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Abstract
In this work, we propose BertGCN, a model
that combines large scale pretraining and trans-
ductive learning for text classification. Bert-
GCN constructs a heterogeneous graph over
the dataset and represents documents as nodes
using BERT representations. By jointly train-
ing the BERT and GCN modules within Bert-
GCN, the proposed model is able to lever-
age the advantages of both worlds: large-scale
pretraining which takes the advantage of the
massive amount of raw data and transductive
learning which jointly learns representations
for both training data and unlabeled test data
by propagating label influence through graph
convolution. Experiments show that BertGCN
achieves SOTA performances on a wide range
of text classification datasets.1

1 Introduction

Text classification is a core task in natural language
processing (NLP) and has been used in many real-
world applications such as spam detection (Wang,
2010) and opinion mining (Bakshi et al., 2016).
Transductive learning (Vapnik, 1998) is a particular
method for text classification which makes use of
both labeled and unlabeled examples in the train-
ing process. Graph neural networks (GNNs) serve
as an effective approach for transductive learning
(Yao et al., 2019; Liu et al., 2020). In these works,
a graph is constructed to model the relationship be-
tween documents. Nodes in the graph represent text
units such as words and documents, while edges
are constructed based on the semantic similarity be-
tween nodes. GNNs are then applied to the graph
to perform node classification. The merits of GNNs
and transductive learning are as follows: (1) the de-
cision for an instance (both training and test) does
not depend merely on itself, but also its neighbors.

1Code available at https://github.com/
ZeroRin/BertGCN.

This makes the model more immune to data out-
liers; (2) at the training time, since the model prop-
agates influence from supervised labels across both
training and test instances through graph edges,
unlabeled data also contributes to the process of
representation learning, and consequently higher
performances.

Large-scale pretraining has recently demonstrated
their effectiveness on a variety of NLP tasks (De-
vlin et al., 2018; Liu et al., 2019). Trained on
large-scale unlabeled corpora in an unsupervised
manner, large-scale pretrained models are able to
learn implicit but rich text semantics in language
at scale. Intuitively, large-scale pretrained mod-
els have potentials to benefit transductive learning.
However, existing models for transductive text clas-
sification (Yao et al., 2019; Liu et al., 2020) did not
take large-scale pretraining into consideration, and
its effectiveness still remains unclear.

In this work, we propose BertGCN, a model that
combines the advantages of both large-scale pre-
training and transductive learning for text clas-
sification. BertGCN constructs a heterogeneous
graph for the corpus with node being word or docu-
ment, and node embeddings are initialized with pre-
trained BERT representations, and uses graph con-
volutional networks (GCN) for classification. By
jointly training the BERT and GCN modules, the
proposed model is able to leverage the advantages
of both worlds: large-scale pretraining which takes
the advantage of the massive amount of raw data
and transductive learning which jointly learns repre-
sentations for both training data and unlabeled test
data by propagating label influence through graph
edges. The proposed BertGCN model successfully
combines the powers of large-scale pretraining and
graph networks, and achieves new state-of-the-art
performances on a wide range of text classification
datasets.

https://github.com/ZeroRin/BertGCN
https://github.com/ZeroRin/BertGCN
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2 Related Work

Graph neural networks (GNNs) are connectionist
models that capture dependencies and relations be-
tween graph nodes via message passing through
edges that connect nodes (Scarselli et al., 2008;
Hamilton et al., 2017; Xu et al., 2018). GNNs
are practically categorized into (Wu et al., 2020):
graph convolutional networks (Kipf and Welling,
2016a; Wu et al., 2019), graph attention networks
(Veličković et al., 2017; Zhang et al., 2018a), graph
auto-encoder (Cao et al., 2016; Kipf and Welling,
2016b), graph generative networks (De Cao and
Kipf, 2018; Li et al., 2018b) and graph spatial-
temporal networks (Li et al., 2017; Yu et al., 2017).
GNNs serve as powerful tools to utilize the relation-
ship between different objects, and have been ap-
plied to various domains such as traffic prediction
(Yu et al., 2018; Zhang et al., 2018a) and recom-
mendation (Zhang et al., 2020; Monti et al., 2017).
In the context of NLP, GNNs have achieved re-
markable successes across a wide range of end
tasks such as relation extraction (Zhang et al.,
2018b), semantic role labeling (Marcheggiani and
Titov, 2017), data-to-text generation (Marcheggiani
and Perez-Beltrachini, 2018), machine translation
(Bastings et al., 2017) and question answering
(Song et al., 2018; De Cao et al., 2018).

The prevalence of neural networks has motivated a
diverse array of works on developing neural models
for text classification. Different neural model ar-
chitectures (Kim, 2014; Zhou et al., 2015; Radford
et al., 2018; Chai et al., 2020) have demonstrated
their effectiveness against traditional statistical fea-
ture based methods (Wallach, 2006). Other works
leverage label embeddings and jointly train them
along with input texts (Wang et al., 2018; Pappas
and Henderson, 2019). More recently, the suc-
cess achieved by large-scale pretraining models
has spurred great interests in adapting the large-
scale pretraining framework (Devlin et al., 2018)
into text classification (Reimers and Gurevych,
2019), leading to remarkable progressive on few-
shot (Mukherjee and Awadallah, 2020) and zero-
shot (Ye et al., 2020) learning.

Our work is inspired by the work of using graph
neural networks for text classification (Yao et al.,
2019; Huang et al., 2019; Zhang and Zhang, 2020).
But different from these works, we focus on com-
bining large-scale pretrained models and GNNs,
and show that GNNs can significantly benefit from

large-scale pretraining. Existing works that com-
bine BERT and GNNs uses graph to model rela-
tionships between tokens within a single document
sample (Lu et al., 2020; He et al., 2020b), which
fall into the category of inductive learning. Dif-
ferent from these works, we use graph to model
relationships between different samples from the
whole corpus to utilize the similarity between la-
beled and unlabeled documents, and uses GNNs to
learn their relationships.

3 Method

3.1 BertGCN

In the proposed BertGCN model, we initialize rep-
resentations for document nodes in a text graph
using a BERT-style model (e.g., BERT, RoBERTa).
These representations are used as inputs to GCN.
Document representations will then be iteratively
updated based on the graph structures using GCN,
the outputs of which are treated as final represen-
tations for document nodes, and are sent to the
softmax classifier for predictions. In this way, we
are able to leverage the complementary strengths
of pretrained models and graph models.

Specifically, we construct a heterogeneous graph
containing both word nodes and document nodes
following TextGCN (Yao et al., 2019). We define
word-document edges and word-word edges based
on the term frequency-inverse document frequency
(TF-IDF) and positive point-wise mutual informa-
tion (PPMI), respectively. The weight of an edge
between two nodes i and j is defined as:

Ai,j =


PPMI(i, j), i, j are words and i 6= j
TF-IDF(i, j), i is document, j is word
1, i = j
0, otherwise

(1)

In TextGCN, an identity matrix X = Indoc+nword

is used as initial node features, where ndoc is the
number of document nodes, nword is the number of
word nodes (including both training and test). In
BertGCN, we use a BERT-style model to obtain
the document embeddings, and treat them as input
representations for document nodes. Document
node embeddings are denoted by Xdoc ∈ Rndoc×d,
where d is the embedding dimensionality. Overall,
the initial node feature matrix is given by:

X =

(
Xdoc
0

)
(ndoc+nword)×d

(2)
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We feed X into a GCN model (Kipf and Welling,
2016a) which iteratively propagates messages
across training and test examples. Specifically, the
output feature matrix of the i-th GCN layer L(i) is
computed as

L(i) = ρ(ÃL(i−1)W (i)) (3)

where ρ is an activation function, Ã is the normal-
ized adjacency matrix and W (i) ∈ Rdi−1×di is a
weight matrix of the layer. L(0) = X is the in-
put feature matrix of the model. Outputs of GCN
are treated as final representations for documents,
which is then fed to the softmax layer for classifi-
cation:

ZGCN = softmax(g(X,A)) (4)

where g represents the GCN model. We use the
cross entropy loss over labeled document nodes to
jointly optimize parameters for BERT and GCN.

3.2 Interpolating BERT and GCN
Predictions

Practically, we find that optimizing BertGCN with
a auxiliary classifier that directly operates on BERT
embeddings leads to faster convergence and better
performances. Specifically, we construct an auxil-
iary classifier by directly feeding document embed-
dings (denoted byX) to a dense layer with softmax
activation:

ZBERT = softmax(WX) (5)

The final training objective is the linear interpola-
tion of the prediction from BertGCN and the pre-
diction from BERT, which is given by:

Z = λZGCN + (1− λ)ZBERT (6)

where λ controls the tradeoff between the two ob-
jectives. λ = 1 means we use the full BertGCN
model, and λ = 0 means we only use the BERT
module. When λ ∈ (0, 1), we are able to balance
the predictions from both models, and the BertGCN
model can be better optimized.

The explanation for better performances achieved
by the interpolation is as follows: The ZBERT di-
rectly operates on the input of GCN, making sure
that inputs to GCN are regulated and optimized
towards the objective. This helps the multi-layer
GCN model to overcome intrinsic drawbacks such
as gradient vanishing or over-smoothing (Li et al.,
2018a), and thus leads to better performances.

3.3 Optimization using Memory Bank

The original GCN model uses the full-batch gra-
dient descent method for training, which is in-
tractable for the proposed BertGCN model, since
the full-batch method can not be applied to BERT
due to the memory limitation. Inspired by tech-
niques in contrastive learning which decouples the
dictionary size from the mini-batch size (Wu et al.,
2018; He et al., 2020a), we introduce a memory
bank that stores all document embeddings to decou-
ple the training batch size from the total number of
nodes in the graph.

Specifically, during training, we maintain a mem-
ory bank M that tracks input features for all doc-
ument nodes. At the beginning of each epoch, we
first compute all document embeddings using the
current BERT module and store them in M . Dur-
ing each iteration, we sample a mini batch from
both labeled and unlabeled document nodes with
the index set B = {b0, b1...bn}, where n is the
mini-batch size. We then compute their document
embeddingsMB also using the current BERT mod-
ule and update the corresponding memories in M .2

Next, we use the updated M as input to derive the
GCN output and compute the loss for the current
mini batch. For back-propagation, M is considered
as constant except the records in B.

With the memory bank, we are able to efficiently
train the BertGCN model including the BERT mod-
ule. However, during training, the embeddings in
the memory bank are computed using the BERT
module at different steps in an epoch and are thus
inconsistent. To overcome this issue, we set a small
learning rate for the BERT module to improve con-
sistency of the stored embeddings. With low learn-
ing rate the training takes more time. In order to
speed up training, we fine-tune a BERT model on
the target dataset before training begins, and use it
to initialize the BERT parameters in BertGCN.

4 Experiments

4.1 Experiment Setups

We run experiments on five widely-used text classi-
fication benchmarks: 20 Newsgroups (20NG)3, R8

2Note that the BERT module used to compute MB is the
one finished training in the last iteration, which is different
from the the BERT module used to compute the initial M .

3http://qwone.com/~jason/20Newsgroups/

http://qwone.com/~jason/20Newsgroups/
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Model 20NG R8 R52 Ohsumed MR

TextGCN 86.3 97.1 93.6 68.4 76.7
SGC 88.5 97.2 94.0 68.5 75.9
BERT 85.3 97.8 96.4 70.5 85.7
RoBERTa 83.8 97.8 96.2 70.7 89.4
BertGCN 89.3 98.1 96.6 72.8 86.0
RoBERTaGCN 89.5 98.2 96.1 72.8 89.7
BertGAT 87.4 97.8 96.5 71.2 86.5
RoBERTaGAT 86.5 98.0 96.1 71.2 89.2

Table 1: Results for different models on transductive
text classification datasets. We run all models 10 times
and report the mean test accuracy.

and R524, Ohsumed5 and Movie Review (MR)6.

We compare BertGCN to current state-of-the-art
pretrained and GCN models: TextGCN (Yao et al.,
2019), SGC (Wu et al., 2019), BERT (Devlin et al.,
2018) and RoBERTa (Liu et al., 2019). Details for
datasets and baseline are left in the supplementary
material.

We follow protocols in TextGCN to preprocess data.
For BERT and RoBERTa, we use the output feature
of the [CLS] token as the document embedding,
followed by a feedforward layer to derive the final
prediction. We use BERTbase and a two-layer GCN
to implement BertGCN. We initialize the learning
rate to 1e-3 for the GCN module and 1e-5 for the
fine-tuned BERT module. We also implement our
model with RoBERTa and GAT (Veličković et al.,
2017). GAT variants are trained over the same
graph as GCN variants, but learn edge weights
through attention mechanism instead of using pre-
defined weight matrix.

4.2 Main Results

Table 1 presents the test accuracy of each model.
We can see that BertGCN and RoBERTaGCN per-
form the best across all datasets. Only using BERT
and RoBERTa generally performs better than GCN
variants except 20NG, which is due to the great
merits brought by large-scale pretraining. Com-
pared with BERT and RoBERTa, the performance
boost from BertGCN and RoBERTaGCN is signifi-
cant on the 20NG and Ohsumed datasets. This is
because the average length in 20NG and Ohsumed
is much longer than that in other datasets: the
graph is constructed using word-document statis-

4https://www.cs.umb.edu/~smimarog/
textmining/datasets/

5http://disi.unitn.it/moschitti/
corpora.htm

6http://www.cs.cornell.edu/people/
pabo/movie-review-data/

Figure 1: Accuracy of RoBERTaGCN when varying λ
on 20NG development set. The dotted line indicates
the corresponding RoBERTa baseline.7

Strategy w/ both w/o finetune w/o small lr. w/o both
Accuracy 94.7 93.8 10.38 10.38

Table 2: Accuracy on 20NG development set for differ-
ent strategies. “finetune” means we use the finetuned
RoBERTa as initialization, and “small lr.” means we
use a smaller learning rate for the RoBERTa module.

tics, which means that long texts may produce
more document connections transited via an in-
termediate word node, and this potentially benefits
message passing through the graph, leading to bet-
ter performances when combined with GCN. This
may also explain why GCN models perform bet-
ter than BERT models on 20NG. For datasets with
shorter documents such as R52 and MR, the power
of graph structure is limited, and thus the perfor-
mance boost is smaller relative to 20NG. BertGAT
and RoBERTaGAT can also benefit from the graph
structure, but their performance are not as good
as GCN variants due to the lack of edge weight
information.

4.3 The Effect of λ

λ controls the trade-off between training BertGCN
and BERT. The optimal value of λ can be different
for different tasks. Fig.1 shows the accuracy of
RoBERTaGCN with different λ. On 20NG, the
accuracy is consistently higher with larger λ value.
This can be explained by the high performance of
graph-based methods on 20NG. The model reaches
its best when λ = 0.7, performing slightly better
than only using the GCN prediction (λ = 1).

https://www.cs.umb.edu/~smimarog/textmining/datasets/
https://www.cs.umb.edu/~smimarog/textmining/datasets/
http://disi.unitn.it/moschitti/corpora.htm
http://disi.unitn.it/moschitti/corpora.htm
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
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4.4 The Effect of Strategies in Joint Training

To overcome inconsistency of embeddings in the
memory bank, we set a smaller learning rate for
the BERT module and use a finetuned BERT
model for initialization. We evaluate the effect
of the two strategies. Table 2 shows the results
of RoBERTaGCN on 20NG with and without
these strategies. With the same learning rate for
RoBERTa and GCN, the model cannot be trained
due to inconsistency in the memory bank, regard-
less of whether the fine-tuned RoBERTa is used.
Models can be successfully trained when we set
a smaller learning rate for the RoBERTa module,
and additional using finetuned RoBERTa leads to
the best performance.

5 Conclusion and Future Work

In this work, we propose BertGCN, which takes the
best advantages from both large-scale pretraining
models and transductive learning for text classifi-
cation. We efficiently train BertGCN by using a
memory bank that stores all document embeddings
and updates part of them with respect to the sam-
pled mini batch. The framework of BertGCN can
be built on top of any document encoder and any
graph model. Experiments demonstrate the power
of the proposed BertGCN model. However, in
this work, we only use document statistics to build
the graph, which might be sub-optimal compared
to models that are able to automatically construct
edges between nodes. We leave this in future work.
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A Dataset Details

• The 20NG dataset9 contains 18,846 news-
groups posts from 20 different topics. We
use the bydate version which splits the dataset
to 11,314 train samples and 7,532 test samples
based on the posting date.

• R8 and R5210 are two subsets of the Reuters
dataset with respectively 8 and 52 categories.
R8 has 5,485 training and 2,189 test docu-
ments. R52 has 6,532 training and 2,568 test
documents.

9http://qwone.com/~jason/20Newsgroups/
10https://www.cs.umb.edu/~smimarog/

textmining/datasets/

• The OHSUMED test collection11 is a set of
references from MEDLINE, the online medi-
cal information database. Following previous
works, we use 7,400 documents belonging to
one of the 23 disease categories to form a clas-
sification dataset, with 3,357 documents for
training and 4,043 for test.

• MR (Pang and Lee, 2005)12 is a movie re-
view dataset for binary sentiment classifica-
tion. The corpus has 10,662 reviews. We use
the train/test split in Tang et al. (2015)

B Baselines

• TextGCN (Yao et al., 2019): TextGCN is a
model that operates graph convolution over a
word-document heterogeneous graph. Node
features are initialized using an identity ma-
trix.

• SGC (Wu et al., 2019): Simple Graph Con-
volution is a variant of GCN that reduces
the complexity of GCN by removing non-
linearities and collapsing weight matrices be-
tween consecutive layers.

• BERT (Devlin et al., 2018): BERT is a large-
scale pretrained NLP model.

• RoBERTa (Liu et al., 2019): a robustly opti-
mized BERT model that improves upon BERT
with different pretraining methods.

11http://disi.unitn.it/moschitti/
corpora.htm

12http://www.cs.cornell.edu/people/
pabo/movie-review-data/
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