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I think I mentioned once before that 
I’ve only had three minute liquor 
glasses of brandy this whole evening. 
Can you pass my tickets? 

Intent: find ticket Emotion: angry
Oh shut up! I do not remember of any 
tickets. 

Emotion: angry

The one that I bought last week and 
you kept them. Get me those now. 

Intent: find ticket Emotion: frustrated

Not very funny, dear. You’d better have 
some more brandy. 

Emotion: angry

coreferential 
information

Very good idea. I will. 

Emotion: angry Tone: sarcastic

inter-speaker 
dependency

label 
dependency

inter-speaker 
dependency

Can I get your phone number, please? 

Intent: find phone number Emotion: 
neutral

Uh. Yeah, I just gave it to the automated 
thing like five times. 

Emotion: frustrated

I am going to need it again. I need to 
look at your file. Please calm down Sir. 
I am here to help you. 

Intent: find phone number Emotion: 
frustrated

Okay. 3236975066. Thank you! 

Emotion: neutral

coreferential 
information

Thank you! Let me check it right way. 

Emotion: neutral

inter-speaker 
dependency

label 
dependency

inter-speaker 
dependency

coreferential 
information inter-s

peaker 

dependency

label 
shift due to other speaker’s response

Figure 1: Role of Context in Utterance Level Dialogue Understanding.

Abstract
The recent abundance of conversational data
on the Web and elsewhere calls for effec-
tive NLP systems for dialogue understanding.
Complete utterance-level understanding often
requires context understanding, partly defined
by the nearby utterances and by the user inten-
tion and background. In recent years, a num-
ber of context-aware approaches have been
proposed for various utterance-level dialogue
understanding tasks. In this paper, we explore
and quantify the role of context for different
aspects of a dialogue, namely emotion, dia-
logue act, and intent identification, using state-
of-the-art dialogue understanding methods as
baselines. Specifically, we employ various per-
turbations to distort the context of a given utter-
ance and study its impact on the different tasks
and baselines. This provides us with insights
into the fundamental context factors that have
immediate implications on different aspects of
a dialogue. Such insights may inspire more
effective dialogue understanding models and
provide support for future text generation ap-
proaches.

1 Introduction
Human-like conversational systems are a long-
standing goal of Artificial Intelligence (AI). How-

ever, the development of such systems is not a
trivial task, as we often participate in dialogues
by relying on several contextual factors such as
emotions, prior assumptions, intent, or personality
traits. It is thus not surprising that the landscape of
dialogue understanding research embraces several
challenging tasks, such as, emotion recognition in
conversations (ERC), dialogue intent classification,
user-state representation, and others. These tasks
are often performed at utterance level and can be
conjoined together under the umbrella of utterance-
level dialogue understanding. Due to the fast-
growing research interest in dialogue understand-
ing, several novel approaches have recently been
proposed (Qin et al., 2020; Rashkin et al., 2019;
Xing et al., 2020; Lian et al., 2019; Saha et al.,
2020) to address the tasks by adopting speaker-
specific and contextual modeling. However, to
the best of our knowledge, the role of context has
not been thoroughly explored across these tasks,
partly due also to the lack of an unified framework
across various utterance-level dialogue understand-
ing tasks. In this work, we explore the role of
context in utterance-level dialogue understanding.
We use a contextual utterance-level dialogue under-
standing baseline (bcLSTM (Poria et al., 2017)) as
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a strong baseline for the six dialogue-understanding
tasks in four datasets. We propose several unique
context probing strategies and experimental de-
signs that test and measure: (1) speaker-specific
context; (2) context order; (3) paraphrased context;
(4) label shifts; (5) role of CRF in the sequence tag-
ging of utterances in a dialogue. These strategies
can be easily adapted for other tasks for similar
purposes and provide insights into the development
of new approaches to address these tasks.

Task Definition: Given a conversation along
with speaker information of each constituent utter-
ance, the utterance-level dialogue understanding
task aims to identify the label of each utterance
from a set of predefined labels that can be a set of
emotions, dialogue acts, intents etc. Fig. 1 illus-
trates one such conversation between two people,
where each utterance is labeled by emotion and
intent. Formally, given the input sequence of N ut-
terances [(u1, p1), (u2, p2), . . . , (uN , pN )], where
each utterance ui = [ui,1, ui,2, . . . , ui,T ] consists
of T words and spoken by party pi, the task is to
predict the label ei of each utterance ui. The clas-
sifier can make use of the conversational context in
the process.

2 Models

We train our classification models in an end-to-end
setup. We first extract utterance level features with
a CNN module with pretrained GloVe vectors. The
resulting features are non-contextual in nature as
they are obtained from utterances without the sur-
rounding context. We then classify the utterances
with one of the following two models: i) Logistic
Regression, or ii) bcLSTM. Among these, the Lo-
gistic Regression model is non-contextual in nature,
whereas the bcLSTM is contextual. We expand on
the feature extractor and the classifier in detail next.

2.1 Utterance Feature Extractor
Utterance level features are extracted using the fol-
lowing method:

GloVe CNN. A convolutional neural network
(Kim, 2014) is used to extract features from the
utterances of the conversation. We use a convolu-
tional layer followed by max-pooling and a fully-
connected layer to obtain the representation of the
utterance. Each word in the utterances is initialized
with 300d pretrained GloVe embeddings (Penning-
ton et al., 2014). We pass these to convolutional
filters of sizes 1, 2, and 3, each having 100 feature

maps. The output of these filters are then max-
pooled across all the words of an utterance. These
are then concatenated and fed to a 100 dimensional
fully-connected layer with ReLU activation (Nair
and Hinton, 2010). The output after the activation
form the final representation of the utterance.

2.2 Utterance Classifier
The representations obtained from the Utterance
Feature Extractor are then classified using one of
the following two methods:

Without Context Classifier. In this model, clas-
sification of an utterance is performed using a fully
connected multi-layer perceptron layer. This clas-
sification setup is non-contextual in nature as there
is no flow of information from the contextual utter-
ances. We call this model GloVe CNN.

GloVe bcLSTM. The Bidirectional Contextual
LSTM model (bcLSTM) (Poria et al., 2017) creates
context-aware utterance representations by captur-
ing the contextual content from the surrounding
utterances using a Bi-directional LSTM (Hochre-
iter and Schmidhuber, 1997) network. bcLSTM
is a strong contextual utterance-level dialogue un-
derstanding baseline, with consistent performance
across all six dialogue-understanding tasks consid-
ered in this work. In our experiments, on an average
bcLSTM is only 1% worse than the state of the art
across the six tasks that we address in this work. As
opposed to more complicated models (Majumder
et al., 2019; Qin et al., 2020; Zhong et al., 2019),
the simpler architecture of bcLSTM is devoid of
complicated interactions amongst the contextual
utterances, as attention. This enables easier inter-
pretation of the effects of the perturbations of the
context.

The feature representations extracted by the Ut-
terance Feature Extractor serve as the input to
the bcLSTM network. Finally, the context-aware
utterance representations from the output of the
bcLSTM are used for the label classification. The
bcLSTM model is speaker independent as it does
not model any speaker level dependency. In our
implementation, we add a residual connection be-
tween the first and the output from the final layer to
improve the network’s stability. We call this model
GloVe bcLSTM.

Why GloVe based CNN and LSTM-based Mod-
els: In this study, we consider GloVe CNN,
GloVe bcLSTM and set up different scenarios to an-
alyze them because these models are conceptually



1437

much more straightforward than other state-of-the-
art models such as DialogueRNN (Majumder et al.,
2019) and DialogueGCN (Ghosal et al., 2019). For
example, DialogueRNN also tracks the speaker
states in addition to context. Thus, perturbations in
the input would influence speaker modeling along
with context modeling. This results in more com-
plex deviations than bcLSTM, and are more dif-
ficult to analyze. Simple models are likely to be
more interpretable. E.g., owing to DialogueRNN’s
complexity, we need to perform different levels of
ablation studies to explain its behavior.

Furthermore, we use GloVe embeddings as re-
cent transformer based models such as BERT (De-
vlin et al., 2018) is trained using the masked lan-
guage model (MLM) objective that is already very
powerful in modeling cross sentential context rep-
resentation as demonstrated by other works (Liu
et al., 2019; Lewis et al., 2019). Hence, to con-
duct a fair comparison between non-contextual and
contextual models and further, for an easier ap-
prehension on the role of contextual information
in utterance-level dialogue understanding, we re-
sort to the GloVe CNN and LSTM-based models.
Additionally, as we perform a number of analysis
studies, the GloVe based models were computa-
tionally much more efficient and faster to train and
analyze.

3 Experimental Setup

3.1 Datasets

All the dialogue classification datasets that we con-
sider in this work consists of two-party conver-
sations in English language. We benchmark the
models on the following datasets (see Table 1):

IEMOCAP (Busso et al., 2008) is a dataset
of two person conversations among ten different
unique speakers. The train set dialogues come from
the first eight speakers, whereas the test set dia-
logues are from the last two. Each utterance is
annotated with one of the following six emotions:
happy, sad, neutral, angry, excited, and frustrated.

Dataset # dialogues # utterances
train val test train val test

IEMOCAP 108 12 31 5163 647 1623
DailyDialog 11,118 1,000 1,000 87,179 8,069 7,740
MultiWOZ 8,438 1000 1,000 113,556 14,748 14,744
Persuasion 220 40 40 7902 1451 1511

Table 1: Statistics of splits and evaluation metrics used in
different datasets. Neutral* classes constitutes to 83% of the
DailyDialog dataset. These are excluded when calculating the
metrics in DailyDialog.

DailyDialog (Li et al., 2017) covers various top-
ics about our daily life and follows the natural hu-
man communication approach. All utterances are
labeled with both emotion categories and dialogue
acts. The emotion can belong to one of the follow-
ing seven labels: anger, disgust, fear, joy, neutral,
sadness, and surprise. The dataset has over 83%
neutral labels and these are excluded during Macro-
F1 evaluation. In comparison, the dialogue act la-
bel distribution is relatively more balanced. The act
labels can belong to the following four categories:
inform, question, directive, and commissive.

MultiWOZ (Budzianowski et al., 2018) or
Multi-Domain Wizard-of-Oz dataset is a fully-
labeled collection of human-human conversations
spanning over multiple domains and topics. The
dataset has been created for task-oriented dialogue
modelling and has 10,000 dialogues, which is at-
least an order bigger than previously available task-
oriented corpora. The dialogues are labelled with
belief states and actions. It contains conversations
between an user and a system from the following
seven domains: restaurant, hotel, attraction, taxi,
train, hospital and police. Here we focus on clas-
sifying the intent of the utterances from the user
which belong to one of the following categories:
book restaurant, book train, find restaurant, find
train, find attraction, find bus, find hospital, find
hotel, find police, find taxi, and None. The None
utterances are not included in evaluation. Note that,
utterances from the system side are not labelled
and thus are not classified in our framework.

Persuasion For Good (Wang et al., 2019)
dataset is a persuasive dialogue dataset where one
participant aims to persuade the other participant
to donate his/her earning using different persuasion
strategies. The two participants are denoted as
Persuader aka ER and Persuadee aka EE respec-
tively. In this work, we formulate our problem to
classify the utterances of Persuader and Persuadee
separately using the full context of the conversation.
This task can also be considered as a dialogue
act classification task. The Persuader strategies
are to be classified into the following eleven
categories: donation-information, logical-appeal,
personal-story, foot-in-the-door, credibility-
appeal, emotion-appeal, personal-related-inquiry,
source-related-inquiry, self-modeling, task-related-
inquiry, and non-strategy-acts. The strategy can
belong to one of the following thirteen categories
for Persuadee,: disagree-donation-more, ask-org-
info, agree-donation, provide-donation-amount,
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Model
IEMOCAP DailyDialog MultiWOZ Persuasion

Emotion Emotion Act Intent ER EE
GloVe CNN 51.08 38.72 71.20 84.64 54.44 39.95
GloVe bcLSTM 61.90 41.16 79.46 96.22 56.28 44.83

w/o Inter-Speaker Dependency 63.73 39.99 74.50 95.05 53.24 40.63
w/o Intra-Speaker Dependency 56.45 35.93 78.69 95.75 52.23 38.93

Table 2: Classification performance in test data for the dif-
ferent tasks. Utterances from other speakers and the same
speaker are absent respectively in the w/o inter and w/o intra
settings. Scores are W-Avg F1 in IEMOCAP Emotion and
MultiWOZ Intent; Macro F1 in the rest. All scores are aver-
age of 20 different runs. Test F1 scores are calculated at best
validation F1 scores.

disagree-donation, personal-related-inquiry,
task-related-inquiry, ask-donation-procedure,
negative-reaction-to-donation, positive-reaction-
to-donation, ask-persuader-donation-intention,
neutral-reaction-to-donation, and other-acts.

3.2 Evaluation Metrics
In our experiments, we use Weighted average (W-
Avg) F1 score in IEMOCAP emotion and Multi-
WOZ intent classification. For the other tasks –
DailyDialog emotion, DailyDialog act, Persuader
and Persuadee strategy classification – the label
distribution is highly imbalanced, hence we report
Macro F1 scores. In DailyDialog emotion classifi-
cation, neutral labels are excluded (masked) while
calculating the metrics. However, these utterances
are still passed in the input of the different models.

4 Analysis

4.1 Speaker-specific Context Control
We first report the performance of the baseline
GloVe CNN and GloVe bcLSTM model in the first
two rows of Table 2. To further evaluate the intra-
and inter-speaker dependence and relation across
the different tasks in the GloVe bcLSTM model,
we adopted two different settings as follows –

• w/o Inter-Speaker Dependency: when classi-
fying a target utterance from speaker A, we drop
the utterances of the speaker B from the context
and vice versa.

• w/o Intra-Speaker Dependency: when classi-
fying a target utterance from speaker A, we only
keep utterances of the speaker B and drop all
other utterances of speaker A from the context
and vice versa.

Utterances of the Non-target Speaker are Im-
portant. The first setting coerces LSTM to only
rely on the target speaker’s (speaker of the target
utterance) context in prediction. The results are re-
ported in Table 2. As expected, performance drops

are observed for all the datasets but IEMOCAP for
emotion recognition, reinforcing the fact that the
contextual utterances from the non-target speakers
are important. Performance drop in DailyDialog
dataset for act classification is noticeably the steep-
est. In the IEMOCAP dataset, we observe a pattern
of the speakers maintaining the same emotion along
a dialogue. This suggests that the speakers in the
IEMOCAP dataset repeat the same emotion along
consecutive utterances. Consequently, this induces
a dataset bias. Hence, unlike the task of dialogue
generation where the role of listener’s utterance is
key in generating speaker’s response, we suspect
in the case of emotion recognition in IEMOCAP
dataset, removing other interlocutor’s utterances
from the context makes it easier and less confus-
ing for the LSTM-based model to learn relevant
contextual representations for the prediction. Con-
trary to this, although existing, repetitions of same
or similar emotions in consecutive utterances of a
speaker are less prevalent for emotion recognition
in the DailyDialog dataset.

Utterances of the Target Speaker are also Im-
portant. ‘w/o Intra-Speaker Dependency’ sce-
nario reported in Table 2 exhibits the importance
of the utterances of the non-target speaker in the
classification of the target utterance. In DailyDia-
log act and MultiWOZ intent classification, even
when we remove the contextual utterances from the
same speaker, the utterances from the non-target
speaker provides key contextual information as
evidenced by the performance in the ‘w/o Intra-
Speaker Dependency’ setting. In those tasks, drop-
ping the utterances of the non-target speaker results
in more performance degradation as compared to
the case when utterances from the target speaker
are removed from the target utterance’s context.
This observation also supports the dialogue genera-
tion works (Zhou et al., 2017) that mainly consider
previous utterances of the non-target speaker as
the context for response generation. For emotion
classification in DailyDialog and strategy classi-
fication in Persuasion For Good, the results ob-
tained from ‘w/o Intra-Speaker Dependency’ set-
ting are also relatively lesser compared to the base-
line bcLSTM setting. This confirms the higher con-
textual salience of the target speaker’s utterances
over the non-target speaker’s utterances for these
particular tasks. In the case of the IEMOCAP emo-
tion classification, removing the target speaker’s
utterances from the context causes a substantial
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performance dip for the reasons stated earlier.
Interestingly, the ‘w/o Inter-Speaker Depen-

dency’ setting in the DailyDialog dataset manifests
two distinct trends for two different tasks – act
classification and emotion recognition. While non-
target speakers’ utterances carry a little value for
emotion recognition, they are extremely beneficial
for act classification. This calls for task-specific
context modeling techniques which should be the
focus of the future works.
Key Takeaways of this Experiment. Although
both target and non-target speakers’ utterances are
useful in several utterance-level tasks, we observe
some divergent trends in some of the tasks in our ex-
periments. Hence, we surmise that a task-agnostic
unified context model may not be optimal in solv-
ing all the tasks. In the future, we should strive
for task-specific contextual models as each task
can have unique features that make it distinct from
others. One can also think of multi-task architec-
tures where two tasks can corroborate each other
in improving the overall performance.

Logically, dropping contextual utterances in a
dialogue leads to inconsistency in the context and
consequently, it should degrade the performance
of a model that relies on the context for infer-
ence. Hence, given an unmodified dialogue flow,
an ideal contextual model is expected to refer to
the right amount of contextual utterances relevant
in inferring the label of a target utterance. In con-
trast, bcLSTM shows performance improvement
for IEMOCAP emotion classification when utter-
ances from the non-target speaker are dropped (re-
fer to the ‘w/o Inter-Speaker Dependency’ row in
Table 2). The performance does not change much
for dialogue act and intent classification in the Dai-
lyDialog and MultiWOZ, respectively, when we
drop utterances of the target speaker. These con-
trasting results indicate a potential drawback of
the bcLSTM model in efficiently utilizing contex-
tual utterances of both interlocutors in unmodified
dialogues for the above mentioned tasks.

4.2 Classification in Shuffled Context
To analyze the importance of context, we shuf-
fle the utterance order of a dialogue and try to
classify the correct label from the shuffled se-
quence. For example, a dialogue having utter-
ance sequence of {u1, u2, u3, u4, u5} is shuffled
to {u5, u1, u4, u2, u3}. This shuffling is carried
out randomly, resulting in an utterance sequence
whose order is different from the original sequence.

Context Shuffling Strategy IEMOCAP DailyDialog MultiWOZ Persuasion
Train Val Test Emotion Emotion Act Intent ER EE

7 7 7 61.90 41.16 79.46 96.22 56.28 44.83
X X 7 59.74 36.87 74.88 91.34 54.91 41.52
7 7 X 57.63 34.58 66.81 67.91 50.69 37.17
X X X 59.82 37.69 74.62 90.78 53.60 40.96

Table 3: Test performance of GloVe bcLSTM models in
the different tasks for various shuffling strategies. In Train,
Val, Test column Xdenotes shuffled context and 7denotes un-
changed context. Scores are W-Avg F1 in IEMOCAP Emotion
and MultiWOZ Intent; Macro F1 in the rest. Test F1 scores
are calculated at best validation F1 scores.

We design three such shuffling experiments: i) dia-
logues in train and validation sets are shuffled, test
set is unchanged, ii) dialogues in train and valida-
tion sets are kept unchanged, but dialogues in test
set are shuffled, iii) dialogues in train, validation
and test sets are all shuffled.

We analyze these shuffling strategies in the
GloVe bcLSTM model. In theory, the recurrent
nature of the LSTM model allows it to be capable
of modelling contextual information from the be-
ginning of the sequence to the very end. However,
when classifying an utterance, the most crucial con-
textual information comes from the neighbouring
utterance. In an altered context, the model would
find it difficult to predict the correct labels because
the original neighbouring utterances may not be in
immediate context after shuffling. This kind of per-
turbation would make the context modelling less
efficient, and performance is likely to drop com-
pared to their non-shuffled context counterparts.
This is empirically shown in Table 3.

We observe that, whenever there is some shuf-
fling in train, validation, or test set, the performance
decreases a few points in all the datasets across all
tasks and evaluation metrics. Notably, the perfor-
mance drop is highest when the dialogues in train,
validation sets are kept unchanged and dialogues
in test set are shuffled. Note that, the result for
this shuffling strategy (only test set is shuffled) in
MultiWOZ stands at 67.91%, much lower than the
original baseline of 96.22%. This is because, the
test score of 67.91% is reported at the best valida-
tion score, even though we obtain better test scores
at the initial epochs of training (around 78%).

Our reported results and observations are contra-
dictory to the claims made by Sankar et al. (2019).
According to Sankar et al. (2019), the shuffling of
contextual utterances does not affect the response
generation performance of a seq2seq model. There
can be a number of reasons for these two con-
tradicting observations: 1) first, the characteris-
tics of utterance labels in a dialogue are different
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#
Attack Strategy

Window
IEMOCAP DailyDialog MultiWOZ Persuasion

Method Past Future Target Emotion Emotion Act Intent ER EE

1 - - - - - 61.90 41.16 79.46 96.22 56.28 44.83

2 PA X 7 7 3 61.09 40.82 75.81 95.67 56.46 43.64
3 PA X 7 7 5 60.93 38.79 77.23 95.53 56.41 41.93
4 PA X 7 7 10 59.83 - - 95.23 54.89 39.89
5 PA 7 X 7 3 61.58 39.60 79.11 95.94 55.83 43.21
6 PA 7 X 7 5 60.99 39.77 79.17 95.64 55.43 40.67
7 PA 7 X 7 10 60.72 - - 95.77 57.12 43.36
8 PA X X 7 3 59.43 37.16 76.61 94.87 57.44 42.51
9 PA X X 7 5 58.36 38.76 76.53 94.61 53.32 43.33
10 PA X X 7 10 57.29 - - 94.31 54.36 43.80
11 PA 7 7 X - 58.08 37.16 75.30 93.78 50.24 38.78
12 PA X X X 3 56.53 23.46 73.16 91.47 47.50 37.39
13 PA X X X 5 53.64 28.59 73.18 90.98 45.31 35.16
14 PA X X X 10 51.33 - - 90.58 49.00 32.49

Table 4: Results for PA: Paraphrasing-based Attack in
utterance-based GloVe bcLSTM model. In DailyDialog, we
constrain the window size to 3 and 5 as there are an average
of 8 utterances per dialogue in the dataset. Scores are W-Avg
F1 in IEMOCAP Emotion and MultiWOZ Intent; Macro F1
in the rest.

from responses—responses are subjective and not
unique, however labels are usually agreed upon by
the observers to some degree—, 2) second, instead
of reporting qualitative results, Sankar et al. (2019)
only reported the perplexity score of their experi-
ments. As stated in (Cai et al., 2019), perplexity
and BLEU scores may not correctly represent the
quality of the response generation.

4.3 Attacks with Context and Target
Paraphrasing

Modern machine learning systems are often sus-
ceptible to attacks that slightly perturb the input
without any drastic change in the semantics. Al-
though prevalent in images, adversarial examples
also exist in neural network-based NLP applica-
tions. In the context of NLP, crafting adversarial
examples would require making character-, word-,
or sentence-level modifications to the input text
to trick the classifier into misclassification. Para-
phrasing sentences is one such method to construct
effective adversarial examples (Iyyer et al., 2018).
We conduct several experiments to evaluate the sen-
sitivity of utterance-level dialogue understanding
systems to input paraphrasing. It should be noted
that although task-specific adversarial strategies
could be adopted, we chose to use a general set
of attacking strategies in order to understand the
behavior of the baseline across different tasks and
datasets. This also facilitates a fair comparison
among the tasks and whether there is a confound-
ing factor that differentiates one task from another
under the same attacking strategies.

Method. We use the following scheme to analyze
this effect:

• The input utterances are modified at word level.
For this modification, an average of 3 to 4 words

Model
IEMOCAP DailyDialog MultiWOZ Persuasion

Emotion Emotion Act Intent ER EE

GloVe CNN 51.08 38.72 71.20 84.64 54.44 39.95
GloVe CNN PA 39.19(↓23.27) 23.82(↓39.64) 62.93(↓13.01) 70.34(↓16.89) 42.8(↓21.38) 33.59(↓15.91)

bcLSTM 61.90 41.16 79.46 96.22 56.28 44.83
bcLSTM PA 58.08(↓6.17) 37.16(↓9.71) 75.3(↓5.23) 93.78(↓2.53) 50.24(↓10.73) 38.78(↓13.49)

Table 5: Results for PA: Paraphrasing-based Attack in GloVe
CNN model on target utterance and comparing it to bcLSTM
results in Table 4. Scores are W-Avg F1 in IEMOCAP Emo-
tion, MultiWOZ Intent; Macro F1 in the rest.

are selected per utterance and masked. The pre-
trained RoBERTa model is then used to fill the
masks with the most likely candidates. The utter-
ance with substituted words form the new input.
We call this method Paraphrasing-based Attack
(PA).

• For each utterance (ut) in a dialogue, we take a
window of w immediate neighbouring utterances
(context) on which the above modifications are
performed. The window is selected as follows:

– Only past w utterances: ut−w, .., ut−1
– Only future w utterances: ut+1, .., ut+w

– Past w and future w utterances:
ut−w, .., ut−1, ut+1, .., ut+w

– Past w, future w, and the target utterance:
ut−w, .., ut−1, ut, ut+1, .., ut+w

– Only the target utterance: ut

In the last case, the window is empty. In other
cases, we experiment with window size w =
3, 5, 10.

We train a GloVe bcLSTM and a GloVe CNN
model with unadulterated train and validation data.
During evaluation, however, the context and target
are paraphrased as described before. The results
of these experiments for bcLSTM and GloVe CNN
are shown in Table 4 and Table 5, respectively.

Observations. We observe that the
Paraphrasing-based Attack is quite effective
in fooling the classifier in a number of tasks.
The classification performance progressively
deteriorates with larger window sizes.

In DailyDialog act classification, Paraphrasing-
based Attack on only future utterances doesn’t af-
fect the results at all. The classification perfor-
mance still remains very close to the original score
of 79.46 %. We observe that there is a strong re-
liance on the label and content of past utterance
in this task. For example, a question is likely to
be followed by an inform or another question and
much less likely to be followed by a commissive
utterance. Unchanged past context thus results in
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performance that is very close to the original setup.
Attacking the past utterances combined with future
and/or target utterances results in a relatively big-
ger performance drop. We also notice that the drop
in performance is relatively much lesser than the
other tasks except in MultiWOZ for intent classi-
fication. This is possibly because the act labels
are mostly driven by the sentence type and hence
unlikely to be affected from paraphrasing perturba-
tions. For instance, around 30% of the act labels are
of type question, and our attack strategy is almost
guaranteed not to change an utterance with label
question to something which might be classified as
inform, commissive, or directive. Overall, we ob-
serve a consistent plunge in the performance when
the target utterance is attacked by the Paraphrasing-
based Attack method. For intent classification in
MultiWOZ, utterances often have keywords which
indicate the label (presence of train might indicate
class label of find train or book train). In these
cases, if the target utterance is not paraphrased, the
model is still likely to predict the correct label. Fi-
nally, in Persuasion for Good, we observe that the
attack method is slightly more effective in fooling
the classifier for persuadee strategy classification.

In terms of window direction, we observe that
perturbations in the past or future utterances result
in a similar range of reduction in performances.
One notable exception is act prediction in DailyDi-
alog, where the model continues to perform near
the original score of 79.46% irrespective of the
attack in future utterances in the window.

Performance Comparison for Attacks in GloVe
CNN and GloVe bcLSTM. We summarize the
performance of GloVe CNN and GloVe bcLSTM
models against Paraphrasing-based Attack in Ta-
ble 5. For all the tasks, we observe a very signifi-
cant drop in performance for GloVe CNN. For ex-
ample, in emotion classification, the drop is around
23% and 40% for Paraphrasing-based Attack in
IEMOCAP and DailyDialog respectively. How-
ever, for the same setting, the relative decrease
in performance is only around 6% and 10% for
bcLSTM. We observe the same trend in other tasks
where it can be seen that the bcLSTM model is
much more robust against the attack compared to
the CNN model. This is because contextual models
such as bcLSTM are harder to fool as the context
carry key information regarding the semantics of
the target and salient information can be inferred
about the target using its’ context. It is thus evident

that even when the target utterance is corrupted,
bcLSTM is capable of using contextual informa-
tion to predict the label correctly, and subsequently
the decline in performance is much lesser.

In principle, our findings in Table 5 can be re-
lated to how transformer-based pre-trained lan-
guage models work. For example, in BERT (De-
vlin et al., 2018), the masked language modeling
(MLM) and the next sentence prediction (NSP)
objective forces the model to infer or predict the
target using contextual information. Such contex-
tual models are more powerful and robust because
context information plays a crucial role in almost
every natural language processing task. An objec-
tive similar to next sentence prediction in BERT or
permutation language modeling in XLNET (Yang
et al., 2019) can be used for conversation level
pre-training to improve several downstream conver-
sational tasks. Such approaches have been found
to be useful in the past (Hazarika et al., 2019).

4.4 Performance for Label Shift
As discussed before, a few of our tasks of interest
exhibit the label copying property which means
consecutive utterances from the same speaker or
different speakers often have the same or similar
emotion, act, or intent label. The inter-speaker and
intra-speaker label copying is especially prevalent
in the IEMOCAP emotion task, the DailyDialog
act task, and the MultiWOZ intent task. Contextual
models such as bcLSTM make correct predictions
when utterances display such kind of continuation
of the same label. But what happens when there
is a change of label? Does bcLSTM continue to
perform at the same level or is it affected from the
change? To understand this occurrence in more
detail, we define this event as Label Shift and look
at the following two different kind of shifts that
could happen in the course of a dialogue:

• Intra-Speaker Shift: The label of the utterance is
different from the label of the previous utterance
from the same speaker.

• Inter-Speaker Shift: The label of the utterance is
different from the label of the previous utterance
from the non-target speaker.

In these two scenarios explained above, we are
interested to see how bcLSTM performs at the ut-
terances were the label shift takes place.

We report results for utterances in the test data
that show Intra-Speaker Shift and Inter-Speaker
Shift in Table 6. The Inter-Speaker Shift is not
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Setup
IEMOCAP Dailydialog MultiWOZ Persuasion

Emotion Emotion Act Intent ER EE

Original 61.90 41.16 79.46 96.22 56.28 44.83
Intra-Speaker Shift 52.01 (13.2) 44.23 (1.0) 76.18 (2.9) 94.91 (1.6) 57.84 (6.9) 49.4 (4.7)
Inter-Speaker Shift 52.37 (22.0) 47.77 (1.3) 78.80 (4.9) - - -

Table 6: Classification performance for utterances which ex-
hibits Label Shift in test data. Numbers in parenthesis indicate
the average count of the corresponding shifts per dialogue.
There is no Inter-Speaker Shift in MultiWOZ or Persuasion
for Good as we only classify user, persuader, or persuadee
utterances. Scores are W-Avg F1 in IEMOCAP Emotion and
MultiWOZ Intent; Macro F1 in the rest.

defined in MultiWOZ as we don’t have intent labels
for system utterances. We also don’t report Inter-
Speaker Shift results in Persuasion for Good as the
persuader and persuadee strategy set is different.

The emotion labels in IEMOCAP display the
largest extent of label copying. We also observe
in Table 6 that label shifts occur with high fre-
quency in IEMOCAP. These are the likely reasons
why we observe significant number of errors for
utterances with Label Shift for this task in Table 6.
The performance for both Intra-Speaker Shift and
Inter-Speaker Shift stands at around 52.0%, much
lesser than the overall average of 61.9% in test data.
Although not as strong as IEMOCAP, the intra-
speaker label copying feature can also be seen in
MultiWOZ intent and DailyDialog act labels. For
these two tasks, we again observe a drop of per-
formance when either Intra-Speaker Shift or Inter-
Speaker Shift occurs. In contrast, the extent of tran-
sition is spread over a much larger combination of
labels in DailyDialog emotion and Persuasion for
Good. We observe that the results for utterances
with Label Shift in those tasks are in fact better
than the overall score. In DailyDialog emotion,
the scores are 44.23% and 47.77%, which is an
improvement over the original 41.16%. The scores
of 57.84% and 49.4% in Persuasion for Good also
stand over the scores of 56.28% and 44.83% in the
original setup.

4.5 Sequence Tagging using Conditional
Random Field (CRF)

On the surface, the task of utterance level dialogue
understanding looks similar to sequence tagging.
Are there any distinct label dependency and pat-
terns across the tasks that are dataset agnostic and
likely to be captured by CRF (Lafferty et al., 2001)?
In the quest to answer this, we plug in three differ-
ent CRF layers on top of the bcLSTM network.

Global-CRF. It is a linear chain CRF used on
top of bcLSTM. In this setting, we do not consider

speaker information.
It can be defined using the equations below:

P (Y |D) =
1

Z(D)

n∏
i=1

φT (yi−1, yi)φE(yi, ui), (1)

Z(D) =
∑
y′∈Y

n∏
i=1

φT (y
′
i−1, y

′
i)φE(y

′
i, ui). (2)

Global-CRFext. The linear-chain CRF is ex-
tended to include not only the transition potential
from the previous label to the current label, but
also from the prior-to-previous label. Concisely,
the current label is predicated on the previous two
labels. Therefore, the transition potential function
φT takes one extra argument yi−2. The advantage
here is it also considers the previous label from the
target speaker should utterance i − 2 have come
from the target speaker. This becomes useful in
the tasks where the speakers tend to retain label
from its last utterance. It can be defined using the
equations below:

P (Y |D) =
1

Z(D)

n∏
i=1

φT (yi−2, yi−1, yi)φE(yi, ui), (3)

Z(D) =
∑
y′∈Y

n∏
i=1

φT (y
′
i−2, y

′
i−1, y

′
i)φE(y

′
i, ui). (4)

Speaker-CRF. In this setting, we use two dis-
tinct CRFs for the two speakers in a dialogue. Inter-
speaker label dependency and transitions are not
likely to be captured in this setting by the CRFs.

Negative Results. We report the results for CRF
experiments in Table 7 and Table 8. Aside from
the well-known sequence tagging tasks, such as,
Named Entity Recognition (NER) and Part of
Speech Tagging, CRF does not improve the perfor-
mance of utterance-level dialogue understanding
tasks. There could be multiple reasons as below:

1: A dialogue is governed by multiple variables
or pragmatics, e.g., topic, personal goal, past ex-
perience, expressing opinions or presenting facts
based on personal knowledge, and the role of the
interlocutors. Hence, the response pattern can vary
depending on these variables. The personality of
the speakers add an extra layer of complexity to
this which causes speakers to respond differently
under the same circumstances. An identical ut-
terance can be uttered with different emotions by
two different speakers. CRF relies on surface la-
bel patterns which can vary with datasets. Due
to this dynamic nature of dialogues and the pres-
ence of latent controlling variables, the label tran-
sition matrix of CRF does not learn any distinct
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Methods

IEMOCAP DailyDialog
Emotion Emotion Act

W-Avg F1 W-Avg F1 Micro F1 Macro F1 W-Avg F1 Macro F1
GloVe CNN 52.04 49.36 50.32 36.87 80.71 72.07
GloVe bcLSTM 61.74 52.77 53.85 39.27 84.62 79.12

w/o inter 63.73 52.39 52.86 39.99 81.32 74.50
w/o inter w/ speaker-CRF 62.94 52.47 54.04 39.77 81.19 74.12
w/ global-CRF 61.62 53.05 53.86 39.27 83.91 79.10
w/ global-CRFext 61.64 53.06 54.40 39.64 84.27 79.25
w/ speaker-CRF 62.21 53.16 54.68 39.74 84.15 79.20

Table 7: Classification performance in test data for IEMO-
CAP and DailyDialog using different CRF configurations. All
scores are average of at least 10 different runs. Test F1 scores
are calculated at best validation F1 scores.

Methods

MultiWOZ Persuasion
Intent Persuader (ER) Persuadee (EE)

W-Avg F1 W-Avg F1 Macro F1 W-Avg F1 Macro F1
GloVe CNN 84.30 67.15 54.45 58.00 41.03
GloVe bcLSTM 96.14 69.26 55.27 61.18 42.19

w/o inter 95.05 67.81 53.24 59.44 40.63
w/o inter w/ speaker-CRF 94.11 68.13 54.45 58.93 40.16
w/ global-CRF/speaker-CRF 95.48 68.59 55.60 61.24 42.62
w/ global-CRFext 95.51 69.23 56.80 61.89 43.68

Table 8: Classification performance in test data for Multi-
WOZ and Persuasion for Good using different CRF config-
urations. All scores are average of atleast 10 different runs.
Test F1 scores are calculated at best validation F1 scores. In
MultiWOZ and Persuasion for Good, the global-CRF and
speaker-CRF setting are identical as we only classify utter-
ances coming from one of the speakers (user in MultiWOZ,
persuader or persuadee in Persuasion for Good).

pattern that is complementary to what is learned
by the feature extractor. 2: Some of the datasets
— IEMOCAP and MultiWOZ — contain distinct
label-transition patterns between the same and dis-
tinct speakers e.g., the label copying feature in the
IEMOCAP dataset where the same or similar emo-
tions are repeated by the same or both the speak-
ers. Similarly, in the MultWOZ dataset, the intent
book restaurant to be frequently followed by the
intent find taxi. We believe the distinct label pat-
terns in the IEMOCAP and MultiWoZ datasets
is potentially one of the reasons why contextual
models perform so well on these three datasets
and tasks compared to the rest. On these two
daatsets, we expected bcLSTM w/ global-CRF to
outperform vanilla bcLSTM. However, we do not
observe any statistically significant improvement
using bcLSTM w/ global-CRF over bcLSTM. We
posit that the evident label-transition patterns that
exist in these two datasets are straightforward to
capture without a CRF. In fact, we also tried GloVe
CNN with a CRF layer on it, and surprisingly the re-
sult was not significantly higher than that of GloVe
CNN. This can be attributed to the absence of ex-
plicit contextual and label transition-based features
in the CRF.

Results in IEMOCAP and Persuasion for Good
Datasets. We observe a minor performance im-

provement in the IEMOCAP dataset using speaker-
CRF for emotion recognition. This observation
directly correlates to the experiment under “w/o
Inter-Speaker Dependency” setting in Table 2 and
can be largely attributed to the label copying fea-
ture in the IEMOCAP dataset as explained in the
last paragraph. In “w/o Inter-Speaker Dependency”
setting, contextual utterances of the speaker B are
not utilized to classify utterances of speaker A vice
versa. The results do not improve when we use
speaker-level CRF on bcLSTM under the “w/o
Inter-Speaker Dependency” setting. From these
observations, we can conclude that CRF is not
learning any distinct label dependency and tran-
sition patterns that are not learned by the feature
extractor or bcLSTM alone.

Global-CRFext shows significant performance
improvement on the Persuasion for Good dataset.
Some of the key controllable factors of the dia-
logues such as topics in this dataset are fixed and
can be learned intrinsically by the classifier. The
scope of the dialogues in this dataset is very limited
as there are only two possible outcomes of the dia-
logues – agree to donate, and disagree to donate.
Hence, there can be some label transition patterns
learned by the Global-CRFext using a larger label-
context window in the transition potential.

5 Conclusion

In this paper, we explored the role of context for
six utterance-level dialogue understanding tasks in
four different datasets. Using a strong contextual
baseline system (bcLSTM), we gained insights into
the behavior of such contextualized models in the
presence of various context perturbations. Such
probes have bolstered many interesting intuitions
about utterance-level dialogue understanding—the
role of label dependency and future utterances; the
role of speaker-specific contextual modelling; and
the robustness of contextual models as opposed to
their non-contextual counterparts against adversar-
ial probes. We believe that these probing strategies
can be straightforwardly adapted to other context-
reliant tasks. The implementation pertaining to
this work is available at https://github.com/

declare-lab/dialogue-understanding.
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A Label Transitions.

To check whether there lies any patterns in the label
sequences of the datasets, in Fig. 2 and 3, we plot
frequency of the label pairs (x, y) where x and y
are the labels of Ust−1,t−1 and Ust,t respectively.
Figure Fig. 2 explains inter-speaker label transi-
tion and Fig. 3 illustrates the intra-speaker label
transition. Both these plots reveal the same emo-
tion labels appearing in the consecutive utterances
with high frequency in the IEMOCAP dataset. This
induces label dependencies and consistencies and
can be called as the label copying feature of the
dataset. From our empirical analysis in Section 4,
we confirm this property of the IEMOCAP dataset.
Although not as strong as IEMOCAP, the intra-
speaker label copying feature is also prevalent in
the MultiWOZ and DailyDialog (Act) dataset (refer
to Fig. 2). Moreover, we observe interesting pat-
terns in DailyDialog (Act). A directive utterance
is commonly followed by a commissive utterance.
This indicates that utterances with acts such as re-
quest and instruct (directive label) are followed by
accepting/rejecting the request or order (commis-
sive label). We also notice that an utterance with
the act of questioning is commonly followed by
the utterances with the act of answering (which is
quite natural). Fig. 2 also corroborates the high
frequent joint appearance of similar emotions in
both speaker’s utterances e.g., negative emotions —
anger, frustration, sad expressed by one speaker is
replied with a similar negative emotion by the other
speaker. Interestingly, the DailyDialog dataset for
emotion classification does not elicit any such pat-
terns. We can attribute this to the scripted utter-
ances present in the IEMOCAP that has specifically
been designed to invoke more emotional content to
the utterances. On the other hand, the DailyDialog
dataset comprises naturalistic utterances that are
more dynamic in nature as they depend on inter-
locutors’ personality. In both IEMOCAP and Dai-
lyDialog datasets, the repetitions of the same emo-
tions can be found in consecutive utterances of a
speaker. The repetition of the same or similar emo-
tions for a speaker is frequent and often forms long
chains in IEMOCAP. However, such repetitions
are much less prevalent in DailyDialog. Readers
are referred to Fig. 3 for a clearer view. This two
different types of datasets used in this work is
purposefully crafted in order to study dataset-
specific nuances to attempt the same task. In
DailyDialog, approximately 80% of utterances are

labeled as no-emotion (see Fig. 4) which poses a
difficult challenge to perform emotion classifica-
tion. These two datasets also differ from each other
in the average dialogue length. While the average
number of utterances per dialogue in the IEMO-
CAP dataset is more than 50, the average number of
utterances per dialogue in the DailyDialog dataset
is just 8 which is much shorter.

Among other semantically plausible label transi-
tions, we can see in Fig. 3, the intent book restau-
rant to be frequently followed by the intent find
taxi in the MultiWOZ dataset. We believe this
is potentially one of the reasons why contextual
models perform so well on these three datasets
and tasks compared to the rest which we discuss
in the subsequent sections. Further, label depen-
dency and consistency can aid filtering likely labels
given the prior labels. Notably, such patterns are
not visible in the other datasets. Hence, one can
use Conditional Random Field (CRF) to find any
hidden label patterns and dependencies.

B Utterance Classifier
cLSTM. Similar to bcLSTM but without the bidi-
rectionality in the LSTM, this model is intended
to ignore the presence of future utterances while
classifying an utterance Ut.

DialogueRNN. (Majumder et al., 2019) is a re-
current network based model for emotion recogni-
tion in conversations. It uses two GRUs to track
individual speaker states and global context dur-
ing the conversation. Further, another GRU is em-
ployed to track emotion state through the conversa-
tion. In this work, we consider the emotion state to
be a general state which can be used for utterance
level classification (i.e., not limited to only emotion
classification). Similar to the bcLSTM model, the
features extracted by the Utterance Feature Extrac-
tor is the input to the DialogueRNN network. Di-
alogueRNN aims to model inter-speaker relations
and it can be applied on multiparty datasets.

cLSTM, bcLSTM and DialogueRNN with
Residual Connections. Deep neural networks
can often have difficulties in information proro-
gation. Multi-layered RNN-like in particulars of-
ten succumb to vanishing gradient problems while
modeling long range sequences. Residual connec-
tions or skip connections (He et al., 2016) are an
intuitive way to tackle this problem by improv-
ing information propagation and gradient flow. In-
spired by the early works in residual LSTM (Wu
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Figure 2: The heatmap of inter-speaker label transition statistics in the datasets. The color bar represents normalized number of
inter-speaker transitions such that elements of each matrix add up to 1. Inter-speaker transitions are not defined in MultiWOZ as
system side utterances are not labeled. Note: For the DailyDialog dataset, we ignore the neutral emotion in this figure.

Figure 3: The heatmap of intra-speaker label transition statistics in the datasets. The color bar represents normalized number of
intra-speaker transitions such that elements of each matrix add up to 1. Note: For the DailyDialog dataset, we ignore the neutral
emotion in this figure.

et al., 2006; Kim et al., 2017), in our recurrent con-
textual models - bcLSTM and DialogueRNN we
adopt a simple strategy to introduce a residual con-
nection. For each utterance, a residual connection

is formed between the output of the feature extrac-
tor and the output of the bcLSTM/DialogueRNN
module. These two vectors are added and the fi-
nal classification is performed from the resultant
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Figure 4: The heatmap of intra-speaker (left) and inter-speaker (right) label transition statistics in the DailyDialog dataset
including neutral emotion. The color bar represents normalized number of inter-speaker and intra-speaker transitions such that
elements of each matrix add up to 1.

vector.

B.1 Results

Methods

IEMOCAP DailyDialog
Emotion Emotion Act

W-Avg F1 W-Avg F1 Micro F1 Macro F1 W-Avg F1 Macro F1
GloVe CNN 52.04 49.36 50.32 36.87 80.71 72.07
GloVe cLSTM 59.10 52.56 53.67 38.14 83.90 78.89

w/o Residual 55.07 52.56 53.26 38.12 84.06 78.54
GloVe bcLSTM 61.74 52.77 53.85 39.27 84.62 79.12

w/o Residual 58.32 54.74 56.32 39.24 84.10 78.98
GloVe DialogueRNN 62.57 55.18 55.95 41.80 84.71 79.60

w/o Residual 61.32 54.50 55.29 40.05 83.98 79.16
RoBERTa LogReg 54.12 52.63 52.42 40.02 82.55 75.62
RoBERTa bcLSTM 62.72 56.05 56.77 43.26 85.17 82.16

w/o Residual 62.86 55.92 57.32 43.03 86.35 80.69
RoBERTa DialogueRNN 64.12 59.07 59.50 45.19 86.31 82.20

w/o Residual 63.96 57.57 57.76 44.25 86.28 82.08

Table 9: Classification performance in test data for emo-
tion prediction in IEMOCAP, emotion prediction in DailyDia-
log, and act prediction in DailyDialog. Scores of the Glove-
based models are reported after averaging 20 different runs.
RoBERTa-based models were run 5 times and we report the
average scores. Test F1 scores are calculated at best validation
F1 scores.

Methods
MultiWOZ Persuasion

Intent Persuader (ER) Persuadee (EE)
W-Avg F1 W-Avg F1 Macro F1 W-Avg F1 Macro F1

GloVe CNN 84.30 67.15 54.33 58.00 41.03
GloVe cLSTM 95.03 68.75 54.36 59.46 41.62

w/o Residual 95.12 64.62 49.08 54.87 36.36
GloVe bcLSTM 96.14 69.26 55.27 61.18 42.19

w/o Residual 96.21 67.20 52.75 55.02 37.72
GloVe DialogueRNN 96.32 68.96 56.29 61.11 42.18

w/o Residual 96.08 68.77 54.20 58.72 39.06
RoBERTa LogReg 85.70 71.98 60.36 63.45 51.74
RoBERTa bcLSTM 95.46 71.85 61.05 64.14 50.11

w/o Residual 95.61 71.06 58.72 62.73 44.74
RoBERTa DialogueRNN 95.61 72.91 62.03 64.33 49.22

w/o Residual 95.29 72.45 60.49 64.21 49.71

Table 10: Classification performance in test data for intent
prediction in MultiWOZ, persuader and persuadee strategy
prediction in Persuasion for Good. Scores of the Glove-
based models are reported after averaging 20 different runs.
RoBERTa-based models were run 5 times and we report the
average scores. Test F1 scores are calculated at best validation
F1 scores.

We report results for IEMOCAP, DailyDialog
dataset in Table 9 and MultiWOZ, Persuasion for
Good dataset in Table 10. We ran each experiment
multiple times and report the average test scores
based on the best validation scores.

We observe that there is a general trend of im-
provement in performance when moving to the
RoBERTa based feature extractor from the GloVe
CNN feature extractor except in the intent predic-
tion task in MultiWOZ dataset. As the RoBERTa
model has been pre-trained on a large amount of
textual data and has considerably more parameters,
this improvement is expected. The results could
possibly be improved even more if a RoBERTa-
Large model is used instead of the RoBERTa-Base
model that we use in this work.

We also observe that contextual models —
bcLSTM and DialogueRNN perform much better
than the non-contextual Logistic Regression mod-
els in most cases. Context information is crucial
for emotion, act, and intent classification and mod-
els such as bcLSTM or DialogueRNN are some
of the most prominent methods to model the con-
textual dependency between utterances and their
labels. In IEMOCAP, DailyDialog and MultiWOZ
there is a sharp improvement in performance in
contextual models compared to the non-contextual
models. However, for the strategy classification
task in Persuasion for Good dataset, the improve-
ment in contextual models is relatively lesser. No-
tably, for Persuadee classification, the RoBERTa
non-contextual model achieves the best result, out-
performing the contextual models. Without the
presence of residual connections, the GloVe cLSTM
and GloVe bcLSTM baselines perform poorly than
the non-contextual GloVe CNN baseline in the Per-
suasion for Good dataset. This beckons the need
for better contextual models for this dataset. To
analyze the results of the different models we look
at the following aspects:

Importance of the Residual Connections in the
Models. It is also to be noted that the introduc-
tion of the residual connections generally improves
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the performance of the contextual models. We
obtain better performance and improved stability
during training for most of the models with resid-
ual connections. In particular, residual connections
are mostly effective in IEMOCAP and Persuasion
for Good datasets that comprise long dialogues.
Residual connections are used in deep networks
to aid information propagation and tackle vanish-
ing gradient problems (Wu et al., 2006; Kim et al.,
2017) in RNNs by improving gradient flow. As
multi-layered RNN-like architectures often find it
difficult to model long-range dependencies in a
sequence due to vanishing gradient problems (Pas-
canu et al., 2013), we conjecture, that could be
one of the reasons why we see a great performance
boost with residual connections by helping propa-
gate key information form the CNN layers to the
output of LSTM layers that might be lost due to
the long deep sequence modeling in the LSTM
layer. Residual connections also help in combating
vanishing gradient issues by improving gradient
flow. Unlike IEMOCAP and Persuasion for Good,
in DailyDialog and MultiWOZ datasets, the im-
provement in performance caused by the residual
connections is only little which can be attributed
to the relatively shorter dialogues present in these
two datasets.
Variance in the Results. As deep learning models
tend to yield varying results across multiple train-
ing runs, we trained each model multiple times
and report the average score in Table 9 and Ta-
ble 10. In general, we observed that the RoBERTa-
based models show lesser variance compared to the
GloVe-based models.

Variance in the Glove-based models: The ob-
served variance is higher for emotion classifica-
tion in IEMOCAP and DailyDialog as compared
to act and intent classification in DailyDialog and
MultiWOZ, respectively. Both baseline models –
Glove CNN and bcLSTM show standard deviation
of about 1.28% in the IEMOCAP dataset across dif-
ferent runs. In the Persuasion for Good dataset, for
both persuader’s and persuadee’s act classification
tasks, the deviation remains around 1.6% when we
consider the Macro-F1 metric. However, for the
Weighted-F1 metric, the performance is relatively
stable as upon accumulating multiple runs the stan-
dard deviation is about 0.99% across the baselines.
A similar trend is also prevalent in the DailyDialog
dataset for emotion classification. In this task, the
baselines – Glove CNN and bcLSTM show stan-
dard deviation of about 1.19% when Weighted-F1

and Micro-f1 are considered. According to Macro-
F1 metric, however, these baselines are exposed
to relatively higher standard deviation of 2.88%.
This is likely to be a consequence of severe label
imbalance in the dataset, that is having 80% neutral
utterances. We have observed that a majority of
these neutral samples do not exhibit neutral emo-
tion. Therefore, this poor labeling quality may have
precipitated this large variance in the results. On
the other hand, the baseline models perform con-
sistently in the intent and act classification tasks in
MultiWOZ and DailyDialog datasets respectively
showing standard deviation of around 0.55% across
different runs. When comparing among the base-
lines, we found higher variances in the results ob-
tained with the Glove CNN than the bcLSTM.

One possible reason behind the variances in
the results of the GloVe-based models could be
the end-to-end training setup that renders the
model deeper. The original bcLSTM and Dia-
logueRNN model employed a two-stage training
method where the utterance feature extractor is
first pretrained and then kept unchanged during the
contextual model training. This setting may make
those original models more stable. Similarly, we
think, in our end-to-end setup, a more sophisticated
training regime could result in a lesser variance of
the results. For example, the utterance feature ex-
tractor could be trained only for the first few epochs
and then kept frozen during subsequent epochs of
the training. Due to this high variance in the end-
to-end Glove-based models, the future works on
these datasets and tasks which employ this setting
should report the average results of multiple runs
for a fair comparison of the models.

Variance in the RoBERTa-based models: The
RoBERTa based models show much lesser variance
in performance across different runs. In particular,
the standard deviations in the results of Roberta-
based bcLSTM are 0.57 on the IEMOCAP, 0.08,
and 0.48 in the DailyDialog for emotion and act
classification tasks, respectively, 0.07 in the Mul-
tiWoz dataset, 0.9 and 1.04 in the Persuasion for
Good dataset for persuader’s and persuadee’s act
classification tasks respectively. RoBERTa-based
DialogueRNN shows a similar trend. We surmise
that this is the case because the feature extractor’s
weights are initialized from a pretrained checkpoint.
Thus, the feature extractor already provides mean-
ingful features from the beginning of training and
is not required to be trained from scratch, resulting
in greater stability in the performance.


