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Abstract

Cross-lingual entity alignment (EA) aims to
find the equivalent entities between cross-
lingual KGs (Knowledge Graphs), which is
a crucial step for integrating KGs. Recently,
many GNN-based EA methods are proposed
and show decent performance improvements
on several public datasets. However, exist-
ing GNN-based EA methods inevitably inherit
poor interpretability and low efficiency from
neural networks. Motivated by the isomorphic
assumption of GNN-based methods, we suc-
cessfully transform the cross-lingual EA prob-
lem into an assignment problem. Based on this
re-definition, we propose a frustratingly Sim-
ple but Effective Unsupervised entity align-
ment method (SEU) without neural networks.
Extensive experiments have been conducted
to show that our proposed unsupervised ap-
proach even beats advanced supervised meth-
ods across all public datasets while having
high efficiency, interpretability, and stability.

1 Introduction

The knowledge graph (KG) represents a collection
of interlinked descriptions of real-world objects
and events, or abstract concepts (e.g., documents),
which has facilitated many downstream applica-
tions, such as recommendation systems (Cao et al.,
2019b; Wang et al., 2019) and question-answering
(Zhao et al., 2020; Qiu et al., 2020). Over re-
cent years, a large number of KGs are constructed
from different domains and languages by different
organizations. These cross-lingual KGs usually
hold unique information individually but also share
some overlappings. Integrating these cross-lingual
KGs could provide a broader view for users, espe-
cially for the minority language users who usually
suffer from lacking language resources. Therefore,
how to fuse the knowledge from cross-lingual KGs
has attracted increasing attentions.

As shown in Figure 1, cross-lingual entity align-
ment (EA) aims to find the equivalent entities
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Figure 1: An example of cross-lingual knowledge
graph entity alignment.

across multi-lingual KGs, which is a crucial step for
integrating KGs. Conventional methods (Suchanek
et al., 2011; Jiménez-Ruiz and Grau, 2011) usually
solely rely on lexical matching and probability rea-
soning, which requires machine translation systems
to solve cross-lingual tasks. However, existing ma-
chine translation systems are not able to achieve
high accuracy with limited contextual information,
especially for language pairs that are not alike, such
as Chinese-English and Japanese-English.

Recently, Graph Convolutional Network (GCN)
(Kipf and Welling, 2017) and subsequent Graph
Neural Network (GNN) variants have achieved
state-of-the-art results in various graph application.
Intuitively, GNN is better in capturing structural in-
formation of KGs to compensate for the shortcom-
ing of conventional methods. Specifically, several
GNN-based EA methods (Xu et al., 2019; Wu et al.,
2019a; Wang et al., 2020) indeed demonstrate de-
cent performance improvements on public datasets.
All these GNN-based EA methods are built upon
a core premise, i.e., entities and their counterparts
have similar neighborhood structures. However,
better performance is not the only outcome of us-
ing GNN. Existing GNN-based methods inevitably
inherit the following inborn defects from neural
networks:

(1) Poor Interpretability: Recently, many re-
searchers view GNN (Xu et al., 2019; Wu et al.,
2019a) as a black box, focusing on improving per-
formance metrics. The tight coupling between non-
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linear operations and massive parameters makes
GNN hard to be interpreted thoroughly. As a result,
it is hard to judge whether the new designs are uni-
versal or just over-fitting on a specific dataset. A
recent summary (Zhang et al., 2020) notes that sev-
eral "advanced" EA methods are even beaten by the
conventional methods on several public datasets.

(2) Low Efficiency: To further increase the per-
formance, newly proposed EA methods try to stack
novel techniques, e.g., Graph Attention Networks
(Wu et al., 2019a), Graph Matching Networks (Xu
et al., 2019), and Joint Learning (Cao et al., 2019a).
Consequently, the overall architectures become
more and more unnecessarily complex, resulting
in their time-space complexities also dramatically
increase. Zhao et al. (2020) present that the run-
ning time of complex methods (e.g., RDGCN (Wu
et al., 2019a)) is 10× more than that of vanilla
GCN (Wang et al., 2018).

In this paper, we notice that existing GNN-based
EA methods inherit considerable complexity from
their neural network lineage. Naturally, we con-
sider eliminating the redundant designs from ex-
isting EA methods to enhance interpretability and
efficiency without losing accuracy. Leveraging the
core premise of GNN-based EA methods, we re-
state the assumption that both structures and textual
features of source and target KGs are isomorphic.
With this assumption, we are able to successfully
transform the cross-lingual EA problem into an
assignment problem, which is a fundamental and
well-studied combinatorial optimization problem.
Afterward, the assignment problem could be easily
solved by the Hungarian algorithm (Kuhn, 1955)
or Sinkhorn operation (Cuturi, 2013).

Based on the above findings, we propose a frus-
tratingly Simple but Effective Unsupervised EA
method (SEU) without neural networks. Compared
to existing GNN-based EA methods, SEU only
retains the basic graph convolution operation for
feature propagation while abandoning the complex
neural networks, significantly improving efficiency
and interpretability. Experimental results on the
public datasets show that SEU could be completed
in several seconds with the GPU or tens of seconds
with the CPU. More startlingly, our unsupervised
method even outperforms the state-of-the-art super-
vised approaches across all public datasets. Fur-
thermore, we discuss the possible reasons behind
the unsatisfactory performance of existing complex
EA methods and the necessity of neural networks
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Figure 2: The architecture of existing EA methods.

in cross-lingual EA. The main contributions are
summarized as follows:

• By assuming that both structures and textual
features of source and target KGs are iso-
morphic, we successfully transform the cross-
lingual EA problem into an assignment prob-
lem. Based on this finding, we propose a frus-
tratingly Simple but Effective Unsupervised
entity alignment method (SEU).

• Extensive experiments on public datasets in-
dicate that our unsupervised method outper-
forms all advanced supervised competitors
while preserving high efficiency, interpretabil-
ity, and stability.

2 Task Definition

KG stores the real-world knowledge in the form
of triples (h, r, t). A KG could be defined as G =
(E,R, T ), where E, R, and T represent the entity
set, relation set, and triple set, respectively. Given
a source graph Gs = (Es, Rs, Ts) and a target
graphGt = (Et, Rt, Tt), EA aims to find the entity
correspondences P between KGs.

3 Related Work

3.1 Cross-lingual Entity Alignment

Existing cross-lingual EA methods are based on
the premise that equivalent entities in different KGs
have similar neighboring structures. Following
this idea, most of them can be summarized into
two steps (as shown in Figure 2): (1) Using KG
embedding methods (e.g., TransE (Bordes et al.,
2013) and GCN (Kipf and Welling, 2016)) to gen-
erate low-dimensional embeddings for entities and
relations in each KGs. (2) Mapping these em-
beddings into a unified vector space through con-
trastive losses (Hadsell et al., 2006; Schroff et al.,
2015) and pre-aligned entity pairs.
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Figure 3: An example of isomorphic graph.

Based on the vanilla GCN, many EA methods
design task-specific modules for improving the per-
formance of EA. Cao et al. (2019a) propose a multi-
channel GCN to learn multi-aspect information
from KGs. Wu et al. (2019a) use a relation-aware
dual-graph network to incorporate relation informa-
tion with structural information. Moreover, due to
the lack of labeled data, some methods (Sun et al.,
2018; Mao et al., 2020) apply iterative strategies to
generate semi-supervised data. In order to provide
a multi-aspect view from both structure and seman-
tic, some methods (Wu et al., 2019b; Yang et al.,
2019) use word vectors of translated entity names
as the input features of GNNs.

3.2 Assignment Problem

The assignment problem is a fundamental and well-
studied combinatorial optimization problem. An
intuitive instance is to assignN jobs forN workers.
Assuming that each worker can do each job at a
term, though with varying degrees of efficiency, let
xij be the profit if the i-th worker is assigned to the
j-th job. Then the problem is to find the best assign-
ment plan (which job should be assigned to which
person in one-to-one basis) so that the total profit
of performing all jobs is maximum. Formally, it is
equivalent to maximizing the following equation:

arg max
P∈PN

〈P ,X〉F (1)

X ∈ RN×N is the profit matrix. P is a permuta-
tion matrix denoting the assignment plan. There
are exactly one entry of 1 in each row and each
column in P while 0s elsewhere. PN represents
the set of all N-dimensional permutation matrices.
Here, 〈·〉F represents the Frobenius inner product.
In this paper, we adopt the Hungarian algorithm
(Kuhn, 1955) and the Sinkhorn operation (Cuturi,
2013) to solve the assignment problem.

4 The Proposed Method

4.1 From Alignment to Assignment
The inputs of our proposed SEU are four matrices:
As ∈ R|Es|×|Es| and At ∈ R|Et|×|Et| represent
the adjacent matrices of the source graph Gs and
the target graph Gt. Hs ∈ R|Es|×d and Ht ∈
R|Et|×d represent the textual features of entities
that have been pre-mapped into a unified semantic
space through machine translation systems or cross-
lingual word embeddings.

Similar to the assignment plan, aligned entity
pairs in EA also needs to satisfy the one-to-one
constraint. Let a permutation matrix P ∈ P|E| rep-
resent the entity correspondences between Gs and
Gt. Pij = 1 indicates that ei ∈ Gs and ej ∈ Gt
are an equivalent entity pair. The goal of SEU is to
solve P according to {As,At,Hs,Ht}. Consider
the following ideal situation:

(1)As andAt are isomorphic, i.e.,As could be
transformed intoAt by reordering the entity node
indices according to P (as shown in Figure 3):

PAsP
−1 = At (2)

(2) The textual features of equivalent entity pairs
are mapped perfectly by the translation system.
Therefore, Hs and Ht could also be aligned ac-
cording to the entity correspondences P :

PHs =Ht (3)

By combining Equation (2) and (3), the con-
nection between the 5-tuple {As,At,Hs,Hs,P }
could be described as follows:

(PAsP
−1)

l
PHs = A

l
tHt ∀l ∈ N

⇒ PAl
sHs = A

l
tHt ∀l ∈ N

(4)

Based on Equation (4), P could be solved by mini-
mizing the Frobenius norm ‖PAl

sHs −Al
tHt‖2F

under the one-to-one constraint P ∈ P|E|. Theo-
retically, for arbitrarily depth l ∈ N, the solution
of P should be the same. However, the above in-
ference is based on the ideal isomorphic situation.
In practice, Gs and Gt are not strictly isomorphic
and the translation system cannot perfectly map
the textual features into a unified semantic space
either. In order to reduce the impact of noise exist-
ing in practice, P should be fit for various depths
l. Therefore, we propose the following equation to
solve the cross-lingual EA problem:

arg min
P∈P|E|

L∑
l=0

∥∥∥PAl
sHs −Al

tHt

∥∥∥2
F

(5)
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Theorem 1 Equation (5) is equivalent to solving
the following assignment problem:

arg max
P∈P|E|

〈
P ,

L∑
l=0

Al
tHt

(
Al

sHs

)T〉
F

(6)

Proof: According to the property of Frobenius
norm ‖A−B‖2F = ‖A‖2F + ‖B‖2F − 2〈A,B〉F ,
Equation (5) could be derived into following:

arg min
P∈P|E|

L∑
l=0

∥∥∥PAl
sHs −Al

tHt

∥∥∥2
F

= arg min
P∈P|E|

L∑
l=0

∥∥∥PAl
sHs

∥∥∥2
F
+
∥∥∥Al

tHt

∥∥∥2
F

− 2
〈
PAl

sHs, A
l
tHt

〉
F

(7)

Here, the permutation matrix P must be orthogo-
nal, so both

∥∥PAl
sHs

∥∥2
F

and
∥∥Al

tHt

∥∥2
F

are con-
stants. Then, Equation (7) is equivalent to maxi-
mizing as below:

arg max
P∈P|E|

L∑
l=0

〈
PAl

sHs,A
l
tHt

〉
F

(8)

For arbitrarily real matrices A and B, these two
equations always hold: 〈A,B〉F = Tr(ABT )
and 〈A,B +C〉F = 〈A,B〉F + 〈A,C〉F , where
Tr(X) represents the trace of matrixX . Therefore,
Theorem 1 is proved:

arg max
P∈P|E|

L∑
l=0

〈
PAl

sHs,A
l
tHt

〉
F

= arg max
P∈P|E|

L∑
l=0

Tr
(
PAl

sHs(A
l
tHt)

T
)

= arg max
P∈P|E|

L∑
l=0

〈
P ,Al

tHt(A
l
sHs)

T
〉
F

= arg max
P∈P|E|

〈
P ,

L∑
l=0

Al
tHt

(
Al

sHs

)T〉
F

(9)

�
By Theorem 1, we successfully transform the

EA problem into the assignment problem. Com-
pared to GNN-based EA methods, our proposed
method retains the basic graph convolution opera-
tion for feature propagation but replaces the com-
plex neural networks with the well-studied assign-
ment problem. Note that the entity scales |Es| and
|Et| are usually inconsistent in practice, resulting
in the profit matrix not being a square matrix. This
kind of unbalanced assignment problem could be
reduced to the balanced assignment problem easily.
Assuming that |Es|>|Et|, a naive reduction is to

pad the profit matrix with zeros such that its shape
becomes R|Es|×|Es|. This naive reduction is suit-
able for the dataset with a small gap between |Es|
and |Et|. For the dataset with a large entity scale
gap, there is a more efficient reduction algorithm
available (Ramshaw and Tarjan, 2012).

4.2 Two Algorithms for Solving the
Assignment Problem

The first polynomial time-complexity algorithm
for the assignment problem is the Hungarian algo-
rithm (Kuhn, 1955), which is based on improving
a matching along the augmenting paths. The time
complexity of the original Hungarian algorithm is
O(n4). Later, Jonker and Volgenant (1987) im-
prove the algorithm to achieve O(n3) running time,
which is one of the most popular variants.

Besides the Hungarian algorithm, the assignment
problem could also be regarded as a special case
of the optimal transport problem. In the optimal
transport problem, the assignment plan P could
be any doubly stochastic matrix instead of a per-
mutation matrix. Based on the Sinkhorn operation
(Sinkhorn, 1964; Adams and Zemel, 2011), Cuturi
(2013) proposes a fast and completely paralleliz-
able algorithm for the optimal transport problem:

S0(X) = exp(X),

Sk(X) = Nc(Nr(Sk−1(X))),

Sinkhorn(X) = lim
k→∞

Sk(X).

(10)

where Nr(X)=X � (X1N1
T
N ) and Nc=X �

(1N1
T
NX) are the row and column-wise normaliza-

tion operators of a matrix, � represents the element-
wise division, and 1N is a column vector of ones.
Then, Mena et al. (2018) further prove that the
assignment problem could also be solved by the
Sinkhorn operation as a special case of the optimal
transport problem:

arg max
P∈PN

〈P ,X〉F

= lim
τ→0+

Sinkhorn(X/τ)
(11)

In general, the time complexity of the Sinkhorn
operation is O(kn2). Because the number of itera-
tion k is limited, the Sinkhorn operation can only
obtain an approximate solution in practice. But
according to our experimental results, a very small
k is enough to achieve decent performance in entity
alignment. Therefore, compared to the Hungarian
algorithm, the Sinkhorn operation is n times more
efficient, i.e., O(n2).
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4.3 Implementation Details
The above two sections introduce how to transform
the cross-lingual EA problem into the assignment
problem and how to solve the assignment problem.
This section will clarify two important implemen-
tation details of our proposed method SEU.

4.3.1 Textual FeaturesH
The input features of SEU include two aspects:

Word-Level. In previous cross-lingual EA
methods (Xu et al., 2019; Wu et al., 2019a), the
most commonly used textual features are word-
level entity name vectors. Specifically, these meth-
ods first use machine translation systems or cross-
lingual word embeddings to map entity names into
a unified semantic space and then average the pre-
trained entity name vectors to construct the initial
features. To make fair comparisons, we adopt the
same entity name translations and word vectors
provided by Xu et al. (2019).

Char-Level. Because of the contradiction be-
tween the extensive existence of proper nouns (e.g.,
person and city name) and the limited size of word
vocabulary, the word-level EA methods suffer from
a serious out of vocabulary (OOV) issue. Therefore,
many EA methods explore the char-level features,
using char-CNN (Wang et al., 2020) or name-BERT
(Liu et al., 2020) to extract the char/sub-word fea-
tures of entities. In order to keep the simplicity and
consistency of our proposed method, we adopt the
character bigrams of translated entity names as the
char-level input textual features instead of complex
neural networks.

In addition to these text-based methods, we no-
tice that some structure-based EA methods (Wang
et al., 2018; Guo et al., 2019) do not require any tex-
tual information at all, where the entity features are
randomly initialized. Section 5.6 will discuss the
connection between text-based and structure-based
methods and challenge the necessity of neural net-
works in cross-lingual EA.

4.3.2 Adjacent MatrixA
In Section 4.1, all deductions are built upon the
assertion that the adjacency matrices As and At

are isomorphic. Obviously, let D be the degree
matrix of adjacency matrix As/t, the equal prob-
ability random walk matrix Ar = D−1As/t and
the symmetric normalized Laplacian matrixAL =
I −D−1/2As/tD

−1/2 of As and At are also iso-
morphic too. Therefore, ifAs/t is replaced byAr

orAL, our method still holds.

Datasets |E| |R| |T |

DBPZH−EN
Chinese 19,388 1,701 70,414
English 19,572 1,323 95,142

DBPJA−EN
Japanese 19,814 1,299 77,214
English 19,780 1,153 93,484

DBPFR−EN
French 19,661 903 105,998
English 19,993 1,208 115,722

SRPRSFR−EN
French 15,000 177 33,532
English 15,000 221 36,508

SRPRSDE−EN
German 15,000 120 37,377
English 15,000 222 38,363

Table 1: Statistical data of DBP15K and SRPRS.

However, the above matrices ignore the relation
types in the KGs and treat all types of relations
equally important. We believe the relations with
less frequency should have higher weight because
they represent more unique information. Follow-
ing this intuition, we apply a simple strategy to
generate the relational adjacency matrixArel, for
aij ∈ Arel:

aij =

∑
rj∈Ri,j

ln(|T |/|Trj |)∑
k∈Ni

∑
rk∈Ri,k

ln(|T |/|Trk |)
(12)

where Ni represents the neighboring set of entity
ei, Ri,j is the relation set between ei and ej , |T |
and |Tr| represent the total number of all triples
and the triples containing relation r, respectively.

5 Experiments

Our experiments are conducted on a workstation
with a GeForce GTX Titan X GPU and a Ryzen
ThreadRipper 3970X CPU. The code and datasets
are available in github.com/MaoXinn/SEU.

5.1 Datasets
To make fair comparisons with previous EA meth-
ods, we experiment with two widely used public
datasets: (1) DBP15K (Sun et al., 2017): This
dataset consists of three cross-lingual subsets from
multi-lingual DBpedia: DBPFR−EN, DBPZH−EN,
DBPJA−EN. Each subset contains 15, 000 entity
pairs. (2) SRPRS: Guo et al. (2019) propose this
sparse dataset, including two cross-lingual subsets:
SRPRSFR−EN and SRPRSDE−EN. Each subset
also contains 15, 000 entity pairs but with much
fewer triples compared to DBP15K.

The statistics of these datasets are summarized in
Table 1. Most of the previous studies(Wang et al.,
2018; Cao et al., 2019a) randomly split 30% of the
entity pairs for training and development, while
using the remaining 70% for testing. Because our
proposed method is unsupervised, all of the entity
pairs could be used for testing.

github.com/MaoXinn/SEU
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Method
DBPZH−EN DBPJA−EN DBPFR−EN SRPRSFR−EN SRPRSDE−EN

H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR

GCN-Align 0.434 0.762 0.550 0.427 0.762 0.540 0.411 0.772 0.530 0.243 0.522 0.340 0.385 0.600 0.460

MuGNN 0.494 0.844 0.611 0.501 0.857 0.621 0.495 0.870 0.621 0.131 0.342 0.208 0.245 0.431 0.310

BootEA 0.629 0.847 0.703 0.622 0.853 0.701 0.653 0.874 0.731 0.365 0.649 0.460 0.503 0.732 0.580

MRAEA 0.757 0.930 0.827 0.758 0.934 0.826 0.781 0.948 0.849 0.460 0.768 0.559 0.594 0.818 0.666

JEANS 0.719 0.895 0.791 0.737 0.914 0.798 0.769 0.940 0.827 - - - - - -

GM-Align 0.679 0.785 - 0.739 0.872 - 0.894 0.952 - 0.574 0.646 0.602 0.681 0.748 0.710

RDGCN 0.697 0.842 0.750 0.763 0.897 0.810 0.873 0.950 0.901 0.672 0.767 0.710 0.779 0.886 0.820

HGCN 0.720 0.857 0.760 0.766 0.897 0.810 0.892 0.961 0.910 0.670 0.770 0.710 0.763 0.863 0.801

DAT - - - - - - - - - 0.758 0.899 0.810 0.876 0.955 0.900

DGMC 0.801 0.875 - 0.848 0.897 - 0.933 0.960 - - - - - - -

AttrGNN 0.796 0.929 0.845 0.783 0.920 0.834 0.919 0.979 0.910 - - - - - -

CEA 0.787 - - 0.863 - - 0.972 - - 0.962 - - 0.971 - -

EPEA 0.885 0.953 0.911 0.924 0.969 0.942 0.955 0.986 0.967 - - - - - -

SEU(word) 0.816 0.923 0.854 0.865 0.952 0.896 0.953 0.989 0.967 0.812 0.902 0.843 0.902 0.951 0.920

SEU(char) 0.870 0.947 0.897 0.947 0.984 0.961 0.986 0.998 0.990 0.979 0.994 0.985 0.980 0.994 0.985

SEU(w+c) 0.900 0.965 0.924 0.956 0.991 0.969 0.988 0.999 0.992 0.982 0.995 0.986 0.983 0.996 0.987

Table 2: Main experimental results on DBP15K and SRPRS. Baselines are separated in accord with the three
groups described in Section 5.2. Most results are from the original papers. Some recent papers are failed to run on
missing datasets or do not release the source code yet. We will fill in these blanks after contacting their authors.

5.2 Baselines

We compare our method against the following three
groups of advanced EA methods: (1) Structure:
These methods only use the structure information
(i.e., triples): GCN-Align (Wang et al., 2018),
MuGNN (Cao et al., 2019a), BootEA (Sun et al.,
2018), MRAEA (Mao et al., 2020), JEANS (Chen
et al., 2021). (2) Word-level: These methods aver-
age the pre-trained entity name vectors to construct
the initial features: GM-Align (Xu et al., 2019),
RDGCN (Wu et al., 2019a), HGCN (Wu et al.,
2019b), DAT (Zeng et al., 2020b), DGMC (Fey
et al., 2020). (3) Char-level: These EA methods
further adopt the char-level textual features: At-
trGNN (Liu et al., 2020), CEA (Zeng et al., 2020a),
EPEA (Wang et al., 2020).

For our proposed method, SEU(word) and
SEU(char) represent the model only using the
word and char features as the inputs, respectively.
SEU(w+c) represents concatenating the word and
char features together as the inputs.

5.3 Settings

Metrics. Following convention, we use Hits@k
and Mean Reciprocal Rank (MRR) as our evalua-
tion metrics. The Hits@k score is calculated by
measuring the proportion of correct pairs in the
top-k. In particular, Hits@1 equals accuracy.

Hyper-parameter. In the main experiments, we
use the Sinkhorn operation to solve the assignment
problem. For all dataset, we use a same default
setting: the depth L = 2; the iterations k = 10; the
temperature τ = 0.02.

5.4 Main Experiments

Table 2 shows the main experimental results of all
EA methods. Numbers in bold denote the best
results among all methods.

SEU vs. Baselines. According to the results, our
method consistently achieves the best performance
across all datasets. Compared with the previous
SOTA methods, SEU (w+c) improves the perfor-
mance on Hits@1 and MRR by 1.5% and 1.3%
at least. More importantly, SEU outperforms the
supervised competitors as an unsupervised method,
which is critical in practical applications.

In addition to the better performances, SEU also
has better interpretability and stability: (1) When
solving with the Hungarian algorithm, we can trace
the reasons for each decision by the augmenting
path, which brings better interpretability. (2) As
we all know, neural networks optimized by SGD
usually have some performance fluctuations. Since
both the Hungarian algorithm and Sinkhorn oper-
ation are deterministic, multiple runs of these al-
gorithms remain unchanged under the same hyper-
parameters, which means better stability.
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Figure 4: F1-score of SEU(w+c) and PARIS.

algorithm DBPZH−EN DBPJA−EN DBPFR−EN

Hungarian 0.907 0.963 0.993
Sinkhorn 0.900 0.956 0.988

Table 3: Hits@1 of Hungarian and Sinkhorn. 1

algorithm DBPZH−EN DBPJA−EN DBPFR−EN

Hungarian 43.4s 19.8s 7.6s
Sinkhorn(CPU) 6.1s 6.1s 6.2s
Sinkhorn(GPU) 1.8s 1.7s 1.8s

Table 4: Time costs of Hungarian and Sinkhorn.

Word vs. Char. From Table 2, we observe
that the char-level SEU greatly outperforms the
word-level SEU. Especially in SRPRSFR−EN, the
performance gap onHits@1 is more than 16%. As
mentioned in Section 4.3.1, the main reason is that
these datasets contain extensive OOV proper nouns.
For example, in DBP15K, 4-6% of the words are
OOV; while in SRPRSDE−EN and SRPRSFR−EN,
more than 12% and 16% of the entity names are
OOV, respectively.

Note that the performance difference between
SEU(word) and SEU (char) is vast, but these two
features still complement to each other, so the com-
bination of them still improves the performances
(especially on DBPZH−EN dataset). We believe the
hidden reason is synonyms. For example, soccer
and football refer to the same Chinese phrase, but
there is almost no overlap in the char-level between
these two English words. However, the word-level
features could bridge such semantic gap via pre-
trained cross lingual word vectors.

SEU vs. PARIS. As mentioned in Section
1, a recent summary (Zhang et al., 2020) notes
that several "advanced" EA methods are even
beaten by the conventional methods. To make
this study more comprehensive, we also compare

1Since the Hungarian algorithm only outputs the assigned
entity pairs, instead of a probability matrix P , we can only
report the Hits@1 performance.

Method DBP15K SRPRS
GCN-Align (Wang et al., 2018) 103 87

MuGNN (Cao et al., 2019a) 3,156 2,215
BootEA (Sun et al., 2018) 4,661 2,659

MRAEA (Mao et al., 2020) 3,894 1,248
GM-Align (Xu et al., 2019) 26,328 13,032
RDGCN (Wu et al., 2019a) 6,711 886
HGCN (Wu et al., 2019b) 11,275 2,504

SEU(CPU) 22.1 13.8
SEU(GPU) 16.2 9.6

Table 5: Time costs of EA methods (seconds).2

SEU against a representative conventional method
PARIS (Suchanek et al., 2011) in Figure 4, which
is a holistic unsupervised solution to align KGs
based on probability estimates. Since PARIS may
not always output a target entity for every source
entity, we use the F1-score as the evaluation metric
to deal with entities that do not have a match. In
our method, the F1-score is equivalent to Hits@1.
Consistent with Zhang’s summary, PARIS is bet-
ter than most GNN-based EA methods. On the
other hand, SEU outperforms PARIS significantly
on these public datasets except for DBPZH−EN.

Hungarian vs. Sinkhorn Table 3 reports the
performances of SEU(w+c) with the Hungarian al-
gorithm and Sinkhorn operation, respectively. The-
oretically, the Hungarian algorithm could generate
the optimal solution precisely, while the Sinkhorn
operation can only generate an approximate solu-
tion. Therefore, the Hungarian algorithm is always
slightly better, but the performance gap is relatively
small. Furthermore, we list the time costs of these
two algorithms in Table 4. We observe that the
time costs of the Hungarian algorithm are unstable,
which depend on the dataset. Meanwhile, the time
costs of the Sinkhorn operation are much more sta-
ble. Because the Sinkhorn operation is completely
parallelizable, its time costs could be further re-
duced by the GPU. In general, the Sinkhorn opera-
tion is more suitable for large-scale EA because of
its higher efficiency.

Overall Time Efficiency We specifically eval-
uate the overall time costs of some EA methods
and report the results in Table 5. It is obvious
that the efficiency of SEU far exceeds all advanced
competitors. Typically, existing GNN-based meth-
ods require forward propagations on every batch,
and the convergence of models usually requires
hundreds of batches. Since SEU does not have
any trainable parameters, it only requires forward
propagation once, enabling SEU to achieve such
acceleration.
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Figure 6: Hits@1 with different depths L.

5.5 Auxiliary Experiments

To explore the behavior of SEU in different situa-
tions, we design the following experiments:

Temperature τ . Similar to the temperature τ in
the softmax operation, τ in the Sinkhorn operation
is also used to make the distribution closer to one-
hot. With the remaining config unchanged, we set τ
with different values and report the corresponding
performances of SEU(w+c) on DBPZH−EN in Fig-
ure 5. If we choose an appropriate τ , the Sinkhorn
algorithm will converge quickly to the optimal so-
lution. But if τ is set too large, the algorithm will
fail to converge.

Depth L. For depth L, we list the experimental
results in Figure 6. In particular, L = 0 is equiv-
alent to aligning entities only according to their
own features without the neighborhood informa-
tion. SEU(w+c) with L = 2 achieves the best
performance on all subsets of DBP15K, which in-
dicates the necessity of introducing neighborhood
information. Similar to GNN-based EA methods,
SEU is also affected by the over-smoothing prob-
lem. When stacking more layers, the performances
begin to decrease slightly.

Adjacency matrix A. To distinguish different
relation types in KGs, we adopt a simple strategy
to generate the relational adjacency matrix Arel.
Table 6 reports the performances of SEU(w+c) with
different types of adjacency matrices. A is the
standard adjacency matrix, Ar = D−1A is the

Method
DBPZH−EN DBPJA−EN DBPFR−EN

Hits@1 MRR Hits@1 MRR Hits@1 MRR

A 0.890 0.915 0.952 0.965 0.985 0.989

Ar 0.891 0.916 0.953 0.966 0.985 0.988

AL 0.887 0.912 0.953 0.965 0.984 0.987

Arel 0.900 0.924 0.956 0.969 0.988 0.992

Table 6: Performances with different types of adja-
cency matricesA.

equal probability random walk matrix and AL =
I −D−1/2AD−1/2 is the symmetric normalized
Laplacian matrix. The experimental results show
thatArel achieves the best performance across all
these three subsets.

5.6 Discussion
From the experimental results, we observe that the
supervised EA methods are even beaten by the
unsupervised methods. In this section, we propose
a hypothesis that the reason behind this counter-
intuitive phenomenon is potential over-fitting.

As mentioned in Section 5.2, existing EA meth-
ods could be divided into structure-based and text-
based according to the input features. The only
difference between them is that the structure-based
methods use randomly initialized vectors as the
entity features, while the text-based methods use
pre-mapped textual features as the inputs. Let us
consider the vanilla GCN as a sample:

H l+1 = σ(ALH
lW l) (13)

where σ represents the activation function. For the
structure-based methods, since the input features
H and the transformation matrixW are both ran-
domly initialized, they could be simplified into one
matrix, i.e., H l+1 = σ(ALH

l). This idea has
been proved by many structure-based EA methods
(Cao et al., 2019a; Mao et al., 2020), which pro-
pose to diagonalize or remove the transformation
matrix W . In this situation, GCN is reduced to a
simple fully connected neural network with adja-
cency matrices as its input features. The essence of
structure-based EA methods is to map the features
of adjacency matrices into a unified vector space.
Therefore, these structure-based EA methods re-
quire supervised data to learn the parameters.

As for the text-based EA methods, the textual
features of entities have already been pre-mapped
into a unified semantic space by machine transla-
tion or cross-lingual word vectors. Therefore, these
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text-based EA methods are equivalent to further
fitting these pre-mapped features on a few aligned
entity pair seeds, which could cause potential over-
fitting. Considering that we could directly align
entities as an assignment problem, it is unnecessary
to further fit entity features via neural networks.

As a simple unsupervised method, our proposed
SEU achieves excellent performances on several
EA datasets, which confirms the above analysis
from the empirical side. It is noted that this section
only proposes a possible explanation, not rigorous
proof. We will continue to explore in this direction.

6 Conclusion

In this paper, we successfully transform the cross-
lingual EA problem into the assignment problem.
Based on this finding, we propose a frustratingly
Simple but Effective Unsupervised EA method
(SEU) without neural networks. Experiments on
widely used public datasets indicate that SEU out-
performs all advanced competitors and has high
efficiency, interpretability, and stability.
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