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Abstract

Code-mixing is a phenomenon of mixing
words and phrases from two or more lan-
guages in a single utterance of speech and
text. Due to the high linguistic diversity, code-
mixing presents several challenges in eval-
uating standard natural language generation
(NLG) tasks. Various widely popular met-
rics perform poorly with the code-mixed NLG
tasks. To address this challenge, we present a
metric independent evaluation pipeline MIPE
that significantly improves the correlation be-
tween evaluation metrics and human judg-
ments on the generated code-mixed text. As
a use case, we demonstrate the performance
of MIPE on the machine-generated Hinglish
(code-mixing of Hindi and English languages)
sentences from the HinGE corpus. We can ex-
tend the proposed evaluation strategy to other
code-mixed language pairs, NLG tasks, and
evaluation metrics with minimal to no effort.

1 Introduction

Code-mixing (hereafter ‘CM’) is a commonly ob-
served communication pattern for a multilingual
speaker to mix words and phrases from multiple
languages. CM is widespread across various lan-
guage pairs across the globe, such as Spanish-
English (Spanglish) and Hindi-English (Hinglish).
Various studies (Baldauf, 2004) have predicted the
high growth in the number of CM speakers, which
would surpass the number of native speakers in
various globally popular languages (e.g., English).

With the advent of social-media platforms (e.g.,
Twitter, Facebook, etc.), we observe a manifold
increase in the CM communication by multilin-
gual speakers. This leads to a large scale avail-
ability of CM data for various NLP tasks. Re-
cently, we witness magnitude of work to address
various CM NLP tasks such as language identifi-
cation (Shekhar et al., 2020; Singh et al., 2018a;
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Ramanarayanan et al., 2019; Barman et al., 2014;
Gundapu and Mamidi, 2018), POS tagging (Singh
et al., 2018b; Vyas et al., 2014; Pratapa et al.,
2018), named entity recognition (Singh et al.,
2018a; Priyadharshini et al., 2020; Winata et al.,
2019), word normalisation (Singh et al., 2018c;
Parikh and Solorio, 2021), CM metrics (Guzmán
et al., 2017; Srivastava and Singh, 2021a), sen-
timent analysis (Patwa et al., 2020; Joshi et al.,
2016), stance detection (Utsav et al., 2020; Sane
et al., 2019), natural language inference (Khanuja
et al., 2020), machine translation (Srivastava and
Singh, 2020; Dhar et al., 2018), and question-
answering (Chandu et al., 2019; Thara et al.,
2020).

We observe a growing interest in the computa-
tional linguistic community to study the CM NLG
tasks. Recently, various resources and systems
have been proposed that explore different dimen-
sions of the CM NLG (Yang et al., 2020; Gautam
et al., 2021; Gupta et al., 2021; Rizvi et al., 2021;
Gupta et al., 2020; Jawahar et al., 2021). Evalu-
ation of the CM NLG tasks is challenging due to
the high linguistic diversity and lack of standard-
ization. To address this challenge, Srivastava and
Singh (2021b) has proposed HinGE corpus for the
Hinglish CM text generation and evaluation (see
Section 2 for details). HinGE corpus demonstrates
the inefficacy of various widely popular metrics on
the CM dataset.

In this paper, we choose five evaluation met-
rics (see Section 3 for details) as discussed in
(Srivastava and Singh, 2021b) to demonstrate the
efficacy of MIPE. Our proposed metric indepen-
dent pipeline (MIPE) augments these metrics and
addresses four major linguistic bottlenecks: (i)
spelling variations, (ii) language switching, (iii)
missing words, and (iv) the limited number of
reference sentences associated with the CM NLG
systems. The main contributions are:

• We identify four major reasons for the poor
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quality performance of various widely pop-
ular evaluation metrics for the code-mixed
NLG evaluation.

• We propose a metric independent evaluation
pipeline MIPE that addresses the identified
bottlenecks in CM NLG evaluation. Fur-
thermore, we show its efficacy in generating
highly correlated metric scores against hu-
man scores.

The rest of the paper is organized as follows. In
Section 2, we discuss the dataset for the CM NLG
evaluation task. In Section 3, we present the MIPE
pipeline addressing the four major bottlenecks for
effective CM NLG evaluation. We discuss the re-
sults in Section 4. In Section 5, we discuss the
current state and future direction. We conclude the
discussion in Section 6.

2 Dataset

Recently, we observe various works to address the
underlying challenges with the CM NLG. Numer-
ous resources and systems have been proposed re-
cently to advance the field. In our experiments,
we use the HinGE corpus proposed in (Srivastava
and Singh, 2021b). The HinGE corpus contains
1,976 English-Hindi parallel sentences from the
IIT-B parallel corpus (Kunchukuttan et al., 2018).
Corresponding to each of the English-Hindi par-
allel sentences, HinGE has two variants of CM
Hinglish sentences:

• Human-generated Hinglish sentences: (Sri-
vastava and Singh, 2021b) have employed
eight human annotators to generate the
Hinglish sentences. Each parallel sentence
pair is annotated by a single human anno-
tator. Human annotators have generated at
least two Hinglish sentences corresponding
to each parallel sentence pair. On average,
2.5 Hinglish sentences are generated for each
parallel sentence pair.

• Machine-generated Hinglish sentences: Sri-
vastava and Singh (2021b) proposes two rule-
based algorithms to generate the CM sen-
tences. They leverage the matrix-frame the-
ory to generate the Hinglish sentences where
Hindi is the matrix language and English to-
kens are embedded. The proposed algorithms
differ significantly at the level of granular-
ity (i.e., word and phrase). We will use the

Figure 1: Example of the CM sentences generated by
the annotator along with WAC and PAC generated CM
sentence from the parallel English-Hindi sentence pair.
Two human annotators rate the machine-generated sen-
tence on a scale of 1–10.

acronyms WAC (word-aligned code-mixing)
and PAC (phrase-aligned code-mixing) for
the two algorithm variants in the rest of the
paper.

In addition to the machine-generated Hinglish sen-
tences, HinGE has a human rating corresponding
to each generated sentence. The human rating
varies between 1–10, indicating low to high gen-
eration quality. Two human annotators have rated
each of the machine-generated CM sentences.
Figure 1 shows the example CM sentences gen-
erated by humans and two rule-based algorithms
along with the rating to the machine-generated
CM sentences. Figure 2 shows the distribution
of the human ratings to the machine-generated
Hinglish sentences. WAC-generated sentences re-
ceive a relatively high rating (> 6) as compared
to PAC. In addition, WAC showed a low degree of
human disagreements than PAC.
Efficacy of NLG Evaluation Metrics: Srivas-
tava and Singh (2021b) present a study demon-
strating the inefficacy of five widely popular NLG
evaluation metric on the HinGE corpus. The
five metrics are: (i) Bilingual Evaluation Un-
derstudy Score (BLEU, Papineni et al. (2002)),
(ii) NIST (Doddington, 2002), (iii) BERTScore
(BS, Zhang et al. (2019)), (iv) Word Error Rate
(WER, Levenshtein (1966)), and (v) Translator
Error Rate (TER, Snover et al. (2006)). Higher
BLEU, NIST, or BS values and lower WER or
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Figure 2: Distribution of human ratings on the gener-
ated Hinglish sentences using WAC and PAC. The fig-
ure is taken from Srivastava and Singh (2021b).

TER values represent better generation perfor-
mance. Tables 1 and 2 show the comparison of five
metric scores against the human ratings against
WAC and PAC (see scores present in columns with
heading ‘Without MIPE’). In addition, (Srivastava
and Singh, 2021b) present a correlation study be-
tween the human ratings and the metric scores.
For this purpose they divide the ratings into three
buckets:

• Bucket 1: Human rating between 2–10.

• Bucket 2: Human rating between 2–5.

• Bucket 3: Human rating between 6–10.

Table 4 shows the correlation between the hu-
man ratings and the metric scores for WAC and
PAC (see scores present in columns with heading
‘Without MIPE’). The correlation scores show a
scope to build systems that shows a high correla-
tion with human judgment.

3 MIPE

As discussed in the previous section, the widely
used evaluation metrics fail to capture the linguis-
tic diversity of the CM data. Based on the em-
pirical observation on the 10 datasets used in (Sri-
vastava and Singh, 2021a), we identify four major
reasons for the failure of NLG evaluation metrics
on the CM data. We propose a metric independent
evaluation pipeline MIPE, for effective evaluation.
Using MIPE, we first reduce the spelling varia-
tions (see Section 3.1) and the language switch-
ing (see Section 3.2) in the candidate Hinglish
sentence. Next, we introduce a penalty (see Sec-
tion 3.3) on the evaluation score based on the de-
gree of importance of the missing words in the

candidate Hinglish sentence. Finally, we address
the challenge of a limited number of reference sen-
tences (see Section 3.4) by segmenting the candi-
date and the reference sentences into phrases and
leveraging the paraphrasing capability. Figure 3
shows the architecture of the proposed evaluation
pipeline.

3.1 Spelling variations
The first challenge to effective evaluation is the
non-standard spellings of the code-mixed words.
E.g., words kanekt, connect, and connekt conveys
the same meaning in a Hinglish sentence. Due to a
lack of writing standards for the code-mixed lan-
guages, the speakers often use their phonetic un-
derstanding of the source languages to write the
CM sentences. Hence, in most spelling varia-
tions, the addition, omission, and substitution of
letters indicate that the phonetics remains almost
the same. Specifically, we observe three major
reasons for spelling variations,

• R1: character repetition

• R2: replacement with similar-sounding char-
acter

• R3: vowel omission

To address these problems, we normalize words
such that similar-sounding words are grouped.
We leverage the concept of Phonetic Dissimilar-
ity (PDS, Toutanova and Moore (2002)) to address
the spelling variations in the CM language. Our
proposed PDS algorithm is a variant of the popu-
lar dynamic programming-based edit distance al-
gorithm. Similar to edit distance, PDS quantifies
the dissimilarity between two strings by counting
the minimum number of edit operations (addition,
deletion, and substitution) required to transform
one string into the other. In PDS, we assign differ-
ent costs to each edit operation based on the pho-
netic characteristics of the corresponding charac-
ters of the two words and the edit operation under
consideration. To access the phonetic characteris-
tics, we use a corpus of all possible pronunciations
of the English alphabets1. Algorithm 1describes
PDS between a word w1 (in candidate CM sen-
tence) and w2 (in reference CM sentences). To
address R1, we remove repeating characters from
both words. By default, we keep addition and

1https://www.speakmethod.com/alphabet_
sounds.html

https://www.speakmethod.com/alphabet_sounds.html
https://www.speakmethod.com/alphabet_sounds.html
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Figure 3: The architecture of the proposed CM NLG evaluation system MIPE. Machine-generated candidate CM
sentences are generated by two rule-based algorithms (WAC and PAC). We reduce the spelling variation and
language switching for both the candidate and reference sentences based on phonetics. A penalty is applied to
the words in the candidate sentence which are not present in any of the reference sentences. We account for
limited reference sentences by chunking the candidate and reference sentences into trigram phrases. The words in
the candidate trigram phrases are assigned a score based on their presence in the reference phrases. The candidate
phrase score is used to account for the limited reference sentences. Metric score is calculated based on the modified
reference and candidate sentences. A missing word penalty and a penalty for limited reference sentences is added
(or subtracted) from the modified metric score. It should be noted that the penalty is subtracted from the modified
metric score if the lower metric score shows better performance (e.g., WER and TER.).

deletion cost = 1 and substitution cost = 2. To
address R2, we decrease the substitution cost to
ρsub for similar-sounding characters as substitu-
tion of one of these characters is highly likely.
To address R3, we decrease the addition cost of
vowels to ρadd and the deletion cost of vowels to
ρdel, where ρadd > ρdel. This is due to the em-
pirical observation that the omission of vowels is
much more likely than an addition. Further, we
decrease the addition and deletion costs of a pos-
sible silent character to ρsil. We consider the min-
imum of PDS(w1, w2) and PDS(w2, w1) as the fi-
nal PDS score to identify the spelling variation be-
tween words w1 and w2. In our experiments, we
keep ρsub = ρadd = ρsil = 0.75, and ρdel = 0.25.

3.2 Similar Words

Identifying similar words in the same or different
languages is a challenging task in the CM lan-
guages. For example, two phrases “in the mar-
ket” and “in the bazaar” convey the same seman-
tics, but most automatic evaluation metrics will
fail to identify the semantic similarity. To address
the challenge of token-level similarity, we need a
common representation of words across the source
languages. To mitigate this problem, we propose
a Similar Word Search (SWS) procedure. Algo-
rithm 2 shows the description of the SWS proce-
dure. Given a word from the candidate CM sen-

tence as an input, the SWS procedure returns all
similar words from the corresponding reference
sentences. We select that word from the refer-
ence sentences, which yields the minimum PDS
value. The SWS procedure returns a word from
the reference set if the minimum PDS value is less
than σthres. Otherwise, it computes pairwise co-
sine distance (in the cross-lingual word embed-
ding space) between each word in a set of ref-
erence words and the input word. To create the
cross-lingual embedding space, we use the pre-
trained word vectors of dimension 300 for English
and Hindi from fastText (Bojanowski et al., 2017).
For the shared representation, we use VecMap
(Artetxe et al., 2018) to learn the mapping in an
unsupervised fashion with the default settings. We
use the English and Hindi sentences from the IIT-
B parallel corpus (Kunchukuttan et al., 2018). In
case the cosine similarity is greater than σcos, the
SWS procedure returns the word from the refer-
ence set; else, we assume that no similar word ex-
ists in the reference set. In our experiments, we
keep σthres = 2, and σcos = 0.5.

3.3 Missing words

Generally, the generated candidate sentence
misses some words resulting in a significant im-
pact on the automatic evaluation scores. Some
words are more important than others, but most
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metrics consider them equal (M1). Furthermore,
most metrics match exact words with no flexi-
bility in spelling variations and language switch-
ing (M2). Here, we address both these prob-
lems to apply a missing word penalty to the met-
ric score with some writing style flexibility. To
address M1, we use WAC procedure2 to gen-
erate a large Hinglish corpus (hereafter ‘Paral-
lelCorp’) of 2,132,184 sentences. For creating
the parallel corpus, we collect English sentences
from multiple sources3,4,5,6 and translate them (if
not already translated) into Hindi language using
Google Translate API. We calculate IDF-values
(Inverse Document Frequency) of each word in the
Hinglish corpus. The words with low IDF values
occur rarely and hence carry more semantic infor-
mation. If a word is not present in the Parallel-
Corp, we consider it semantically important. To
address M2, we relax the exact match condition

2We employ WAC due to its capability to generate
high-quality sentences (as shown in (Srivastava and Singh,
2021b)). Also, the Hinglish sentence generated by WAC
has words from only the source English and Hindi sentences
which in turn doesn’t influence the IDF values of the gener-
ated words to a large extent.

3https://www.kaggle.com/kazanova/
sentiment140

4https://www.kaggle.com/arkhoshghalb/
twitter-sentiment-analysis-hatred-speech

5http://www.cfilt.iitb.ac.in/iitb_
parallel/

6https://bit.ly/2XQjrU6

by postulating that either the word is present in
the candidate sentence or its variant is present in
the sentence. Here, we allow two types of varia-
tions (i) minor spelling variations and (ii) language
switch (for more details, see Sections 3.1 and 3.2).
We use the SWS procedure to find a word variant
keeping a maximum distance value of 1. Algo-
rithm 3 shows the description of the missing word
penalty (MWP) in detail. For each word w in a
reference sentence, we check the presence of w
and its variants in the candidate sentence. In case
w is not present, we add w’s IDF value as the
penalty for the absence. We repeat the procedure
for each reference sentence and take the minimum
penalty among all reference sentences. We reduce
the MWP score from the metric score for a given
evaluation metric.

3.4 Limited Reference Sentences
A sentence can be paraphrased in numerous ways
by interchanging subject and predicate, active and
passive voice, and first, second, and third-person
perspectives. With the code-mixed text, the para-
phrasing possibilities significantly increase. For
an automatic evaluation, it is infeasible to gener-
ate all possible paraphrases as reference sentences.
Even though HinGE dataset has at least two refer-
ence sentences against a candidate sentence but it
is insufficient to include all the possibilities. Thus,
paraphrasing drastically limits the evaluation ca-
pabilities of various metrics. To address this prob-
lem, we present an algorithm PhraseScore. Algo-
rithm 4 shows the description of the PhraseScore
method. We split the candidate sentence and the
set of reference sentences into trigram phrases. If
word w in the candidate phrase exists in one of

https://www.kaggle.com/kazanova/sentiment140
https://www.kaggle.com/kazanova/sentiment140
https://www.kaggle.com/arkhoshghalb/twitter-sentiment-analysis-hatred-speech
https://www.kaggle.com/arkhoshghalb/twitter-sentiment-analysis-hatred-speech
http://www.cfilt.iitb.ac.in/iitb_parallel/
http://www.cfilt.iitb.ac.in/iitb_parallel/
https://bit.ly/2XQjrU6
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the reference phrases, we add the IDF value of the
w in the phrase score for that phrase. Else, we
subtract the IDF value as a penalty. This phrase
score is aggregated, normalized over the number
of phrases in the candidate sentence, and divided
by the penalty of missing words in the candidate
sentence. To prevent division by zero, we add
0.0001 to the penalty. In case a word is not present
in the IDF dictionary, we assign it a relatively high
value (µmiss) to indicate that it is a rare word of
high importance. Finally, we increase the metric
score by adding the candidate sentence’s Phras-
eScore. In our experiments, we keep µmiss=20.
Due to the unavailability of a paraphrasing sys-
tem for a code-mixed language, the formulation
of PhraseScore algorithm depends on the assump-
tion that the trigram phrases in a sentence can be
reordered to create new sentences.

4 Results and Evaluation

We evaluate WAC and PAC procedures augmented
with MIPE pipeline against all the five metrics
(as discussed in Section 2). Table 1 and 2 shows
the effect of MIPE against the five metrics. As
expected, all metrics show better scores with the
MIPE augmentation. The metric scores after the

MIPE shows a high correlation7 against the met-
ric scores without MIPE (see Table 3). This shows
that improvements in the metric scores is constant
throughout and are not by chance.

Table 4 shows the effect of MIPE on the cor-
relation with the human scores. We use the same
criteria to bucket the human ratings as discussed
in Section 2. We observe a higher correlation
in all the three buckets for WAC augmented with
MIPE. This improvement is consistent throughout
all the metrics. For PAC augmented with MIPE,
we observe a decrease in correlation in the second
bucket, which can be attributed to (i) a relatively
large number of poor quality (low human scores)
sentences generated by PAC, and (ii) rating poor
quality CM sentence is a challenging task for hu-
mans due to lower readability of the sentence. For
the rest of the buckets, PAC with MIPE shows a
higher correlation with the human scores.

5 Current State and Future Directions

The results discussed in Section 4 demonstrate a
need to build metrics, theories, and experiments
for better CM NLG evaluation. Some of the

7We experiment with Pearson Correlation Coefficient.
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Human
score

Without MIPE With MIPE
BLEU WER TER NIST BS BLEU WER TER NIST BS

2 0.144 0.741 0.667 0.092 0.851 0.238 0.651 0.544 0.140 0.860
3 0.138 0.735 0.708 0.070 0.852 0.323 0.625 0.569 0.133 0.860
4 0.133 0.695 0.666 0.103 0.849 0.391 0.536 0.480 0.184 0.906
5 0.135 0.711 0.681 0.110 0.853 0.380 0.556 0.494 0.172 0.985
6 0.141 0.697 0.670 0.102 0.852 0.361 0.560 0.502 0.144 0.967
7 0.161 0.663 0.630 0.111 0.856 0.398 0.522 0.453 0.168 0.947
8 0.177 0.621 0.589 0.127 0.859 0.465 0.445 0.377 0.204 0.976
9 0.212 0.571 0.538 0.150 0.865 0.531 0.387 0.313 0.242 1.000
10 0.291 0.509 0.493 0.157 0.878 0.572 0.318 0.252 0.291 1.000

Table 1: Comparison of metric scores with and without using MIPE for WAC.

Human
score

Without MIPE With MIPE
BLEU WER TER NIST BS BLEU WER TER NIST BS

2 0.126 0.672 0.698 0.176 0.8603 0.338 0.474 0.500 0.318 0.997
3 0.146 0.765 0.696 0.086 0.851 0.425 0.603 0.526 0.120 0.883
4 0.143 0.744 0.703 0.100 0.8464 0.419 0.598 0.523 0.130 0.888
5 0.153 0.726 0.680 0.114 0.8515 0.407 0.589 0.508 0.154 0.894
6 0.164 0.689 0.646 0.124 0.8558 0.449 0.525 0.456 0.171 0.912
7 0.176 0.661 0.618 0.121 0.8581 0.475 0.485 0.411 0.198 0.936
8 0.177 0.639 0.605 0.128 0.8598 0.498 0.437 0.370 0.200 0.938
9 0.184 0.614 0.590 0.129 0.8638 0.545 0.387 0.321 0.230 0.967
10 0.242 0.551 0.543 0.146 0.8731 0.600 0.314 0.262 0.280 0.997

Table 2: Comparison of metric scores with and without using MIPE for PAC.

BLEU WER TER NIST BS
WAC 0.948 0.988 0.984 0.961 0.8326
PAC 0.830 0.986 0.982 0.944 0.8843

Table 3: Correlation between the evaluation metric scores with and without using MIPE pipeline.

Correlation with human scores
(Without MIPE)

Correlation with human scores
(With MIPE)

Bucket 1 Bucket 2 Bucket 3 Bucket 1 Bucket 2 Bucket 3
WAC PAC WAC PAC WAC PAC WAC PAC WAC PAC WAC PAC

BLEU 0.810 0.910 -0.861 0.878 0.941 0.844 0.942 0.950 0.910 0.643 0.994 0.981
WER -0.936 -0.822 -0.785 0.457 -0.993 -0.973 -0.949 -0.780 -0.880 0.713 -0.995 -0.993
TER -0.891 -0.963 0.000 -0.610 -0.998 -0.970 -0.932 -0.937 -0.737 0.229 -0.998 -0.997
NIST 0.913 0.127 0.642 -0.559 0.986 0.846 0.851 0.246 0.769 -0.671 0.993 0.952

BS 0.844 0.710 0.227 -0.689 0.953 0.937 0.924 0.400 0.922 -0.720 0.895 0.972

Table 4: Comparison of correlation between evaluation metrics and human scores for WAC and PAC with and
without MIPE pipeline. The bold numbers indicate a better correlation in the respective bucket. A high positive
correlation is preferred for BLEU and NIST whereas a negative correlation is preferred for WER and TER.

challenges and limitations of the proposed MIPE
pipeline for effective CM NLG includes:

• Due to the unavailability of resources in other
CM language pairs, the MIPE pipeline is
tested on a single CM language. We need
to extend the proposed evaluation strategy to
other CM language pairs.

• The presence of two different languages in a
single CM sentence increases the paraphras-
ing possibility to a much larger extent. We

need metrics that attend to the CM sentences
beyond the bag of words model. These met-
rics should also be able to account for para-
phrasing.

• There are various other reasons (beyond the
four reasons discussed in this paper) that in-
fluence the evaluation of CM NLG tasks such
as named-entities, transliteration, etc. The
MIPE pipeline doesn’t currently account for
these limitations.
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• The code-mixed sentences in the HinGE
dataset are not collected from the social me-
dia platforms. The code-mixed data from the
social media platform tends to be more noisy
and distorted which could influence the per-
formance of MIPE pipeline.

As discussed, currently there are several limita-
tions with the CM NLG evaluation which need to
be addressed in order to build effective CM NLG
systems for multilingual societies. Some of the
lessons learned and the future directions for the
CM NLG evaluations are:

• The limited resource availability is one of the
major bottlenecks in the CM NLG tasks and
evaluation. Currently, the available resources
are smaller in size compared to the monolin-
gual NLG tasks.

• In contrast to the MIPE augmentation
pipeline, we need systems that can leverage
the noisy nature of the code-mixed text. The
currently proposed MIPE pipeline addresses
the various challenges independently and at-
tempts to reconstruct the noisy CM text for
effective evaluation.

• The two languages participating in CM influ-
ence the various constructs of the target CM
sentence such as grammar, syntax, etc. The
current experimentation with only one CM
language needs to be explored with other CM
languages.

• Recently, we observe a rise in the availabil-
ity of multilingual language models (LMs).
These LMs could be used to build effective
CM NLG evaluation systems.

• The current evaluation metrics seem to per-
form poorly with the CM languages. We need
to build dedicated metrics for the CM NLG
evaluation tasks that can leverage the linguis-
tic diversity of the CM data.

6 Conclusion

In this paper, we present a metric independent
evaluation pipeline for efficient code-mixed NLG
evaluation. The proposed pipeline shows a high
correlation between the human scores and the un-
derlying evaluation metrics. Besides the four sig-
nificant challenges to CM NLG evaluation, in the

future, we also plan to address other challenges
such as code-mixed existence of named-entities,
informal writing style, and missing context.
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