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Abstract

Meta-learning has emerged as a trending tech-
nique to tackle few-shot text classification and
achieved state-of-the-art performance. How-
ever, existing solutions heavily rely on the ex-
ploitation of lexical features and their distri-
butional signatures on training data, while ne-
glecting to strengthen the model’s ability to
adapt to new tasks. In this paper, we pro-
pose a novel meta-learning framework inte-
grated with an adversarial domain adaptation
network, aiming to improve the adaptive abil-
ity of the model and generate high-quality text
embedding for new classes. Extensive ex-
periments are conducted on four benchmark
datasets and our method demonstrates clear su-
periority over the state-of-the-art models in all
the datasets. In particular, the accuracy of 1-
shot and 5-shot classification on the dataset
of 20 Newsgroups is boosted from 52.1% to
59.6%, and from 68.3% to 77.8%, respec-
tively1.

1 Introduction

Few-shot text classification (Yu et al., 2018; Geng
et al., 2019) is a task in which a model will be
adapted to predict new classes not seen in training.
For each of these new classes, we only have a few
labeled examples. To be specific, we are given lots
of training data with a set of classes Ytrain. After
training, our goal is to get accurate classification
results on the testing data with a set of new classes
Ytest, which is disjoint to Ytrain. Only a small la-
beled support set will be available in the testing

∗Corresponding author
1The source code of the paper is available at https://

github.com/hccngu/MLADA.

stage. If the support set contains K labeled exam-
ples for each of the N unique classes, we refer to
the task as a N-way K-shot classification.

Existing approaches for few-shot text classifica-
tion mainly fall into two categories: (1) transfer-
learning based methods (Howard and Ruder, 2018;
Pan et al., 2019; Gupta et al., 2020), which aim
to transfer knowledge learned from a task to a
new task or leverage general-domain pretraining
and fine-tuning techniques for few-shot classifi-
cation. (2) meta-learning based methods (Jamal
et al., 2018; Yu et al., 2018; Geng et al., 2019,
2020; Bao et al., 2020), which aim to learn generic
information (meta-knowledge) by recreating train-
ing episodes, so that it can classify new classes
through only a few labeled examples. Among these
methods, Bao et al. (2020) leveraged distributional
signatures (e.g. word frequency and information
entropy) to train a model within a meta-learning
framework, and achieved state-of-the-art perfor-
mance. However, the method pays more atten-
tion to statistical information and ignores other
implicit information such as correlation between
words. Furthermore, existing meta-learning meth-
ods heavily rely on the exploitation of lexical fea-
tures and their distributional signatures on training
data, while neglecting to strengthen the model’s
ability to adapt to new tasks.

In this paper, we propose an adversarial do-
main adaptation network to enhance meta-learning
framework, with the objective of improving the
model’s adaptive ability for new tasks in new do-
mains. We first utilize two neural networks compet-
ing against each other, separately playing the roles
of a domain discriminator and a meta-knowledge

https://github.com/hccngu/MLADA
https://github.com/hccngu/MLADA
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generator. The adversarial network is able to
strengthen the adaptability of the meta-learning
architecture. Moreover, we aggregate transferable
features generated by the meta-knowledge genera-
tor with sentence-specific features to produce high-
quality sentence embeddings. Finally, we utilize a
ridge regression classifier to obtain final classifica-
tion results. To the best of our knowledge, we are
the first to combine adversarial domain adaptation
with meta-learning for few-shot text classification.

We evaluate our model on four popular datasets
for few-shot text classification. Experimental re-
sults demonstrate that our method outperforms
state-of-the-art models in all datasets, for both in
1-shot and 5-shot classification tasks. Especially
on the 20 Newsgroups dataset, our model outper-
forms DS-FSL (Bao et al., 2020) by 7.5% in 1-shot
classification and 9.5% in 5-shot classification. In
addition, we conduct visualization analysis to ver-
ify the adaptability of our model and capability
to recognize important lexical features for unseen
classes.

2 Related Work

The mainstream approaches for few-shot text clas-
sification are based on meta-learning or transfer
learning. In this section, we first briefly introduce
the preliminary background of these two technolo-
gies, and then review how they are applied to sup-
port few-shot text classification.

Meta-learning Meta-learning, also known as
“learning to learn”, refers to improving the learn-
ing ability of a model through multiple training
episodes so that it can learn new tasks or adapt
to new environments quickly with a few training
examples. Existing approaches mainly fall into
two categories: (1) Optimization-based methods ,
including developing a meta-learner as optimizer
to output search steps for each learner directly
(Andrychowicz et al., 2016; Ravi and Larochelle,
2017; Mishra et al., 2018; Gordon et al., 2019) and
learning an optimized initialization of model pa-
rameters, which can be later adapted to new tasks
by a few steps of gradient descent (Finn et al., 2017;
Yoon et al., 2018; Grant et al., 2018; Bao et al.,
2020). (2) Metric-based methods, including Match-
ing Network (Vinyals et al., 2016), PROTO (Snell
et al., 2017), Relation Network (Sung et al., 2018),
TapNet (Yoon et al., 2019) and Induction Network
(Geng et al., 2019), which aim to learn an appro-
priate distance metric to compare validation points

with training points and make prediction through
matching training points.

Transfer learning Few-shot text classification
relates closely to transfer learning (Zhuang et al.,
2021) that aims to leverage knowledge from a re-
lated domain (a.k.a. source domain) to improve the
learning performance and reduce the reliance on
the number of labeled examples required in a target
domain. Compared to meta-learning designed to
aggregate the knowledge learned from many tasks,
transfer learning typically involves a few tasks. In
addition, we aim to directly reuse or fine-tune some
existing representation in transfer learning, while
a meta-learner is typically optimized at adapting
to new tasks. Domain adaptation (Ganin et al.,
2016; Tzeng et al., 2017; Khaddaj and Hajj, 2020)
is a type of transfer learning, which aims to bridge
the gap between the source and target domains by
learning domain-invariant feature representations.
Pre-trained model (Devlin et al., 2019; Yang et al.,
2019; Brown et al., 2020) can also be viewed as
a type of transfer learning. The parameters pre-
trained in the source domain are fine-tuned in the
target domain, with faster training convergence.

Few-shot text classification To tackle few-shot
text classification, a straightforward idea is to ap-
ply BERT (Devlin et al., 2019) or XLNet (Yang
et al., 2019), which have achieved strong perfor-
mance in text classification by fine-tuning with a
small number of training examples. Their perfor-
mances can be less dependent on the number of
training samples for the new classes. Some other
approaches are based on transfer learning. Pan et al.
(2019) proposed a modified hierarchical pooling
strategy over pre-trained word embeddings to trans-
fer knowledge obtained from some source domains
to the target domain. Gupta et al. (2020) developed
a binary classifier on the source domain to classify
new classes by prefixing class identifiers to input
texts.

Meta-learning (Jamal et al., 2018; Yu et al., 2018;
Geng et al., 2019, 2020; Bao et al., 2020) can
also be utilized to solve few-shot text classifica-
tion, and has achieved state-of-the-art performance.
Yu et al. (2018) proposed an adaptive metric learn-
ing approach that automatically determines the best
weighted combination from meta-training tasks for
few-shot tasks. Geng et al. (2019, 2020) leveraged
the dynamic routing algorithm in meta-learning for
few-shot text classification. (Bao et al., 2020) lever-
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aged distributional signatures (e.g. word frequency
and information entropy) to train a model within a
meta-learning framework.

3 Method

In this section, we first present the preliminary
background on episode-based meta-learning frame-
work (Vinyals et al., 2016). After that, we ex-
plicitly describe the proposed MLADA (Meta-
Learning Adversarial Domain Adaptation) Net-
work.

3.1 Episode-based meta-learning

The goal of meta-training is to train a classifier that
can learn meta-knowledge from training data. In
this way, the classifier can quickly learn from a
few annotations when classifying unseen classes.
The “episode” training strategy that Vinyals et al.
(2016) proposed has proved to be effective. The
episode-based meta-learning consists of two main
stages:

Meta-training Firstly, N classes are sampled
from training data Ytrain. For each of these N
classes, two subsets of examples are sampled sep-
arately as the support set S and the query set Q.
Next, input the support set S and the query set Q
to the model and update the parameters by mini-
mizing the loss in the query set Q. The procedure
above is called a training episode, which will be
repeated multiple times.

Meta-testing After meta-training is finished, the
performance of the model will be evaluated by
the same episode-based mechanism. In a testing
episode, N new classes will be sampled from Ytest,
which is disjoint to Ytrain. Then the support set
and the query set will be sampled from the N
classes. The model parameters can be fine-tuned
through the small support set. The performance of
the model will be evaluated through the average
classification accuracy on the query set across all
testing episodes.

We found that only a small subset of training data
are accessible per training episode in the standard
episode-based meta-training (Vinyals et al., 2016).
To solve this problem, we build domain adversar-
ial tasks to utilize more training data per training
episode. Details of our model are described in the
next section.

3.2 Meta-Learning Adversarial Domain
Adaptation Network (MLADA)

Overview Our goal is to improve the perfor-
mance of few-shot classification by combining
adversarial domain adaptation and episode-based
meta-learning. Figure 1 gives an overview of our
model. In the rest of this section, we will introduce
the main components of the model.

Word Representation Layer The goal of this
layer is to represent each word with a d-
dimensional vector. Following Bao et al. (2020),
we construct the d-dimensional vector with the
word embeddings, which is pre-trained with fast-
Text (Joulin et al., 2016).

Domain Discriminator We refer to the support
set and the query set as the target domain and the
rest of the training data as the source domain. We
sample a subset of examples from the source do-
main as the source set. The goal of this module is to
distinguish whether the sample is from the source
domain or the target domain. The discriminator is a
three layer feed-forward neural network. We apply
the softmax function in the output layer to evalu-
ate the probability distribution Pr(y|λ). y = 0 or 1
represents that the sample is from the query set or
the source set.

Meta-knowledge Generator This module is
mainly composed of a bi-directional LSTM (BiL-
STM) and a fully connected layer. We utilize a
BiLSTM to encode contextual embeddings for each
time-step. The input of the module is a sequence of
word vectors P : [p1, ..., pm], where m represents
the number of words in a sentence. The output is
a matrix hpd×m, which is composed of contextual
embeddings.

→
hpi =

→
LSTM(

→
hpi−1, pi) i = 1, ...,m (1)

←
hpi =

←
LSTM(

←
hpi+1, pi) i = m, ..., 1 (2)

hpi = Concat(
→
hpi ,

←
hpi ) i = 1, ...,m (3)

hp = [hp1, h
p
2, ..., h

p
m] (4)

Next, we employ a single layer feed-forward neural
network and apply the softmax function to get the
output kp.

kp = Softmax(ω · hp + b) (5)

kp is an n-dimensional vector, which represents
the meta-knowledge included in the sentence. n
denotes the length of the sentence.
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Figure 1: MLADA Network architecture for a N -way K-shot(N = 3,K = 2) problem

The goal of the meta-knowledge generator is
not only to make the final classification results bet-
ter, but also to confuse the domain discriminator
as much as possible, so that the discriminator can
not distinguish between samples from query set
or source set. The theory on domain adaptation
suggests that, for effective domain transfer to be
achieved, predictions must be made based on fea-
tures that cannot discriminate between the source
domain and target domain, which is the motivation
for us to build the meta-knowledge generator.

Interaction Layer We consider that the vector
generated by the meta-knowledge generator is the
transferable features, and word embeddings is the
specific features of sentences. The role of the in-
teraction layer is to fuse transferable features and
sentence-specific features to produce the output as
sentence embeddings, which will be used as the
input of the classifier to obtain the final classifica-
tion results. Suppose that the length of the sentence
p is m, the word vectors is wpi (i ∈ [1,m]), the
dimension of the word vector is d and the meta-
knowledge of the sentence is kp, then the final
sentence vector is sp:

sp = W p
d×m · k

p (6)

where W p = [wp1, w
p
2, ..., w

p
m].

Classifier The classifier is trained by the support
set from scratch for each episode. We choose the
ridge regression as the classifier. The reason

why we adopt the ridge regression to fit the sup-
port set are as follows: 1) If we choose neural
networks as the classifier, it will be trained inade-
quately because the number of samples in the sup-
port set is too small. 2) The ridge regression admits
a closed-form solution and it reduces over-fitting
on the small support set through proper regulariza-
tion.Specifically, we minimize regularized squared
loss:

LRR(θ) =
1

2m

m∑
i=1

[((fθ(x
(i))− y(i))2 + λ

n∑
j=1

θ2j )] (7)

where m represents the number of samples in the
support set, fθ(x(i)) represents the prediction of the
ridge regressor, y(i) represents the label of the sam-
ple,

∑n
j=1 θ

2
j denotes the squared Frobenius norm

and λ > 0 controls the extent of the regularization.

Loss Function In each training episode, we first
fix the parameters of the generator and the discrim-
inator to update the classifier’s parameters by the
support set. The classifier’s loss function is shown
in Eq.7.

Next, we fix the parameters of the generator and
the classifier to update the discriminator’s param-
eters by the query set and the source set. We use
the cross-entropy loss as the discriminator’s loss
function, which is shown in Eq.8.

LD(µ) = − 1

2m

2m∑
i=1

[y
(i)
d logDµ(k(i))

+ (1− y(i)d )log(1−Dµ(k(i)))] (8)
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Algorithm 1 MLADA Training Procedure

Input: Training data {Xtrain,Ytrain}; T episodes
and ep epochs; N classes in support set or
query set; K samples in each class in the sup-
port set and L samples in each class in the
query set; The generator’s parameters β, the
discriminator’s parameters µ and the classi-
fier’s parameters θ.

Output: Parameters β and µ after training;
1: Randomly initialize the model parameters β,
µ and θ;

2: for each i ∈ [1, ep] do
3: Y ← Λ(Ytrain, N);1

4: for each j ∈ [1, T ] do
5: S,Q,Φ← ∅, ∅, ∅;
6: for y ∈ Y do
7: S ← S ∪ Λ(Xtrain{y},K);2

8: Q← Q ∪ Λ(Xtrain{y}\S,L);
9: Φ← Φ∪Λ(Xtrain\Xtrain{y}, L);

10: end for
11: Input S to the model;
12: Fix µ, β. Update θ by minimizing the

Eq.7;
13: Input Q,Φ to the model;
14: Fix β, θ. Update µ by minimizing the

loss of the discriminator (Eq.8);
15: Fix µ, θ. Update β by minimizing the

loss of the generator (Eq.9);
16: end for
17: end for

where µ denotes the parameters of the discrimi-
nator, m represents the number of samples of the
query set or the source set.yd = 0 or 1 denotes
whether the sample is from the source set or the
query set. k represents the meta-knowledge vector.

Finally, we fix the parameters of the discrimi-
nator and the classifier to update the generator’s
parameters by the query set and the source set.
The loss function of the generator is composed
of two components. The first one is a cross-entropy
loss for the final classification results, and the sec-
ond one is the opposite of the discriminator’s loss,
which is to confuse the discriminator.

LG(β) = CELoss(f(W ·Gβ(W )), y)− LD (9)
1Λ(Y, N) denotes selectingN elements fromY randomly.
2Xtrain{y} denotes samples labeled y in Xtrain.

where β represents the generator’s parameters. f
denotes the ridge regressor. W represents the ma-
trix of word vectors in a sentence. y denotes the
real labels of samples.LD is shown in Eq.8.

Training Procedure It is remarkable that the
meta-knowledge generator is optimized over all
training episodes, while the classifier is trained
from scratch for each episode. In each training
episode, we first utilize the support set to update
the parameters in the classifier. Next, we use the
query set and source set to update the parameters
of the meta-knowledge generator and the domain
discriminator. The details of training procedure of
our model are shown in Algorithm 1.

4 Experiments

In this section, we perform comprehensive ex-
periments to compare our proposed model with
five competitive baselines, and evaluate the perfor-
mance on four text classification datasets.

4.1 Datasets
We use four benchmark datasets for text classifica-
tion, whose statistics are summarized in Table 1.
HuffPost headlines contains 41 classes of news
headlines from the year 2012 to 2018 obtained
from HuffPost (Misra, 2018). Its text is less abun-
dant (i.e., with smaller text length) than the other
datasets and considered to be more challenging for
text classification.
Amazon product data contains product reviews
from 24 product categories, including 142.8
million reviews spanning 1996-2014 (He and
McAuley, 2016). Our task is to identify the product
categories of the reviews. Since the original dataset
is proverbially large, we sample a subset of 1, 000
reviews from each category.
Reuters-21578 is collected from Reuters newswire
in 1987. We use the standard ApteMode version of
the dataset. Following Bao et al. (2020), we con-
sider 31 classes and remove multi-labeled articles.
Each class contains at least 20 articles.
20 Newsgroups is a collection of approximately
20,000 newsgroup documents (Lang, 1995), par-
titioned (nearly) evenly across 20 different news-
groups.

4.2 Experiment Setup
Baselines We compare our MLADA with multi-
ple competitive baselines, which are briefly sum-
marized in the following:
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Dataset Avg. text length vocab size # samples # train / val / test classes
HuffPost 11 8218 36900 20 / 5 / 16
Amazon 140 17062 24000 10 / 5 / 9
Reuters 168 2234 620 15 / 5 / 11

20 Newsgroups 340 32137 18820 8 / 5 / 7

Table 1: Statistics of the four benchmark datasets.

Method
HuffPost Amazon Reuters 20 News Average

1 shot 5 shot 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot

MAML(2017) 35.9 49.3 39.6 47.1 54.6 62.9 33.8 43.7 40.9 50.8
PROTO(2017) 35.7 41.3 37.6 52.1 59.6 66.9 37.8 45.3 42.7 51.4
Induct(2019) 38.7 49.1 34.9 41.3 59.4 67.9 28.7 33.3 40.4 47.9
HATT(2019) 41.1 56.3 49.1 66.0 43.2 56.2 44.2 55.0 44.4 58.4

DS-FSL(2020) 43.0 63.5 62.6 81.1 81.8 96.0 52.1 68.3 59.9 77.2

MLADA(ours) 45.0 64.9 68.4 86.0 82.3 96.7 59.6 77.8 63.9 81.4

Table 2: Mean accuracy (%) of 5-way 1-shot and 5-way 5-shot classification over four datasets.

• MAML (Finn et al., 2017) is trained by maxi-
mizing the sensitivity of the loss functions of
new tasks, so that it can rapidly adapt to new
tasks after the parameters have been up-dated
through few gradient steps.

• Prototypical Networks (Snell et al., 2017),
abbreviated as PROTO, is a metric-based
method for few-shot classification by using
sample averages as class prototypes.

• Induction Networks (Geng et al., 2019)
learns a class-wise representation by lever-
aging the dynamic routing algorithm in meta-
learning.

• HATT (Gao et al., 2019) extends PROTO by
adding a hybrid attention mechanism to the
prototypical network.

• DS-FSL (Bao et al., 2020) is trained within a
meta-learning framework to map the distribu-
tion signatures into attention scores so as to
extract more transferable features.

Implementation Details Following Bao et al.
(2020), we use pre-trained fastText (Joulin et al.,
2016) for word embedding. In the meta-knowledge
generator, we use a BiLSTM with 128 hidden units.
In the domain discriminator, the numbers of hid-
den units for the two feed-forward layers are set
to 256 and 128, respectively. All parameters are

optimized using Adam with a learning rate of 0.001
(Kingma and Ba, 2015).

During meta-training, we perform 100 training
episodes (T = 100) per epoch. Meanwhile, we
apply early stopping when the accuracy on the val-
idation set fails to improve for 20 epochs. We
evaluate the model performance based on 1, 000
testing episodes and report the average accuracy
over 5 different random seeds. All the experiments
are conducted on a NVIDIA v100 GPU.

4.3 Experimental Results

The experimental results are reported in Table 2.
Our model achieves the best performance across
all datasets, with an average accuracy of 63.9% in
1-shot classification and 81.4% in 5-shot classifica-
tion, outperforming the state-of-the-art model DS-
FSL (Bao et al., 2020) by a notable 4% improve-
ment. For DS-FSL, it extracts transferable features
via certain distribution signatures (e.g., word fre-
quency or information entropy), but ignores other
information of sentences, including implicit inter-
action between words. In contrast, we does not
limit the transferable knowledge to statistical infor-
mation. Our strategy is to combine the proposed
domain adversarial network with meta-learning,
generating more comprehensive transferable fea-
tures.

Furthermore, our model improves dramatically
7.5% and 9.5% on 20 Newsgroups in 1-shot and
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(a) avg (b) DS-FSL(5-shot)

(c) MLADA(5-shot) (d) MLADA(1-shot)

Figure 2: t-SNE visualization of the input representation of the classifier for a testing episode(N = 5, K = 5,
L = 500)sampled from 20 Newsgroups. Note that the 5 classes is not seen in training set. The input representation
of the classifier given by (a) the average of word embeddings (b) DS-FSL and (c) MLADA(ours). (d) is the t-SNE
visualization of MLADA on 5-way 1-shot classification.

5-shot classification. The average length of texts in
the 20 Newsgroups is longer than the other datasets.
The empirical results clearly demonstrate that our
model is more suitable for longer texts, which con-
tain more abundant text information.

4.4 Ablation Study

We conduct an ablation study to examine the ef-
fectiveness of the proposed domain adversarial net-
work as well as the interaction layer and the source
set. The results of Amazon dataset are reported in
Table 3.

Firstly, we use a bi-directional LSTM instead of
the proposed domain adversarial network (includ-
ing the meta-knowledge generator and the domain
discriminator) for sentence encoding. The perfor-
mances in the tasks of 1-shot classification and

5-shot classification decrease by 6.5% and 5.3%,
respectively. This verifies the effectiveness of the
proposed domain adversarial network.

Secondly, we study how the interaction layer
contributes to the performance of our model. We
concatenate the vector generated by the meta-
knowledge generator directly with the average sen-
tence embedding instead of the interaction layer.
From the result in Table 3, we can see that our pro-
posed interaction layer to combine the transferable
features with the sentence-specific information are
indeed more effective.

Finally, we remove the source set and utilize
the discriminator to distinguish the true classes of
samples. We observe that the source set is also
important to performance. Due to the removal of
the source set, the model has only access to the sup-
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Seen classes Politics, Entertainment, Food&Drink, College, Arts Prediction
DS-FSL Senate committee advances bill to protect Robert Mueller . politics 3

MLADA(ours) Senate committee advances bill to protect Robert Mueller . politics 3

Unseen classes Sports, Education, Media, Tech, Environment Prediction
DS-FSL Olympic committee CEO resigns cites health issues. environment 7

MLADA(ours) Olympic committee CEO resigns cites health issues. sports 3

Figure 3: The visualization of attention weights generated by DS-FSL and the meta-knowledge generator of our
model.

port set and the query set in each training episode.
Therefore, it cannot learn cross-domain transfer-
able features.

Models
Accuracy(%)

1 shot 5 shot

− Domain Adversarial Network 61.9 80.7
− Interaction Layer 66.6 83.0
− Source Set 67.1 84.2

MLADA 68.4 86.0

Table 3: Ablation study results of 5-way 1-shot and 5-way
5-shot classification on the Amazon dataset.

4.5 Visualization

We utilize visualization experiments to demonstrate
that our model can generate high-quality sentence
embeddings and identify important lexical features
for unseen classes.

We first use t-SNE (Van der Maaten and Hin-
ton, 2008) visualization of sentence embeddings
generated by different methods on the query set,
as shown in Figure2. Compared to 2(a) average
word embeddings and 2(b) DS-FSL, our method
produces better separation both in 1-shot and 5-
shot classification, demonstrating the effectiveness
of MLADA in leveraging the supervised learning
experience to generate high-quality sentence em-
beddings for few-shot text classification.

Moreover, we visualize the weight vectors gener-
ated by the meta-knowledge generator and compare
it with DS-FSL, as shown in Figure 3. Our model
reduces the weight of “committee” while increas-
ing the weight of “Olympic”, which demonstrates
that our model can recognize important lexical fea-
tures in the new task, rather than simply transfer-
ring features obtained from experience.

5 Conclusion

In this paper, we propose a novel meta-learning ap-
proach called Meta-Learning Adversarial Domain
Adaptation Network(MLADA), which can recog-
nize important lexical features and generate high-
quality sentence embeddings in new classes(not
seen in training data). Specifically, we design an
adversarial domain adaptation network in meta-
training episodes, which aims to extract domain-
invariant features and improve the adaptability of
the meta-learner in new classes. We demonstrate
that our method outperforms the existing state-of-
the-art approaches on four standard text classifi-
cation datasets. Future work includes applying
MLADA to other fields including computer vision
and speech recognition, and exploring the com-
bination between adversarial domain adaptation
network and other FSL algorithms.
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