant of the proposed model which performs
Steps 0-2, but does not iteratively update the
translation result as it does in Algorithm 1.
We examined how the iterative updates of the
result with SMT+Iterative_s2s contribute to
the performance compared with the model
without them.

For G2T, we changed the original hyperparame-
ters suggested by Yin and Read (2020) and found
that the following parameters were optimal us-
ing hyperparameter search on our parallel corpus.
Encoder and decoder: embed-size = 256, FFN-
embed-size = 1024, num-layer = 1, num-attention-
head = 4.

5.1 Results

Table 2 shows the results of the experiment. To
evaluate performance, we used the following met-
rics, BLEU-1/2/3/4 (Papineni et al., 2002), ME-
TEOR (Banerjee and Lavie, 2005), and word er-
ror rate (WER), and averaged the scores to ob-
tain the results. The results showed that the pro-
posed model (SMT+Iterative_s2s) outperformed
the other models. The poor performance of
the naive model indicates that the simple lookup
method using the gloss dictionary did not produce
successful results. LSTMs with different hyper-
parameters varying in the dimensions of the em-
bedding and the hidden layers (256, 512, 1024)
and the number of layers (1, 2) show the baseline
performances to directly translate G into S+ pp+c.
Among them, the LSTM with the dimensions of
the embedding and the hidden layers of 1024 and
the number of layers of 1 showed the best perfor-
mance. The best LSTM and the G2T were inferior
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embed hidden layers BLEUl1 BLEU2 BLEU3 BLEU4 METEOR WER
naive 0.184 0.049 0.007 0.002 0.139 0.801
256 256 1 0.628 0.538 0.453 0.365 0.623 0.419
512 512 1 0.692 0.608 0.527 0.442 0.688 0.349
LSTM 1024 1024 1 0.717 0.634 0.552 0.467 0.714 0.320
256 256 2 0.448 0.314 0.222 0.154 0.408 0.616
512 512 2 0.558 0.440 0.325 0.225 0.530 0.502
1024 1024 2 0.590 0.466 0.332 0.209 0.556 0.466
G2T (Yin and Read, 2020) 0.695 0.640 0.592 0.535 0.708 0.305
SMT 0.788 0.724 0.663 0.599 0.800 0.233
SMT+I1step_s2s 0.810 0.752 0.697 0.638 0.830 0.301
SMT+2step_s2s 0.811 0.756 0.701 0.642 0.829 0.245
SMT+Iterative_s2s 0.817 0.762 0.707 0.648 0.833 0.216

Table 2: Performance evaluations of naive, LSTMs, G2T (Yin and Read, 2020), SMT, SMT+lstep_s2s,
SMT+2step_s2s, and SMT+Iterative_s2s on BLEU1/2/3/41 and METEORT, and word error rate (WER) | by av-
eraging the scores from all experiments. The hyperparameters of LSTMs, the dimensions of the embedding and
hidden layers, and the number of layers, are specified in the columns of ‘embed’, ‘hidden’, and ‘layers’, respec-
tively. We use the same parameters for the encoder and the decoder of the LSTMs.

Model  Step  Source Target GS EP

pbsmt 0 G S_pp-c 380

s2s_ml 1 S_pp—c Sypp—c 7195 351

s2s.m2 2 Sippr—c  Sipryc 992 351

s2s_m3 4 Sfperc S+PP+C’ 86.9 36.1
Table 3: Error  propagation analysis of

SMT+Iterative_s2s. The score is the exact match
for the correct ratio (%) (GS = gold standard, EP =
error propagation).

to the SMT because there were insufficient sam-
ples to train the neural models with large capacity.
All the pipeline models that combined the SMT
and seq2seq models outperformed the models that
directly translate G into S;ppyc. This clearly
demonstrates the effectiveness of the pipeline ap-
proach. Table 8 in Appendix illustrates the trans-
lation samples at each step of SMT+Iterative_s2s.

We investigated whether adding the monolin-
gual Japanese corpus in 2.2 to train the target
language model improved the performance of the
SMT baseline. However, on the contrary, per-
formance was slightly degraded. @We believe
that this was because of a domain mismatch be-
tween the corpora. The statistical significance
test results confirmed that the performance of
SMT+Iterative_s2s was significantly better than
that of SMT, SMT+1step_s2s, and SMT+2step_s2s
(see Table 10 in the Appendix).

Table 3 shows the error propagation analysis of
SMT+Iterative_s2s. The score was measured us-
ing the exact match by counting the outputs that
exactly matched the references at each step. Col-
umn ‘GS’ represents the gold standard score when
using the ground truth input, and column ‘EP’ rep-

resents the score when using the output from the
previous pipeline stage as the input propagating
the errors. Clearly, a large portion of the error
originated from Step O when translating G into
S_pp_c. The GS score of s2s_m2 was much
higher than that of s2s_m1 and s2s_m3, which was
indicated by its higher BLEU score for the model
evaluation on the test set described in Section 4.
We verified that the EP score of s2s_m3 was 2.8%
greater than that of s2s_m2, thereby illustrating the
efficacy of the retrospective complement of post-
positional particles. Note that the EP score of
s2s.m3 was measured by allowing the output of
s2s_m?2 in the EP to be set to the input and remov-
ing all post-positional particles.

Table 4 shows the frequency of iterative up-
date counts by SMT+Iterative_s2s. Approximately
72% of the results converged at the first itera-
tion, and approximately 26% of the results con-
verged at the second iteration. Counts above 6
were achieved when the same phrase was repeat-
edly generated, which is a phenomenon known as
hallucination (Wang and Sennrich, 2020). If we
detected such an error, we removed the repeating
phrase to shorten the output.

5.2 Qualitative Evaluation

Table 5 shows the qualitative evaluations of the
results using the proposed model and the other
models with BLEU4, WER, and perplexity (PPL)
scores. PPL in the last column was measured
by the transformer-based language model that
was pretrained by using the 494M-word Japanese
Wikipedia.
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We observed that the results of SMT and G2T
had more post-positional particle selection er-
rors than the other pipeline models, and the re-
sults of SMT+1step_s2s had more verb conju-
gation errors than SMT+2step_s2s, which sug-
gest the efficacy of the independent estimation
of post-positional particles and conjugations. We
confirmed that the post-positional particle es-
timations using SMT+Iterative_s2s were either
more natural or less error-prone than those using
SMT+2step_s2s, which made the translation re-
sults more fluent.

Loop count  Freq.

723 (72.3%)
258 (25.8%)
4 (0.4%)
6 (0.6%)
1(0.1%)
2(0.2%)

> 6 (0.6%)

[ BN e R N O N S

Table 4: Frequency of the iteration counts of Algo-
rithm 1 until the translation output converged using
SMT+Iterative_s2s.

Table 6 shows the average perplexity scores of
the results of the SMT and pipeline models. While
the perplexities of the pipeline models were much
lower than that of SMT, the perplexity of the pro-
posed SMT+Iterative_s2s was not the lowest. This
result suggests that word-based perplexity is not
suitable for evaluating equally acceptable transla-
tion outputs.

6 Discussion

In Table 5, most of the outputs using
SMT+2step_s2s and SMT+Iterative_s2s were
grammatically acceptable Japanese sentences

with slight differences in the post-positional
particle selections. As shown in the second
and third examples in Table 5, the PPL scores
of SMT+2step_s2s were lower than those of
SMT+Iterative_s2s, but the BLEU4 and WER
scores of SMT+lIterative_s2s were better than that
of SMT+2step_s2s, even though the meanings
of the sentences were almost the same. By
contrast, the sentences of SMT+2step_s2s and
SMT+Iterative_s2s in the first and last examples
had different meanings, even though the PPL,
BLEU4, and WER scores indicated that the
results of SMT+Iterative_s2s were better than
those of SMT+2step_s2s. However, depending on

the context, the results of SMT+2step_s2s may be
more appropriate. The main cause of the ambigu-
ity issue is related to the information bottleneck
raised by Yin and Read (2020) regarding the gloss
notation of sign language. Currently, our parallel
corpus does not include any non-manual signals
(NMSs), such as facial expression, eye gaze,
mouth, and movement of the head and shoulders.
However, NMSs act as grammatical markings for
syntactic information (Valli et al. 2011; Koizumi
et al. 2002). NMSs are not expressed in sequence,
but simultaneously with manual signs, and their
subtleties make sign recognition and annotation
more difficult. Perhaps, this is one of the reasons
that most existing sign language corpora do not
or only contain partial NMS labels along with
glosses. As suggested by Yin and Read (2020),
the performance of G2T translation may not
impose an upper bound for sign-to-text translation
unless the gloss faithfully describes the signed
sentences. We are interested in investigating
whether incorporating visual features from signs
would improve the proposed G2T translation
method. Because of the limited space in this
paper, we leave this issue for future work.

Table 7 depicts examples of the translation er-
rors by SMT+Iterative_s2s categorized into gloss
word translation error, post-positional particle ex-
change, and conjugation exchange. As shown in
Table 3, a large portion of the translation errors
originated from gloss word translations. These er-
rors mostly occurred because of the incorrect se-
lection of Japanese wording for gloss phrases. For
instance, the phrase #% 51 hisaichi ‘disaster area’
in the reference of the 2nd example in Table 7,
which is expressed as a sequence of three glosses:
1} % ‘receive’, S8'# ‘disaster’, and 5 ‘area’,
was translated into the un-grammatical phrase, 52
\F T S ELFT ukete saigaibasho. It is because the
correct mapping from glosses to compound nouns
cannot be learned by the phrase-based SMT unless
they appear in the training set. The second major
source of translation errors was the post-positional
particle exchanges. These errors possibly change
the semantic from the reference as indicated in the
5th example of Table 7, RIFELHIZ A% ZFIE 4 2
1% “how to donate books to librray” v.s. [XZ
fE D AR % 8 5 Ji7% “how to give a book from the
library”. As we mentioned above, some of these
errors are difficult to handle because the system
output may be correct in another context. Trans-
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(D Input G 2467 g12 ¢77 BLEU4 WER PPL
Reference BoFHERL XS, 82.8
“I look for my child.” )
naive NS 0 0.714 1177314
G2T BEHL £9, 0.474 0.286 119.7
SMT FhFfft 2 L T £9, 0 0429 593
SMT+1step_s2s By £9, 0 0.429 11715.6
STM+2step_s2s NSRS 7 JUR 0.643 0.143  129.6
SMT+lterative_s2s  fA @ T % BEL £7, 1 0 82.8
(2) Input G 219 220 g87 g294 ¢20 g307 g202 g9 BLEU4 WER PPL
Ept OB AT LD £T»?
Reference ppm ; " 89.7
Will my medical expense be cheaper?
naive ER BE HY Al 8@ X\ kb » 0 0.75  56747.3
G2T Eg O A BHEIGIE R 9 0.551 0.167 138.1
SMT EEEOHCAHE O LZNIZRY £3 5 7 0.531 0.25 203.9
SMT+1step_s2s R DA B Z2W 25 907 0 0417 1223.0
STM-+2step_s2s EEEITACAEE RN L R 2T, 7 0.417 025 1072
SMT+teratives2s  [EH & O A A B ZZ B0 I 27 0.735  0.083 1124
(3) Input G 273 g475 52 g19 227 g151 g2 BLEU4 WER PPL
Reference WE 5 T L RS AR 2 D T2\ 1214
“I want to know medical support for disabilities.” ’
naive R & =5 B BIK 025 MLw 0 0.667 79281.5
G2T PR & ) R SR 2 D 1 0 121.4
SMT PR E A R SR 2 WD 20 1 0 1214
SMT+1step_s2s PR 2 Ml R S 2, 0.525 0.222  768.0
STM+2step_s2s fRiss 2 [l O B SR 2 D v, 0.658 0.111 627
SMT+terative_s2s B # [A1) EFRE 8k & WD 720, 1 0 121.4
(4) Input G 258 g860 g24 g8 ¢33 g9 BLEU4 WER PPL
Reference BT —LDMERE N T ETN? 155.8
“Can you provide information about elderly housing with care ?” ’
naive ZEANEEER WL TES H 0 0.667 4571.7
G2T BNB—L OBEHRIT VT £ 07 0.597 0.111 1483
SMT ENFEENDERZ W2 927 0.661 0.222 3207
SMT+1step_s2s EANF—LBERNZEITFD T2 0 0.333 9434
STM+2step_s2s ENF—LTEHREZ WVEEZT ET 2 ? 0.661 0.111 1992
SMT+terative_s2s H AN F—24 O IFR 2 WZ £5 0 2 1 0 155.8

Table 5: Sample translation results by naive, G2T, SMT, SMT+lstep_s2s, SMT+2step_s2s, and proposed
SMT+Iterative_s2s. All the results of SMT+Iterative_s2s were when the iterative update converged in the sec-

ond loop. PPL represents perplexity.

Average perplexity

SMT 934.47
SMT+1step-s2s 241.44
SMT+2step_s2s 248.01
SMT+lterative_s2s  269.92

Table 6: Average perplexity of translations us-
ing SMT, SMT+lIstep_s2s, SMT+l1step_s2s, and
SMT+Iterative_s2s measured by the transformer-based
language model trained on the 494M-word Japanese
Wikipedia.

lation errors relating to the conjugation exchange
rarely occurred, and even if they did, the impacts
were minimal.

7 Related works

Camgoz et al. (2018) proposed end-to-end sign
language translation in the framework of neu-
ral machine translation, allowing them to jointly
learn the spatial sign representation, underlying

language model, and mapping between sign and
spoken language using PHOENIX-Weather 2014T
(Camgoz et al., 2018) corpus. Their later work
(Camgoz et al., 2020) further improved the model
by introducing a transformer-based architecture
that jointly learns sign language recognition and
translation while being trainable in an end-to-end
manner using connectionist temporal classifica-
tion loss to bind the recognition and translation
problems into a single unified architecture.

In a similar research line, Yin and Read (2020)
proposed the G2T model using a transformer-
based seq2seq model, and evaluated the perfor-
mance on PHOENIX-Weather 2014T (Camgoz
et al., 2018) and ASLG-PC12 (Othman and Jemni,
2012) in various ways by changing the numbers of
encoder-decoder layers and embedding schemes.
All the end-to-end state-of-the-art sign language
translation methods rely on large datasets and
cannot be used for resource-poor datasets. The
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Reference System

Error type

ES5TNEHENCE £3 o 7

“How can I study abroad?”

WM DR YT4T & LIWTT,

“I would like to volunteer in the disaster area.’
KEITMA T Z2MEL TWVET 7

“What are you stockpiling in case of a disaster?”

RO —RIFERBHERTE 2927

“Can taxi fare be deducted from medical expenses?”
PR 12 R & A0 55 LR R BA T KEIW,
“Please tell me how to donate books to the library.”

HF 2T O Sk TE £

“Is it possible to register a seal with only the surname?”
A2 780 AT B RBRR &2 S 5 2 7

“Do you pay insurance premiums even if you have no income?”
fl i v R IE HY £ 7

Do you have any good information?

HKHIZ 72 T oMb & 2513 HD T2 7

“Is there a place where I can leave my child on holidays?”

WE 720

EDESICHETE ET 7

FFTKEBF 2 RS VF1T T L EVTT,
FEIZMA T EARBRELHY £ 27

Ry — W0 R R IE TE T 7
[HRE D A & WD Sk & A TLESW,
FIOE 8%k X °E £9 2 2

A DY 780 N AE RBRORE &2 $h5 D TS » 2

fil 28 &< WM HB DY £ 22

RH I T2 B 2 TEB LIB I HY £TH?

gloss word translation error
gloss word translation error
gloss word translation error
post-positional particle exchange
post-positional particle exchange
post-positional particle exchange
post-positional particle exchange
conjugation exchange

conjugation exchange

Table 7: Examples of the translation errors by SMT+Iterative_s2s are categorized into gloss word translation error,
post-positional particle exchange, and conjugation exchange. We highlight the wrong words or phrases in bold.

pipeline method that we proposed is related to
the transfer learning method proposed by Mo-
cialov et al. (2018). They proposed transfer learn-
ing to improve British Sign Language modeling
at a gloss level by fine-tuning or layer substitu-
tion on neural network models pre-trained on the
Penn Treebank dataset. Although the purpose of
their work was not to translate sign language, their
work is similar to ours in that it takes advantage
of linguistic commonality between resource-poor
sign language and its spoken language. Our ap-
proach to converting non-grammatical sentences
into grammatical sentences is related to previous
work on grammatical error correction (Imamura
et al. 2012; Liu et al. 2018; Oyama et al. 2013).
They used insert or replace operations to correct
particle or morphological inflection errors in a
monolithic model, and we believe that the pro-
posed seq2seq-based iterative method using mul-
tiple models can be used for similar tasks.

8 Conclusion

We proposed a pipeline machine translation
method from SJ to Japanese by assuming that the
gloss of the sign is provided. We focused on gram-
matical differences between SJ and Japanese, par-
ticularly post-positional particles and morpholog-
ical inflections, and proposed a pipeline model
by cascading the phrase-based statistical machine
translation and three transformer-based seq2seq
models, which effectively addressed the resource-
poor issue of the sign language corpus. The
statistical machine translation model first maps
each gloss phrase to a Japanese phrase, then three
seq2seq models pre-trained using the monolingual
corpus transform the initial translation by comple-
menting post-positional particles, and apply con-

jugations for verbs, auxiliary verbs, and adjectives.
Translation is repeated until the output converges.
We confirmed that the proposed method outper-
formed the SMT baseline by +4.4/4+4.9 points for
BLEU-3/4.
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Appendix

A Sample translations by SMT+Iterative s2s

Pipeline translation from G into S+ pp4c

g

S_pp_c
Sipp_cC
Sipric

26 2847 g71 g64 g84 g9
MEME &2 HD T 07

MEM I EZ 125D 927
MEME X EZITHD £ 57

“Where is the library ?”

g

S_pp_c
Sipp_cC
Sipric

225 g26 g27 g470

FHERE A B BN 95 9,
AR O WA O B 2 BV $5 £9 .

TS O A D Bk 2 BEVWL £9,

“Please subsidize the purchase of hearing aids.”

g

S_pp_c
Sipp_c
Sipric

2215 g555 g28 g181 g470
AbE FhiE DWTHZB 77

X5,

ABE D FHiE IZOWTHZXD TLKKETD,

AP D FHiEx I2OoWTHZ TLEI W,

“Please tell me about the procedure for hospitalization.”

Table 8: Examples of translation results at each pipeline step by SMT+Iterative_s2s. The words in red are the
complemented post-positional particles and the words in blue are the conjugated words from the underlined lemmas
above. (See the gloss definitions in Table 11. )

B Hyper-parameters tuning results

encoder & decoder s2s.ml  s2s.m2  s2s.m3
embed-dim  ffn-embed-dim layers attention-heads BLEU4 BLEU4 BLEU4
512 2048 6 8 74.20 98.75 75.06
256 1024 3 4 7399 96.84 74.88
128 512 2 2 70.75 98.26 71.58
64 256 1 1 56.33 94.84 61.70

Table 9: The results of hyperparameter tuning of the seq2seq models (s2s_ml, s2s_m2, and s2s_m3) used in Steps
1, 2, and 4 of Algorithm 1, respectively. The values are BLEU4 scores of the test samples extracted from the

parallel corpus.

C Statistical significance test results

BLEU3 BLEU4

SMT SMT+1step_s2s  SMT+2step_s2s SMT SMT+1step_s2s  SMT+2step_s2s
SMT+1step-s2s le-10%* 4e-06**
SMT+2step_s2s le-10**  0.164 le-10**  0.177
SMT+Iterative_s2s  1e-10**  0.003** 0.013* le-10%*  0.018* 0.049*

Table 10: Non-parametric bootstrap test results of BLEU3 and BLEU4 for SMT, SMT+1step_s2s, SMT+2step_s2s,
and SMT+Iterative_s2s. The values are the p-values. (‘*’ : p-value <0.05, “**’ : p-value <0.01)

D Snippets of gloss definitions
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gl2
gl51
g181
gl9

220
2202
g24
25
2258
226
g27
228
2294
2307
233

i, T8 “child, children”

M3, D5 “know”

# b5 “learn”

K& “medical”

L7=W, 8L W, #F & “want, like”

2, B4, H “expense, money”
25 “become”

1% “information”

AT “hearing aid”

£ A “old, elderly”

HEA “buy”

BhAk, 8%, #liBh “support, assistance”
7Zh 5, DT, DWT “because, about, in regard to”
£ $H “charge”

22\ “cheap”

TE 5, AlfE, £ A L\ “can, may”

T

B “ask, please”

#, B “man, people”

W, WA, 533 “to, about”
Ffi Z “procedure”

K, Fii “book, memo”

i “place”

fa], ¥ @, € “what, which, what”
FRE, 9 “disability, damage”
BT, B, [ “search, sightseeing”
W7z 72<, H 5 5 “receive, have”
»HbB,TY “be”

7% “building”

f£5 “housing”

B “self”

"7, BTz “yes/no, you”

Table 11: Definitions of glosses used in Tables 5 and 8.
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