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Abstract

Pretrained language models (PLMs) perform
poorly under adversarial attacks. To im-
prove the adversarial robustness, adversarial
data augmentation (ADA) has been widely
adopted to cover more search space of adver-
sarial attacks by adding textual adversarial ex-
amples during training. However, the num-
ber of adversarial examples for text augmen-
tation is still extremely insufficient due to the
exponentially large attack search space. In
this work, we propose a simple and effective
method to cover a much larger proportion of
the attack search space, called Adversarial and
Mixup Data Augmentation (AMDA). Specif-
ically, AMDA linearly interpolates the repre-
sentations of pairs of training samples to form
new virtual samples, which are more abundant
and diverse than the discrete text adversarial
examples in conventional ADA. Moreover, to
fairly evaluate the robustness of different mod-
els, we adopt a challenging evaluation setup,
which generates a new set of adversarial ex-
amples targeting each model. In text classi-
fication experiments of BERT and RoBERTa,
AMDA achieves significant robustness gains
under two strong adversarial attacks and alle-
viates the performance degradation of ADA
on the clean data. Our code is available at:
https://github.com/thunlp/MixADA.

1 Introduction

Pretrained language models (PLMs) have estab-
lished state-of-the-art results on various NLP
tasks (Devlin et al., 2019; Liu et al., 2019; Lan
et al., 2020) and the pretraining-then-finetuning
paradigm has become the status quo. However,
recent works have shown the adversarial vulnera-
bilities of PLMs, where PLMs finetuned on various
downstream datasets are fooled by different types
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Figure 1: Illustration of MixADA. Some of the interpo-
lated samples are shown. We interpolate the representa-
tions of each pair of training samples including original
samples and adversarial samples. Blue and red repre-
sent two different classes. The solid line represents the
resultant decision boundary. AMDA helps achieve a
more robust decision boundary.

of adversarial attacks (Jin et al., 2020; Zang et al.,
2020; Si et al., 2021; Li et al., 2020; Garg and
Ramakrishnan, 2020; Wang et al., 2020a).

To improve adversarial robustness, two types of
defense strategies have been proposed. The first
type targets at specific attacks, such as spelling
correction modules and pretraining tasks to defend
character-level attacks (Pruthi et al., 2019; Jones
et al., 2020; Ma et al., 2020) and certified robust-
ness for word-substitution attacks (Huang et al.,
2019; Jia et al., 2019). However, they are limited
in practice as they are not generally applicable to
other types of attacks. The other type of defense is
Adversarial Data Augmentation (ADA), which aug-
ments the training set by the adversarial examples
and is widely used in the training (finetuning) pro-
cess to enhance model robustness (Alzantot et al.;
Ren et al., 2019; Zhang et al., 2020; Jin et al., 2020;
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Li et al., 2020; Tan et al., 2020; Yin et al., 2020;
Zheng et al., 2020; Zou et al., 2020; Wang et al.,
2020b). ADA is generally applicable to any type of
adversarial attacks but is not very effective in im-
proving model performance under attacks. In this
work, we aim to improve ADA and devise a gen-
eral defense strategy to effectively improve model
robustness during finetuning.'

ADA has two major limitations for NLP models.
Firstly, unlike images, it is harder to create new
augmented textual data due to their discrete na-
ture. Moreover, for textual adversarial attacks, the
attack search space is prohibitively large. For exam-
ple, the search space of word-substitution attacks
consists of all combinations of the synonym re-
placement candidates, which is exponentially large.
Consequently the number of adversarial training
examples for augmentation is very insufficient. Sec-
ondly, ADA usually causes significant performance
degradation on the clean data because the distribu-
tion of adversarial examples is very different from
that of the clean data (Ren et al., 2019).

In order to solve these two limitations, we cre-
ate additional training samples via interpolating
existing samples (Figure 1). How to interpolate
discrete textual inputs is non-trivial. We propose
to convert the discrete textual inputs into contin-
uous representations and then perform both ADA
and mixup augmentation (Zhang et al., 2018; Guo
et al., 2019), which is an augmentation technique
proven to be particularly effective on continuous
image data (Lamb et al., 2019; Pang et al., 2020).
We name our method Adversarial and Mixup Data
Augmentation (AMDA). With AMDA, we can cre-
ate a much larger number of augmented training
samples that cannot be obtained via discrete per-
turbations on textual data. Moreover, AMDA’s in-
terpolated virtual training samples are closer to the
distribution of the original data, which alleviates
the performance degradation problem of ADA.

We experiment AMDA on three text classifica-
tion datasets under two strong adversarial attacks
and find that AMDA achieves significant robust-
ness gains in all cases, notably restoring ROBERTa
after-attack accuracy from 6.35% to 51.84% on
IMDB, outperforming all other baselines by large
margins. Moreover, we also examine the evaluation

'In this paper, we refer to such discrete adversarial training
method as adversarial data augmentation to avoid confusion
with the gradient-based adversarial training methods (Miyato
et al., 2017), which has been shown to be ineffective in de-
fending against textual adversarial attacks (Li and Qiu, 2021).

method for adversarial robustness. Specifically, we
find that the widely adopted Static Attack Evalua-
tion where a fixed set of adversarial examples are
used to test all models is not reliable. In order to
test model robustness under targeted attacks (i.e.,
not model-agnostic), we adopt the more challeng-
ing Targeted Attack Evaluation where we generate
a new set of targeted adversarial examples to eval-
uate each model. We encourage future defense
works to also adopt this more reliable and challeng-
ing evaluation setting.

2 Method

In AMDA, we first augment training samples with
ADA and then perform mixup during model train-
ing, where mixup augmentation is applied on the
ADA-augmented training set.

2.1 Adversarial Data Augmentation

Given a victim model f, and the original training
instances Do,y = {(x;,yi)}]~;, we employ an
attacker to construct label-preserving adversarial
training instances D4, = {(x}, y;)}/_; such that:
instances originally correctly classified are now
classified wrongly (f,(x}) # fu(x;i)). We then
train the model on the augmented training data
Dapa =Doyri U Dadv-

2.2 Mixup Data Augmentation

To better defend against the large number of pos-
sible adversarial examples, we propose to perform
additional mixup augmentation during training.
Specifically, we linearly interpolate the represen-
tations and labels of pairs of training samples to
create different virtual training samples, which can
be formulated as:

X = Ax; + (1 = \)xy,

X (1)
y=Ay: +(1=Nyj,

where (x;,y;) and (x;,y;) are two labeled ex-
amples, and A € [0, 1] comes from a beta dis-
tribution A ~ Beta(a, ), where « is a hyper-
parameter. On textual data, we cannot directly
mix the discrete tokens. Instead, we can either in-
terpolate the word embedding vectors or models’
hidden representations of textual inputs. Mean-
while, we directly interpolate the labels, which are
represented as one-hot vectors.

When applied together with adversarial data aug-
mentation, we allow the mixing of different types
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of data (between original examples, between orig-
inal examples and adversarial examples, and be-
tween adversarial examples) to increase diversity.

2.3 AMDA

In our proposed Adversarial and Mixup Data Aug-
mentation (AMDA), we train the new model f on
the augmented training data D 4psp 4, which is ob-
tained by performing both adversarial data augmen-
tation and mixup data augmentation. We minimize
the sum of the standard training loss and the mixup
loss:

L= Z Lop(f(xi),yi) + ) Lre(f(Xi), i), ()

i=1

where (x;,y;) is from D 4p 4 and (X, y) is the vir-
tual example obtained by applying mixup on the
random pair of training data sampled from D 4p 4.
We use cross-entropy to compute loss on (x;,y;)
and use KL-divergence for loss on (X;,¥;).

3 Robustness Evaluation

There are two different ways of robustness eval-
uation under adversarial attacks used in previous
works. In this work, we explicitly differentiate
them as Static Attack Evaluation (SAE) and Tar-
geted Attack Evaluation (TAE):

SAE generates a fixed set of adversarial exam-
ples on the original model as the victim model.
This fixed adversarial test set will then be used to
evaluate all the new models. This evaluation setup
has been adopted in (Ren et al., 2019; Tan et al.,
2020; Yin et al., 2020; Wang et al., 2020b; Zou
et al., 2020; Wang et al., 2021, inter alia.).

TAE re-generates a new set of adversarial exam-
ples to target every model being evaluated. This is
adopted in (Zhang et al., 2020; Huang et al., 2019;
Jia et al., 2019; Li et al., 2020; Zang et al., 2020;
Zheng et al., 2020; Li and Qiu, 2021, inter alia.)

We observe that some authors did not explicitly
specify the mode of evaluation in their papers?,
leading to confusion and even conflicting conclu-
sions. Thus, we explicitly differentiate the two
modes of evaluation and provide a comparison in
our experiments.

>We had to email some of the authors to clarify the evalua-
tion setup being adopted.

4 Experiments

4.1 Experiment Setups

Datasets. We evaluate our methods on three
text classification datasets: two sentiment anal-
ysis datasets: SST-2 (Socher et al., 2013) and
IMDB (Maas et al., 2011), where both datasets are
binary classification tasks; as well as a multi-class
news classification dataset AGNews (Zhang et al.,
2015), which consists of four different classes. For
SST-2, we attack the entire test set (1821 samples)
and report the accuracy under attacks. For IMDB,
we find that it is prohibitively slow to attack the
whole test set (25k samples) and hence we use the
subset of the original test set as released in Gardner
et al. for faster evaluation, which consists of 488
test instances. Similarly, on AGNews, we randomly
sampled 10% of the original test set and hold out as
the test samples for attack evaluation. We also in-
clude these data splits in our released code base for
easy reproduction and fair comparison for future
works.

Victim models and attack methods. We ex-
periment with both BERT-base-uncased (Devlin
et al., 2019) and RoBERTa-base (Liu et al., 2019)
as the victim models. We use PWWS (Ren et al.,
2019) and TextFooler (Jin et al., 2020) as our attack
methods, which have been shown to effectively at-
tack state-of-the-art NLP models including PLMs
such as BERT. Both attack algorithms have access
to model predictions but not gradients, and itera-
tively search for word synonym substitutes that flip
model predictions without drastically changing the
original semantic meanings and golden labels.

Details of mixup. When performing mixup,
we mix hidden representations of upper layers of
BERT. The vectors used for mixup are hidden rep-
resentations of the input examples at layer ¢ of the
Transformer encoder, where ¢ is randomly sampled
from {7,9, 12}, which was found to be empirically
effective (Chen et al., 2020). Furthermore, we ex-
plore two different ways of obtaining the hidden
representations of input examples from PLMs like
BERT: (1) We use the vector of the [CLS] token at
the ith-layer of BERT as the hidden representation
for mixing. We name this approach SMix. (2) We
perform mixup on every token’s vector representa-
tion at the ith-layer. We name this approach TMix,
which is the approach taken by Chen et al. (2020).

Details of ADA and AMDA. For both ADA and
AMDA, we generate and add the corresponding ad-
versarial examples of PWWS and TextFooler into
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SST-2 IMDB

Original PWWS-d PWWS-s TF-d  TF-s | Original PWWS-d PWWS-s TF-d TF-s
BERT, 92.04 19.17 19.17 566  5.66 97.34 23.36 2336 348 3.48
BERT, 91.10 18.73 4498 346 4536 96.72 25.61 69.88 1.64 76.64
BERT,2 90.94 20.26 45.63 297 4580 97.13 30.12 65.78 246 76.23
RoBERTa, 94.45 25.48 2548  3.29 3.29 97.75 15.98 1598 1.84 1.84
RoBERTa, 94.29 31.03 5047 5.82 41.63 97.54 27.46 65.57 348 77.46
RoBERTa,2 93.85 32.13 50.69 934 4091 97.34 17.21 7336 2.87 76.64

Table 1: Comparison between dynamic and static evaluation. PWWS-d, PWWS-s, TF-d, TF-s represent PWWS
dynamic, PWWS static, TextFooler dynamic, TextFooler static, respectively. Numbers in the table represent accu-
racy. BERT, and RoBERTa, are the victim model for generating static evaluation examples. BERT,.;, BERT,.,,
RoBERTa,.;, and RoBERTa,; are the fine-tuned models with new random seeds.

SST-2 IMDB
PWWS TextFooler PWWS TextFooler
Original ~ Adversarial ~ Original = Adversarial |Original  Adversarial Original  Adversarial
BERT 91.27 14.83(20.88%) 91.27  297(16.21%)| 97.75 24.18(24.10%) 97.75  1.64(10.18%)
+ADA 90.12  27.18 (24.46%) 90.50  9.01 (18.32%)| 96.93 25.82(34.53%) 96.93  3.07 (11.81%)
+TMix 91.82 21.20(19.36%) 91.82  3.51(16.39%)| 97.13 43.24(32.51%) 97.13  0.00 (12.06%)
+SMix 91.82 22.52(2047%) 91.82  4.61(16.76%)| 97.13 31.97(23.74%) 97.13  2.66 (12.39%)
+AMDA-TMix | 91.54 38.82(23.73%) 9193 13.23(19.66%)| 97.34 51.02(36.76%) 96.72  4.51(17.23%)
+AMDA-SMix | 91.10 31.52 (24.11%) 92.15 17.35(18.64%)| 96.72 60.86 (27.79%) 96.72 17.42 (13.85%)
RoBERTa 94.62 2839 (23.06%) 94.62 544 (18.51%)| 97.54 28.07(37.48%) 97.54  6.35(12.61%)
+ADA 94.07 2526 (27.07%) 92.75  9.67 (19.71%)| 97.54 24.80(49.36%) 96.93 12.50(14.39%)
+TMix 94.18 30.04 (23.19%) 94.18 11.04 (17.69%)| 97.54 44.06 (39.33%) 97.54 21.11(14.01%)
+SMix 93.96 31.52(22.86%) 93.96  8.29(17.80%)| 97.34 41.39(34.90%) 97.34 22.34(11.96%)
+AMDA-TMix | 93.90 36.74 (26.02%) 93.03 13.78 (20.15%)| 98.57 50.41 (59.68%) 97.13 51.84(16.62%)
+AMDA-SMix | 93.96 41.85(27.17%) 93.47 16.80 (21.88%)| 97.54 55.12(45.30%) 97.54 49.18 (15.52%)

Table 2: Accuracy of the various models under PWWS and TextFooler attacks. Best performance for BERT-based
models and RoBERTa-based models under each attack is boldfaced, the second best performance is underlined.
Numbers in brackets indicate the average word modification rate of each attack.

PWWS TextFooler

Orig. Adv. Orig. Adv.

RoBERTa 9434 4750 9434 2553
+ADA 9355 6697 94.08 44.61
+TMix 94.08 45.66 94.08  26.58
+SMix 94.08 45.13 9408 22.63
+AMDA-TMix | 9447 69.74 9395 56.32
+AMDA-SMix | 9434 70.00 9342 51.32

Table 3: Results on AG News multi-class classification
dataset, with RoOBERTa model. Best performance un-
der each attack is boldfaced, the second best perfor-
mance is underlined.

training. For comparison, we also experiment with
mixup alone without adding the adversarial exam-
ples. In this case, the model would only interpolate
pairs of original training examples. We perform a
greedy hyper-parameter search for the amount of
augmented adversarial training samples and mixup
parameter « as described in the Appendix. We also
report average word modification rates, which in-
dicate the percentage of words being replaced for

attacking. Higher word modification rates indicate
that the model is harder to attack and hence needs
more words to be replaced.

4.2 Comparison of SAE and TAE

To compare SAE and TAE, we attack the fine-
tuned model (BERT,), RoBERTa,, as the victim
on SST-2 and IMDB, and then use the generated
adversarial test set as the fixed test set for SAE.
We then change the random seeds and re-finetune
the models on the same data (BERT,;, BERT,,
RoBERTa,;, RoBERTa,3) with all other hyper-
parameters being the same. We evaluate all these
models using both SAE and TAE. The results are
shown in Table 1.

We find that by simply changing the random
seeds, models achieve significant improvement un-
der SAE. However, when we re-generate the adver-
sarial test set for each model, their performances
under TAE stay consistently poor. Moreover, we
train BERT and RoBERTa with ADA and find that
although BERTpApa and RoBERTappa perform
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well under SAE, they still perform poorly under
TAE. This shows that conventional ADA is actually
ineffective in improving model robustness under
the challenging TAE setting. We conclude that the
adversarial examples found by the attackers target
specifically at the victim models, hence they can-
not fully reveal weaknesses of new models even
if they only differ in random seeds. We believe
that TAE is the more challenging and meaningful
evaluation method to measure model robustness un-
der targeted attacks. We adopt TAE for the rest of
the experiments in this paper and encourage future
works to do so for fair comparison.

4.3 Mixup Improves Robustness

The comparison of AMDA and baseline methods
under attacks for SST-2 and IMDB is shown in Ta-
ble 2. The results on the AGNews dataset with
RoBERTa model is shown in Table 3. We ob-
serve that: (1) Mixup alone (both TMix and SMix)
can often improve model robustness. For example,
TMix and SMix improve the robust accuracy sig-
nificantly under both attacks when using RoOBERTa
on IMDB. (2) AMDA (both AMDA-TMix and
AMDA-SMix) can achieve further robustness im-
provement as compared to ADA and mixup in all
cases. This proves that mixup and ADA can com-
plement each other to better improve model robust-
ness under adversarial attacks. (3) Compared to
ADA, our AMDA method does not incur signifi-
cant performance degradation on the original test
sets while improving robustness. In some cases, for
example, BERT+TMix and BERT+AMDA-TMix
even improve the model performance on the orig-
inal test sets. This benefit is likely because that
mixup creates virtual examples that are closer to
the empirical data distribution. (4) We find that
models trained with AMDA also incur higher word
modification rates under both attacks. For exam-
ple, RoOBERTa+AMDA-TMix incurs 59.68% word
modification rate under PWWS attack, while the
RoBERTa baseline only needs 37.48% words to
be replaced. This further demonstrates that our
proposed method improves robustness.

5 Conclusion

In this work, we propose AMDA as a generally
applicable defense strategy by combining both ad-
versarial and mixup data augmentation to cover
more of the attack space. We show that AMDA
greatly improves PLMs’ robustness under the chal-

lenging TAE evaluation setting under two strong
adversarial attacks. We leave a more thorough theo-
retical analysis of AMDA’s effectiveness on textual
data as future work.> We believe that our work can
establish the appropriate evaluation protocol and
offer a competitive baseline for future works on
improving the robustness of PLMs.
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Appendix
Hyper-parameter Analysis

In this section, we perform further analysis to exam-
ine the effects of different hyper-parameters. There
are two hyper-parameters involved in MixADA: the
amount of adversarial data added for training, and
the v parameter in the beta distribution of mixup
coefficient. We also experiment with an alternative
ADA strategy - iterative ADA.

Amount of Adversarial Training Data

We vary the ratio of the training dataset that we
generate adversarial training samples on and add
to the MixADA fine-tuning. We experiment with
SMixADA with the hyper-parameter of mixup
being fixed. On SST-2, we vary the ratio in
{25%, 50%, 75%,100%}. On IMDB, since the
average sequence length is significantly longer
and the adversarial example generation process be-
comes much slower, we experiment with a set of
smaller ratios: {5%), 10%, 15%, 20%}. The results
are plotted in in Figure 2. Interestingly, we find that
higher ratio of adversarial training samples does
not necessarily bring in additional robustness gains.

Interpolation Coefficient in Mixup

We also analyse the hyper-parameter of mixup: the
« parameter in the beta distribution, from which
the interpolation coefficient is sampled. We fix
the ratio of adversarial training data and vary « in
the range of {0.2,0.4,2.0,4.0,8.0}. The results
are plotted in Figure 3. We find that there is no
consistent pattern across different datasets on what
is the optimal «.. Hence, for our main experiments
in the paper, we perform a greedy hyper-parameter
search: we first tune the ratio of adversarial training
samples, then fix the ratio and tune the o parameter
for mixup. A more exhaustive hyper-parameter
search might bring additional performance gains
but would also incur extra computation costs.

Iterative ADA

For our MixADA experiments in the paper, we
generate all adversarial training samples at one shot
and mix them with the original examples before
fine-tuning. An alternative is to generate a new
batch of adversarial training samples dynamically
with the current model at each epoch. We compare
this iterative approach with our MixADA and use
the same ratio of adversarial training samples and
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Figure 2: Performance under attacks on the SST-2
dataset with varying ratio of adversarial training sam-
ples.
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Figure 3: Performance under attacks on the IMDB
dataset with varying « parameter for mixup.

mixup parameter ov. We evaluate ROBERTa on the
SST-2 dataset. The results are in Table 4.

PWWS  TextFooler

TMixADA 36.74 13.78
+iterative 28.45 6.26
SMixADA 41.85 16.80
+iterative 28.78 7.69

Table 4: Performance of MixADA under attacks in the
one-shot approach and the iterative approach.

We find that the iterative approach is far worse
than our one-shot approach. We hypothesize that
in the one-shot approach, we generate the adversar-
ial examples on a fully-fine-tuned model while the
iterative approach generates adversarial examples
on the not-well-fine-tuned model in the first few
epochs, and hence the adversarial examples gener-
ated in the iterative approach are not as challenging
and useful as those in our one-shot approach.
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