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Introduction

Welcome to the EACL 2021 Student Research Workshop!

The EACL 2021 Student Research Workshop (SRW) is a platform for students in the field of
Computational Linguistics and Natural Language Processing to come together to discuss and advance
their research with help from more experienced researchers from both academia and industry.

The workshop is uniquely placed to provide valuable feedback to students about their research both
before and after paper submissions. It provides them with ample opportunities to improve writing and
research dissemination skills in the process. Following the tradition of the previous student research
workshops, we have two tracks: research papers and thesis proposals. The research paper track is a venue
for Ph.D. students, Master’s students, and advanced undergraduate students to describe completed work
or work-in-progress along with preliminary results. The thesis proposal track is offered for advanced
Masters and Ph.D. students who have decided on a thesis topic and are interested in receiving feedback
for their proposal with suggestions for both making the ideas achievable, as well as discussions related
to future directions for their work.

The student research workshop has received considerable attention from many different parts of the
world, and papers have addressed research questions in several different languages, which reflects the
growth of the workshop. After excluding the withdrawn submissions, we received 59 submissions in
total: 6 thesis proposals and 53 research papers. We accepted 4 thesis proposals and 22 research papers,
resulting in an overall acceptance rate of 44%. We have also added a best paper award in the process.
All the accepted papers will be presented virtually, as a part of the EACL conference, spread across three
days (April 21st–23rd, 2021).

Mentoring is a core part of the SRW. In keeping with previous years, we organized pre-submission
mentoring to improve the writing style and presentation of submissions. A total of 11 papers participated
in this program. It offered students the opportunity to receive guidance from an experienced researcher
before their submission was peer-reviewed for acceptance.

We thank our program committee members for providing careful and comprehensive reviews for the
papers, and all of our mentors for donating their time to provide feedback to our student authors. Thanks
to our faculty advisor, Eneko Agirre, for the essential advice and suggestions, and to the EACL 2021
organizing committee for their support in the entire process. Finally, we would like to thank all the
authors whose participation has made the workshop a success!
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Abstract

The problem of estimating the probability dis-
tribution of labels has been widely studied
as a label distribution learning (LDL) prob-
lem, whose applications include age estima-
tion, emotion analysis, and semantic segmen-
tation. We propose a tree-Wasserstein dis-
tance regularized LDL algorithm, focusing on
hierarchical text classification tasks. We pro-
pose predicting the entire label hierarchy using
neural networks, where the similarity between
predicted and true labels is measured using
the tree-Wasserstein distance. Through experi-
ments using synthetic and real-world datasets,
we demonstrate that the proposed method suc-
cessfully considers the structure of labels dur-
ing training, and it compares favorably with
the Sinkhorn algorithm in terms of computa-
tion time and memory usage.

1 Introduction

Label distribution learning (LDL), which is a gen-
eralized framework for performing single/multi-
label classification and estimating the probability
distribution over labels, is an important machine-
learning problem (Geng, 2016). Its applications
include age estimation (Geng et al., 2013), emo-
tion estimation (Zhou et al., 2016), head-pose es-
timation (Geng and Xia, 2014), and semantic seg-
mentation (Gao et al., 2017). In particular, multi-
label classification is an important problem in many
NLP areas, and has several applications including
multi-label text classification (Banerjee et al., 2019;
Chalkidis et al., 2019).

Typically, Kullback-Leibler (KL) divergence is
used to measure the similarity between two distri-
butions. However, the KL divergence can tend to
infinity if the supports of the two distributions do
not overlap, resulting in model failure.

To solve this support problem, Wasserstein dis-
tance is used instead of KL divergence (Arjovsky

et al., 2017). Wasserstein distance is defined as
the cost of optimally transporting one probability
distribution to match another (Villani, 2009; Peyré
and Cuturi, 2018). Because it can compare two
probability measures while considering the ground
metric, it is more powerful than measurements that
do not consider geometrical information.

An LDL framework with Wasserstein distance
has been recently proposed (Frogner et al., 2015;
Zhao and Zhou, 2018). This framework employs
the Sinkhorn algorithm (Cuturi, 2013) to calculate
the Wasserstein distance, which requires quadratic
computational-time. Thus, when we consider ex-
tremely large label-sets, for example, 105, the
computation cost can be significant. However,
the Wasserstein distance on a tree (hereinafter
called tree-Wasserstein distance) can be written in
a closed-form and calculated in linear computation
time (Evans and Matsen, 2012; Le et al., 2019).

In this paper, we propose a tree-regularized LDL
algorithm with a tree-Wasserstein distance. The
key advantage of the tree-Wasserstein distance is
that it considers the hierarchical label informa-
tion explicitly, whereas the Sinkhorn-based algo-
rithm needs a cost matrix using tree-structured data.
Moreover, the tree-Wasserstein distance has an an-
alytic form that can be computed in linear time us-
ing significantly less memory. We experimentally
demonstrate that the proposed algorithm compares
favorably with the Sinkhorn-based LDL algorithm
(Frogner et al., 2015; Zhao and Zhou, 2018) with
considerably lower memory consumption and com-
putational costs. We demonstrate that the calcu-
lation is more efficient than that of the existing
Wasserstein loss.

Contribution: Our contributions are summarized
as follows. (1) We propose training a model by
minimizing the tree-Wasserstein distance for hier-
archical labels, and (2) we experimentally show

1
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Figure 1: Illustration of a tree-structured la-
bel with the root “animal”. Γ(”mammal”) =
{“mammal”, “dog”, “cat”}, ve2 = “reptile” .

that the proposed method is computationally more
efficient than the existing methods with Sinkhorn-
based methods.

2 Problem Setting

We observe n input and output samples
{(x1,y1), · · · , (xn,yn)} from (X ,Y), where
X ⊂ Rd. We consider the problem of learning a
map from a feature space X into P , which is a set
of distributions over a finite set Y .

For example, multi-class classification is in-
cluded in this problem, y, which represents the
`-th class, and it is expressed as the following one-
hot vector:

y = (0, . . . , 0, 1︸︷︷︸
`

, 0, . . . 0)> ∈ RL,

where L denotes the total number of classes, and
y>1L = 1. Additionally, 1L ∈ RL denotes a
vector whose elements are all 1.

When multi-label classification is considered, P
denotes binary vectors that indicate existing labels.
For example, if the sample x belongs to classes `
and `′, y is given as

y = (0, . . . , 0, 1︸︷︷︸
`

, 0, . . . 0, 1︸︷︷︸
`′

, 0, . . . , 0)> ∈ RL,

where y>1L = 2. Accordingly, we can transform
y into a probability vector as py = y/y>1L. No-
tably, we assume that Y is discrete and has a tree
structure similar to hierarchical labels.

We aim to estimate the conditional probability
vector py for x by considering the structure infor-
mation of Y from {(x1,py1), · · · , (xn,pyn)}.

3 Proposed Method

In this study, we assume Y has a tree-structure. Ac-
cordingly, we propose LDL with tree-Wasserstein
distance.

3.1 Wasserstein distance on tree metrics

Let T be a tree with non-negative weighted edges
and NT be the set of nodes of T . A shortest path
metric dT : NT ×NT → R associated with T is
called the tree metric. Let v and v′ be the nodes in
T . Accordingly, dT (v, v′) is equal to the sum of
the edge weights along the shortest path between v
and v′. Next, we know thatMT = (NT , dT ) is a
metric space and can be naturally derived from T .

It is assumed that T is rooted at r. For each node
v, the set of nodes in the sub-tree of T rooted at
v is defined as Γ(v) = {u ∈ NT | v ∈ R(u)}
where R(v) denotes the set of nodes in a unique
path from a node v to the root r in T . For each
edge e, ve denotes a deeper level node. Figure 1
illustrates a tree-structured label.

Given two probability measures µ, ν supported
onMT , the 1-Wasserstein distance between µ and
ν is expressed as follows (Evans and Matsen, 2012;
Le et al., 2019):

W1
dT (µ, ν) =

∑

e∈T
we|µ(Γ(ve))− ν(Γ(ve))|, (1)

where we denotes the weight of edge e. The key
advantage of the tree-Wasserstein distance is that
it can be computed with the linear time complex-
ity, whereas the time complexity for the Sinkhorn
algorithm is quadratic (Cuturi, 2013).

3.2 LDL with tree-Wasserstein distance

We define the tree-Wasserstein regularizer as fol-
lows.

Definition 1 (tree-Wasserstein regularizer). Let
hθ : X → P be a model with learnable parame-
ters θ. Let TY = (V,E,WE) be a tree associated
with Y , where V denotes the set of nodes, E is
the set of edges, and WE(e) is the length of edge
e ∈ E. Given input x ∈ X and the ground-truth
distribution of y py ∈ P , then the tree-Wasserstein
regularization term T W(x,py) is defined as fol-
lows:

T W(x,py)

=
∑

e∈T
WE(e)|(hθ(x))(Γ(ve))−py(Γ(ve))|,

where hθ denotes the prediction model.

Using the tree-Wasserstein regularizer, we pro-

2



Table 1: The results for the Synthetic dataset. The label distributions are given on a random tree with 1000 nodes.

Loss Wasserstein ↓ KL ↓ Cheby↓ Clark ↓ Canbe ↓ Cos ↑ IntSec ↑
KL 9.701± (.050) 0.431± (.001) 0.209± (.001) 1.777± (.011) 14.512± (.060) 0.877± (.000) 0.754± (.001)

KL+ 1
2W1 10.831± (.044) 0.452± (.001) 0.230± (.001) 1.666± (.009) 13.834± (.064) 0.868± (.000) 0.739± (.001)

KL+W1 11.631± (.048) 0.475± (.001) 0.244± (.001) 1.618± (.008) 13.474± (.063) 0.859± (.000) 0.727± (.001)
KL+ 1

2T W 7.257± (.110) 0.595± (.007) 0.193± (.001) 2.098± (.040) 19.636± (.171) 0.833± (.002) 0.729± (.003)
KL+ T W 7.158± (.117) 0.631± (.007) 0.195± (.001) 2.143± (.030) 19.923± (.441) 0.825± (.003) 0.721± (.004)

Table 2: The results for BlurbGenreCollectionEN.

Loss Pseudo-Recall Top5 AUC

KL 0.679± (.008) 1.013± (.015) 0.971± (.001)
KL+ 1

2
W1 0.675± (.008) 1.009± (.013) 0.970± (.002)

KL+W1 0.678± (.004) 1.008± (.018) 0.970± (.001)
KL+ 1

2
T W 0.678± (.010) 0.993± (.013) 0.971± (.002)

KL+ T W 0.678± (.009) 0.991± (.017) 0.970± (.001)

pose the following LDL:

θ̂ = argmin
θ

n∑

i=1

λT W(hθ(xi),pyi)

+KL(hθ(xi),pyi), (2)

where

KL(hθ(xi),pyi) =
L∑

`=1

p
(`)
yi log

p
(`)
yi

hθ(xi)(`)
, (3)

is the multi-class Kullback-Leibler loss function,
and λ ≥ 0 is its regularization parameter.

Notably, T W(hθ(xi),pyi) is calculated in
O(L) time, where L denotes the number of labels.
Unlike the Sinkhorn-Knopp algorithm, we need
not compute and hold a distance matrix. For tree-
structured labels, including hierarchical labels, the
tree structure can be used directly as a tree met-
ric. If we have prior knowledge about labels (e.g.,
similarity), we can set edge-weights using the prior
knowledge.

4 Related Work

4.1 Label distribution learning

LDL (Geng, 2016) is the task of estimating the
distribution of labels from each input. While age
estimation (Geng et al., 2013), head-pose estima-
tion (Geng and Xia, 2014), and semantic segmenta-
tion (Gao et al., 2017) are well known LDL tasks,
in this study, we consider the task of estimating a
distribution on a hierarchical structure. The key
difference between LDL and a generative model
is that the “true” distribution on labels is given in
LDL.

4.2 Wasserstein distance
Given two probability vectors a, b ∈ Rn≥0 and a
distance matrixD ∈ Rn×n≥0 , the 1-Wasserstein dis-
tanceW1(a, b) between a and b is defined as:

W1(a, b) = min
P∈Π
〈D,P 〉, (4)

where Π denotes the set of transport plans such
that Π = {P ∈ Rn×n≥0 | P1n = a,P>1n = b}.

Because Wasserstein distance can incorporates
the ground metric in the comparison of the prob-
ability distributions, it has been widely used in
applications, including domain adaptation (Courty
et al., 2017), generative models (Arjovsky et al.,
2017), and natural language processing (Kusner
et al., 2015). A loss function that uses the Wasser-
stein distance can improve predictions based on
a structure of labels (Frogner et al., 2015; Zhao
and Zhou, 2018). Additionally, an entropic opti-
mal transport loss can provide a robustness against
noise labels by finding the coupling of the data
samples and propagating their labels according to
the coupling weight (Damodaran et al., 2020).

Frogner et al. (2015) proposed learning us-
ing a Wasserstein loss to consider the geomet-
ric information in predicting a probability dis-
tribution. Because computing a sub-gradient of
the exact Wasserstein loss is expensive, they esti-
mated the sub-gradient by introducing an entropic-
regularization term and using the Sinkhorn-Knopp
algorithm. Although they also suggested extending
the Wasserstein loss to unnormalized measures, we
do not consider this case. Zhao and Zhou (2018)
showed that Wasserstein loss influenced LDL in
terms of simultaneously learning label correlations
and distribution. We proposed learning using an
exact Wasserstein distance with efficient computa-
tions when the ground metric is represented by a
tree.

Le et al. (2019) suggested the tree-sliced Wasser-
stein distance, where the Wasserstein distance is ap-
proximated on a continuous space by averaging the
Wasserstein distances on tree metrics constructed
by dividing that space. An unbalanced variant of

3



the tree-Wasserstein distance has been recently pro-
posed (Sato et al., 2020).

5 Experiments

We applied our proposed method to LDL on trees
based on a synthetic dataset and to multi-label text
classification of a hierarchical structure based on
a real dataset. We implemented all the methods
using Pytorch (Paszke et al., 2019). Our models
were optimized using a gradient method with the
Adam (Kingma and Ba, 2015) optimizer.

Baselines: We compared our proposed method
to the Wasserstein-loss-based LDL framework
(Frogner et al., 2015; Zhao and Zhou, 2018) and a
multi-class KL loss mentioned in (3). Notably, in
the original paper (Zhao and Zhou, 2018), they did
not include KL loss and used only Wasserstein loss,
but (Frogner et al., 2015) used a linear combination
of KL divergence and Wasserstein distance as the
loss. To ensure fair comparison, we also report the
combination of Wasserstein loss and multi-class
KL loss as a strong baseline. Therefore, we set the
combination parameter λ = {0, 1

2 , 1} defined in Eq
2 and the weight of all edges to 1. The Wasserstein
loss was computed using the Sinkhorn-Knopp algo-
rithm in the log domain(Schmitzer, 2019; Peyré
and Cuturi, 2018) on GPUs. For the proposed
method, we computed the tree-Wasserstein loss on
the CPU and then passed it to the GPU to compute
the gradient. Then, we set the number of iterations
of the Sinkhorn-Knopp algorithm to 10 and the
regularization parameter to 50, respectively.

5.1 Synthetic data
We generated a synthetic dataset that comprises
pairs of a real vector and a target probability distri-
bution on the nodes of a randomly generated tree.
This dataset was created as follows: First, we de-
fined a parametric distribution on a graph. Given
a graph, G = (V,E), the shortest path metric, dG,
and the probability distribution, Fvuσ, over V pa-
rameterized by v, u ∈ V, σ > 0 is defined as:

Fvuσ(s) =
1

C
(exp

dG(v, s)

σ2
+ exp

dG(u, s)

σ2
)

C =
∑

s∈V
(exp

dG(v, s)

σ2
+ exp

dG(u, s)

σ2
).

Algorithm 1 shows the algorithm used to generate
the dataset used in the experiments. In this exper-
iment, we prepared datasets with the distribution
on a random tree with 1000 nodes using NetworkX

(Hagberg et al., 2008). The size of each of the train-
ing and testing datasets is 1000. We set the number
of epochs to 500 and the batch size to 10, and we
fixed the learning rate at .001. We reported the av-
erage scores of the experiments using 10 different
random seeds.

Predictive model: We adopted the following
model for class `:

hθ(x)(`) =
exp(w>` x+ b`)∑

j

exp(w>j x+ bj)
,

where wi, bi are learnable parameters.

Evaluation Metric: To evaluate predictions from
various perspectives, we used the metric listed in
Table 3. Notably we adopted the exact Wasserstein
distance, called Wasserstein, between the predic-
tion and ground-truth label distributions to assess
the extent to which the ground metric was consid-
ered in the prediction. In these experiments, we
used the Python Optimal Transport (POT) library
(Flamary and Courty, 2017) to calculate the exact
Wasserstein distance, and the weights of all the
edges were set to 1. The other evaluation metrics
are the same as those used in (Geng, 2016).

The scores of the experiment with synthetic data
are presented in Table 1. The proposed linear com-
binations of KL and T W outperformed the others
in terms of Wasserstein and Chebyshev metric, but
they performed poorly in terms of the other metrics.

5.2 BlurbGenreCollectionEN
In this study, we used the BlurbGenreCollectio-
nEN1(Cortes and Vapnik, 1995; Lewis et al., 2004)
dataset for performing experiments with real data.
It comprises advertising descriptions of books from
the Penguin Random House webpage. Each in-
stance has one or multiple labels that are hierarchi-
cally structured. Because the hierarchical structure
of these data is a forest and not a tree, we added
a root node to the hierarchical tree. Of the total
91, 892 data samples 64%, 16% and 20% were
used in the train, validation, and test sets, respec-
tively. We set the number of epochs to 100 and the
batch size to 100, and we fixed the learning rate to
.001. We reported the average scores and standard
deviations of the experiments using 10 different
random seeds.

1https://www.inf.uni-hamburg.
de/en/inst/ab/lt/resources/data/
blurb-genre-collection.html
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Canberra
∑L

`=1

|hθ(x)(`)−p
(`)
y |

hθ(x)
(`)+p

(`)
y

Chebyshev maxi |hθ(x)(`) − p(`)
y |

Clark
√∑L

`=1

(hθ(x)
(`)−p(`)y )2

(hθ(x)
(`)+p

(`)
y )2

Cosine
∑L

`=1 hθ(x)
(`)p

(`)
y√∑L

`=1
(hθ(x)

(`))2
√∑L

`=1
(p

(`)
y )2

Intersection
∑L

`=1 min(hθ(x)
(`),p(`)

y )

Kullback-Leibler
∑L

`=1 p
(`)
y ln

p
(`)
y

hθ(x)
(`)

Table 3: Evaluation metrics for LDL. hθ(x) is the pre-
dicted distribution of x, and py is the ground truth dis-
tribution of a label y.

Predictive model: We adopted a long-short-term-
memory (LSTM) (Hochreiter and Schmidhuber,
1997) model with a hidden state size of 200. Be-
cause LSTM can efficiently learn long-term depen-
dencies of time-series data, it has often been used
in the natural-language processing domain (Yin
et al., 2017; Kuncoro et al., 2018). Additionally,
we used fastText (Bojanowski et al., 2017; Joulin
et al., 2017) for word embeddings. A fully con-
nected layer exists before the output layer, and the
output function is a softmax function.

Evaluation metric: We evaluated prediction ac-
curacy using three metrics, namely pseudo-recall,
top-k cost, and receiver operating characteristic
area under the curve (ROC-AUC). Pseudo-recall
is defined as |P∪L||L| , where L denotes the set of
ground-truth labels, and P is a set that comprises
L = |L| labels in descending order of the probabil-
ity score.

Top-k cost is defined as:

1

K

K∑

k=1

min
`∈L

d(`pk , `),

where `pk denotes the label with the k-th highest
probability score. This metric measures how close
the predicted top-k labels are to the ground-truth
labels. We calculate ROC-AUC using the output
distribution of each model as a score vector, which
is assigned 1 on the ground truth labels or 0 on
the other labels. Table 2 presents the comparison
results. Both regularization terms (W1 and T W)
did not have a significant impact on the results.

5.3 Computational-efficiency comparison
In the computational efficiency experiment, distri-
butions with 102, 103, 104, and 105 supports were
prepared. Subsequently, the computation time and
memory required to calculate the loss of pairs of

Algorithm 1: Generating a synthetic
dataset

1 Generate a random tree : G = (V,E),
where V = {s1, ..., sl}

2 W1 ← (n×m)-dim random matrix
3 W2 ← (m× (l + 1))-dim random matrix
4 for i = 1 to N do
5 xi ← n-dimensional random vector
6 xi ← 1

1+exp(−W1xi)

7 xi ← 1
1+exp(−W2xi)

8 σ ← 10xi
(l+1)

9 j ← argmax1≤j≤lx
(j)
i ; v ← sj

10 k ← argmin1≤k≤lx
(k)
i ; u← sk

11 pG(s)← Fvuσ(s),∀s ∈ V
12 return {(xi, pG(V ))}Ni=1

Table 4: Comparison of computational efficiency.

L Loss Time(s) Memory

102
T W 0.0024 1.58 MB

W1 with GPU 0.0062 3.32 MB
W1 with CPU 0.0528 2.98 MB

103
T W 0.0126 2.44 MB

W1 with GPU 0.0071 16.94 MB
W1 with CPU 0.1279 7.08 MB

104
T W 0.1204 9.82 MB

W1 with GPU 0.5277 766.88 MB
W1 with CPU 25.7985 1148.22 MB

105
T W 1.6454 66.00 MB

W1 with GPU - (37.25 GB)
W1 with CPU - (40.00 GB)

random probability distributions on the supports
were measured. To avoid calculating a shortest-
path distance matrix, we used the matrix (11>− I),
where I denotes an identity matrix, as the distance
matrix while computing the Wasserstein loss. Addi-
tionally, we used a random tree, with edge weights
of 1, as a tree metric while computing the tree-
Wasserstein loss. We report the average scores of
three measurements.

Table 4 presents the time and memory required
to calculate the losses for various numbers of nodes.
T W outperforms the other Wasserstein losses in
terms of computation time and is significantly su-
perior in terms of memory consumption. Although
W1 that uses a GPU is faster than the others with
103 supports, it cannot calculate the loss with 105

supports because the required memory cannot be
allocated.
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6 Conclusions

This study proposed the use of a tree-Wasserstein
reguralizer for learning. The experimental results
indicate that our proposed method can successfully
predict the distributions of structured labels and
that it outperforms existing Wasserstein loss cal-
culation methods in terms of both computational
speed and memory consumption.
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Abstract

With the success of pre-trained language mod-
els in recent years, more and more researchers
focus on opening the “black box” of these
models. Following this interest, we carry out
a qualitative and quantitative analysis of con-
stituency grammar in attention heads of BERT
and RoBERTa. We employ the syntactic dis-
tance method to extract implicit constituency
grammar from the attention weights of each
head. Our results show that there exist heads
that can induce some grammar types much bet-
ter than baselines, suggesting that some heads
act as a proxy for constituency grammar. We
also analyze how attention heads’ constituency
grammar inducing (CGI) ability changes after
fine-tuning with two kinds of tasks, including
sentence meaning similarity (SMS) tasks and
natural language inference (NLI) tasks. Our
results suggest that SMS tasks decrease the av-
erage CGI ability of upper layers, while NLI
tasks increase it. Lastly, we investigate the
connections between CGI ability and natural
language understanding ability on QQP and
MNLI tasks.

1 Introduction

Recently, pre-trained language models have
achieved great success in many natural language
processing tasks (Devlin et al., 2019; Yang et al.,
2019), including sentiment analysis (Liu et al.,
2019), question answering (Lan et al., 2020) and
constituency parsing (Zhang et al., 2020), to name
a few. Though these models have become more
and more popular in many NLP tasks, they are still
“black boxes”. What they have learned, and why
and when they perform well remain unknown. To
open these “black boxes”, researchers have used
many methods to analyze the linguistic knowledge
that these models encode (Goldberg, 2019; Clark
et al., 2019; Hewitt and Manning, 2019; Kim et al.,
2020).

Pre-trained language models use self-attention
mechanism in each layer to compute the internal
representations of each token. In this work, we in-
vestigate the hypothesis that some attention heads
in pre-trained language models have learned con-
stituency grammar. We use an unsupervised con-
stituency parsing method to extract constituency
trees from each attention heads of BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019) be-
fore and after fine-tuning. This method computes
the syntactic distance between every two adjacent
words and generates a constituency parsing tree
recursively. We analyze the extracted constituency
parsing trees to investigate whether specific atten-
tion heads induce constituency grammar better than
baselines, and which types of constituency gram-
mars they learn best.

In prior work, Kim et al. (2020) show that some
layers of pre-trained language models exhibit syn-
tactic structure akin to constituency grammar to
some degree. However, they do not analyze how
fine-tuning affects models. We first follow their
methods to extract constituency grammar from
BERT and RoBERTa. Then, we use the same
approach to analyze BERT and RoBERTa after
fine-tuning. To the best of our knowledge, we are
the first to investigate how fine-tuning affects the
constituency grammar inducing (CGI) ability of
attention heads. We fine-tune them on two types of
GLUE natural language understanding (NLU) tasks
(Williams et al., 2018; Wang et al., 2018). The first
type is the sentence meaning similarity (SMS) task.
We fine-tune our models on two datasets, QQP 1

and STS-B (Cer et al., 2017). The second type is
the natural language inference (NLI) task. We fine-
tune our models on two datasets, MNLI (Williams
et al., 2018) and QNLI (Rajpurkar et al., 2016;
Wang et al., 2018). Lastly, we investigate the rela-

1https://www.quora.com/q/quoradata/First-Quora-
Dataset-Release-Question-Pairs
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tions between CGI ability of attention heads and
natural language understanding ability on QQP and
MNLI tasks.

The findings of our study are as follows:

1. Attention heads in the higher layers of BERT
and the middle layers of RoBERTa have better
constituency grammar inducing (CGI) abil-
ity. Some heads act as a proxy for some con-
stituency grammar types, but all heads do not
appear to fully learn constituency grammar.

2. The sentence meaning similarity task de-
creases the average CGI ability in the higher
layers. The natural language inference task
increases it in the higher layers.

3. For QQP and MNLI tasks, attention heads
with better CGI ability are more important for
BERT. However, this relation is different in
RoBERTa.

2 Related Work

Many works have proposed methods to induce con-
stituency grammar and extract constituency trees
from the attention heads of the transformer-based
model. Mareček and Rosa (2018) aggregate all
the attention distributions through the layers and
get an attention weight matrix. They extract bi-
nary constituency tree and undirected dependency
tree from this matrix. Kim et al. (2020) use the
attention distribution and internal vector represen-
tation to compute Syntactic Distance (Shen et al.,
2018) between every two adjacent words to draw
constituency trees from raw sentences without any
training.

Additionally, researchers have investigated how
fine-tuning affects syntactic knowledge that BERT
learns. Kovaleva et al. (2019) use the subset of
GLUE tasks (Wang et al., 2018) to fine-tune BERT-
base model. They find that fine-tuning does not
change the self-attention patterns. They also find
that after fine-tuning, the last two layers’ atten-
tion heads undergo the largest changes. Htut et al.
(2019) investigates whether fine-tuning affects the
dependency syntax in BERT attentions. They
find that fine-tuning does not have great effects
on attention heads’ dependency syntax inducing
ability. Zhao and Bethard (2020) investigate the
negation scope linguistic knowledge in BERT and
RoBERTa’s attention heads before and after fine-
tuning. They find that after fine-tuning, the average
attention heads are more sensitive to negation.

While there are some prior works analyzing at-
tention heads in BERT, we believe we are the first
to analyze the constituency grammar learned by
fine-tuned BERT and RoBERTa models.

3 Methods

3.1 Transformer and BERT

Transformer (Vaswani et al., 2017) is a neural net-
work model based on self-attention mechanism. It
contains multiple layers and each layer contains
multiple attention heads. Each attention head takes
a sequence of input vectors h = [h1, ..., hn] corre-
sponding to the n tokens. An attention head will
transform each vector hi into query qi, key ki, and
value vi vectors. Then it computes the output oi by
a weighted sum of the value vectors.

aij =
exp(qTi kj)∑n
t=1 exp(q

T
i kt)

(1)

oi =
n∑

j=1

aijvj (2)

Attention weights distribution of each token can be
viewed as the “importance” from other tokens in
the sentence to the current token.

BERT is a Transformer-based pre-trained lan-
guage model. It is pre-trained on BooksCorpus
(Zhu et al., 2015) and English Wikipedia with
masked language model (MLM) objective and next
sentence prediction (NSP) objective. RoBERTa is a
modified version of BERT. It removes the NSP pre-
training objective and training with much larger
mini-batches and learning rates. We use the un-
cased base size of BERT and base size of RoBERTa
which have 12 layers and each layer contains 12
attention heads. Our models are downloaded from
Hugging Face’s Transformers Library 2 (Wolf et al.,
2020).

3.2 Analysis Methods

We aim to analyze constituency grammar in
attention heads. We use a method to extract con-
stituency parsing trees from attention distributions.
This method operates on the attention weight
matrix W ∈ (0, 1)T×T for every head at a given
layer, where T is the number of tokens in the
sentence.

2https://huggingface.co/models
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Method: Syntactic Distance to Constituency
Tree To extract complete valid constituency pars-
ing trees from the attention weights for a given
layer and head, we follow the method of Kim et al.
(2020) and treat every row of the attention weight
matrix as attention distribution of each token in the
sentence. As in Kim et al. (2020), we compute the
syntactic distance vector d= [d1, d2, ..., dn−1] for a
given sentence w1, ..., wn, where di is the syntactic
distance between wi and wi+1. Each di is defined
as follows:

di = f(g(wi), g(wi+1)), (3)

where f(·, ·) and g(·) are a distance measure func-
tion and feature extractor function. We use Jensen-
Shannon function to measure the distance between
each attention distribution. Appendix A gives a
brief introduction of this function. g(wi) is equal
to the ith row of the attention matrix W .

To introduce the right-skewness bias for English
constituency trees, we follow Kim et al. (2020) by
adding a linear bias term to every di:

d̂i = di + λ ·Mean(d)×
(
1− i− 1

m− 1

)
, (4)

where m = n− 1 and λ is set to 1.5.
After computing the syntactic distance, we use

the algorithm introduced by Shen et al. (2018) to
get the target constituency tree. Appendix B de-
scribes this algorithm.

Constituency parsing is a word-level task, but
BERT uses byte-pair tokenization (Sennrich et al.,
2016). This means that some words are tokenized
into subword units. Therefore, we need to convert
token-to-token attention matrix to word-to-word
attention matrix. We merge the non-matching sub-
word units and compute the means of the atten-
tion distributions for the corresponding rows and
columns. We use two baselines in our experiments.
They are left-branching and right-branching trees.

3.3 Experiments Setup
In our experiments, we use an unsupervised con-
stituency parsing method to induce constituency
grammar on WSJ Penn Treebank (PTB, Marcus
et al. (1993)) without any training. We use the
standard split of the dataset-23 for testing. We use
sentence-level F1 (S-F1) score to evaluate our mod-
els. In addition, we also report label recall scores
for six main phrase categories: SBAR, NP, VP, PP,
ADJP, and ADVP.

Figure 1: Average constituency parsing S-F1 score of
each layer in BERT and RoBERTa.

4 Results and Analysis

4.1 Constituency Grammar in Attention
Heads before Fine-tuning

In this part, our goal is to understand how con-
stituency grammar is captured by different attention
heads in BERT and RoBERTa before fine-tuning.
First, we investigate the common patterns of atten-
tion heads’ constituency grammar inducing (CGI)
ability in BERT and RoBERTa. From Figure 1, we
can find that the CGI ability of the higher layers
of BERT is better than the lower layers. However,
the middle layers of RoBERTa are better than the
other layers. In appendix C, two heatmaps of ev-
ery heads’ S-F1 score in BERT and RoBERTa also
show such patterns.

Table 1 describes the S-F1 scores of the best
attention heads of BERT and RoBERTa. We also
choose the best recall for each phrase type. We ob-
serve that the S-F1 scores of BERT and RoBERTa
are only slightly better than the right-branching
baseline. This implies that the attention heads in
BERT and RoBERTa do not appear to fully learn
constituency grammar. However, they outperform
the baselines by a large margin for noun phrase
(NP), preposition phrase (PP), adjective phrase
(ADJP), and adverb phrase (ADVP). This implies
that the attention heads in BERT and RoBERTa
only learn a part of constituency grammar.

4.2 Constituency Grammar in Attention
Heads after Fine-tuning

In this part, we fine-tune BERT and RoBERTa with
four downstream tasks, QQP, STS-B, QNLI, and
MNLI. These four tasks can be divided into two
types. The first type is the sentence meaning simi-
larity task (SMS), including QQP and STS-B. This
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Models S-F1 SBAR NP VP PP ADJP ADVP
Baselines
Left-branching Trees 8.73 5.46% 11.33% 0.82% 5.02% 2.46% 8.04%
Right-branching Trees 39.46 68.76% 24.89% 71.76% 42.43% 27.65% 38.11%
Pre-trained LMs
BERT 39.47 67.32% 46.48% 68.82% 57.26% 46.39% 65.03%
BERT-QQP 39.97 67.32% 45.39% 68.79% 50.71% 45.01% 61.54%
BERT-STS-B 39.48 67.32% 44.16% 68.82% 56.68% 48.39% 57.69%
BERT-QNLI 39.74 67.32% 50.96% 68.81% 65.38% 46.08% 63.29%
BERT-MNLI 39.66 67.32% 44.89% 68.75% 62.81% 49.16% 64.69%
RoBERTa 39.60 67.43% 47.92% 69.35% 56.53% 49.00% 66.43%
RoBERTa-QQP 39.41 66.70% 43.02% 69.45% 51.06% 43.16% 60.84%
RoBERTa-STS-B 40.36 66.76% 46.82% 69.50% 54.91% 46.54% 64.34%
RoBERTa-QNLI 43.95 66.76% 52.51% 69.48% 58.30% 48.39% 69.23%
RoBERTa-MNLI 40.41 66.76% 47.97% 69.42% 57.50% 47.77% 68.88%

Table 1: Highest constituency parsing scores of all models. Blue score means that this score is lower after fine-
tuning. Red score means that this score is higher after fine-tuning.

Figure 2: Changes of average S-F1 score of each layer
in BERT after fine-tuning.

Figure 3: Changes of average S-F1 score of each layer
in RoBERTa after fine-tuning.

task requires models to determine whether two sen-
tences have the same meaning. The second type is
the natural language inference task (NLI), includ-
ing QNLI and MNLI. This task requires models to
determine whether the first sentence can infer the
second sentence. We want to analyze how these
two kinds of downstream tasks affect constituency
grammar inducing (CGI) ability of attention heads
in BERT and RoBERTa.

Figure 2 and Figure 3 show that these four
tasks do not have much influence on BERT and
RoBERTa for the lower layers. For the higher lay-
ers, fine-tuning with NLI tasks can increase the
average CGI ability of attention heads in BERT
and RoBERTa. However, fine-tuning with SMS
tasks harms it.

Table 1 shows that fine-tuning can increase the
highest constituency parsing scores of all models
except RoBERTa-QQP. However, fine-tuning with
SMS tasks decreases the ability of attention heads
to induce NP, PP, ADJP, and ADVP. For BERT, NLI
tasks can increase the ability of attention heads
to induce NP, PP. For RoBERTa, NLI tasks can
increase the ability of attention heads to induce NP,
VP, PP, and ADVP.

4.3 Constituency Grammar Inducing Ability
and Natural Language Understanding
Ability

In this part, we analyze the relations between con-
stituency grammar inducing (CGI) ability and natu-
ral language understanding (NLU) ability on QQP
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Figure 4: QQP dev and MNLI dev-matched accuracy
after masking the top-k/bottom-k attention heads in
each layer of BERT-QQP and BERT-MNLI.

Figure 5: QQP dev and MNLI dev-matched accuracy
after masking the top-k/bottom-k attention heads in
each layer of RoBERTa-QQP and RoBERTa-MNLI.

and MNLI tasks. We use the performance of BERT
and RoBERTa to evaluate their NLU ability. We
report the scores on the validation, rather than test
data, so the results are different from the original
BERT paper.

First, we sort all attention heads in each layer
based on their S-F1 scores before fine-tuning. Then
we use the method in Michel et al. (2019) to mask
the top-k/bottom-k (k = 1, ..., 11) attention heads
in each layer and compute the accuracy on two
downstream tasks, QQP and MNLI.

Figure 4 shows that downstream tasks accuracy
scores decrease quicker when we have masked the
top-k attention heads in BERT. Especially for the
QQP task, after masking the bottom-7 attention
heads in all layers, accuracy is still higher than
80%, which is more than 10% higher than masking
the top-7 attention heads.

Figure 5 shows that masking RoBERTa has dif-
ferent results from BERT. For the QQP task, when
k is smaller or equal to 6, masking the bottom-k at-

tention heads in all layers decreases faster. For the
MNLI task, when k is 1 or 2, masking the bottom-k
heads decreases also faster. When k is larger than 6
in the QQP task and 2 in the MNLI task, masking
the top-k heads decreases faster.

For BERT, the results show that attention heads
with better CGI ability are more important for a
model to gain NLU ability on these two tasks. For
RoBERTa, the connections between CGI ability
and NLU ability are not as strong as BERT. For the
MNLI task, we still can find that better CGI ability
is more important for NLU ability. However, better
heads are not so important for QQP task.

5 Discussion

The experiments detailed in the previous sections
point out that the attention heads in BERT and
RoBERTa does not fully learn much constituency
grammar knowledge. Even after fine-tuning with
downstream tasks, the best constituency parsing
score does not change much. Our results are simi-
lar to Htut et al. (2019). They also point out that the
attention heads do not fully learn much dependency
syntax. Fine-tuning does not affect these results.
This raises an interesting question: do attention
heads not contain syntax (constituency or depen-
dency) information? If this is true, where does
BERT encode this information? Also, is syntax
information not important for BERT to understand
language? Our simple experiment in §4.3 shows
that the attention heads with better constituency
grammar inducing ability are not important for
RoBERTa on QQP task. Glavaš and Vulic (2020)
also point out that leveraging explicit formalized
syntactic structures provides zero to negligible im-
pact on NLU tasks. The relations between syntax
and BERT’s NLU ability still need to be further
analyzed.

6 Conclusion

In this work, we investigate whether the attention
heads in BERT and RoBERTa have learned con-
stituency grammar before and after fine-tuning. We
use a method to extract constituency parsing trees
without any training, and observe that the upper
layers of BERT and the middle layers of RoBERTa
show better constituency grammar ability. Certain
attention heads better induce specific phrase types,
but none of the heads show strong constituency
grammar inducing (CGI) ability. Furthermore, we
observe that fine-tuning with SMS tasks decreases

12



the average CGI ability of upper layers, but NLI
tasks can increase it. Lastly, we mask some heads
based on their parsing S-F1 scores. We show that
attention heads with better CGI ability are more
important for BERT on QQP and MNLI tasks. For
RoBERTa, better heads are not so important on
QQP task.

One of the directions for future research would
be to further study the relations between down-
stream tasks and the CGI ability in attention heads
and to explain why different tasks have different
effects.
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A Jensen-Shannon Distance Measure
Function

Jensen-Shannon function measures the distance be-
tween two distributions. Suppose that we have two
distributions P and Q, the Jensen-Shannon Dis-
tance is defined as

JSD(P ||Q) =

(
DKL(P ||M) +DKL(Q||M)

2

) 1
2

,

(5)
where M = (P + Q)/2 and DKL(A||B) =∑

w A(w) log(A(w)/B(w)).

B Syntactic Distances to Constituency
Trees Algorithm

Algorithm 1 Syntactic Distances to Constituency
Trees Algorithm (Shen et al., 2018)

1: S = [w1, w2, ..., wn] : a sentence with n
words.

2: d = [d1, d2, ..., dn−1] : a sequence of distances
between every two adjacent words.

3: function TREE(S, d)
4: if d is empty then
5: node← Leaf(S[0])
6: else
7: i← argmaxi(d)
8: lchild← TREE(S≤i,d<i)
9: rchild← TREE(S>i,d>i)

10: node← Node(lchild, rchild)
11: end ifreturn node
12: end function

C BERT and RoBERTa Heatmaps

In this section, we present two heatmaps of S-F1
score of each heads in BERT and RoBERTa. Row
represents layer and column represents head.
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Figure 6: S-F1 score of each heads in BERT.

Figure 7: S-F1 score of each heads in RoBERTa.
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Abstract

Theories and models of spoken word recogni-
tion aim to explain the process of accessing
lexical knowledge given an acoustic realiza-
tion of a word form. There is consensus that
phonological and semantic information is cru-
cial for this process. However, there is ac-
cumulating evidence that orthographic infor-
mation could also have an impact on audito-
ry word recognition. This paper presents two
models of spoken word recognition that instan-
tiate different hypotheses regarding the influ-
ence of orthography on this process. We show
that these models reproduce human-like behav-
ior in different ways and provide testable hy-
potheses for future research on the source of
orthographic effects in spoken word recogni-
tion.

1 Introduction

The abstract theory of spoken word recognition
(SWR) assumes that the process of speech recog-
nition comprises two phases: a prelexical and a
lexical level (Scharenborg and Boves, 2010). The
prelexical level contains prelexical representations,
like phonological units, which are the result of hav-
ing processed the raw acoustic signal. These units
are assumed to be activated before accessing mean-
ing representations of words in the lexical level.
By instantiating the process of SWR in a compu-
tational model the underlying theory can then be
validated or further refined based on insights into
the model’s architecture and its behavior.

Influential models of SWR are for example the
Cohort model (Marslen-Wilson and Welsh, 1978;
Marslen-Wilson and Tyler, 1980; Marslen-Wilson,
1987), the TRACE model (McClelland and Elman,
1986) or the Shortlist model (Norris, 1994). These
models typically have a connectionist architec-
ture with localist or feature-based representations
as their inputs and outputs (Weber and Scharen-

borg, 2012), usually mapping phonological onto
semantic representations. There is evidence, how-
ever, that orthographic information could be co-
activated during phonological processing. For ex-
ample, words with frequent and consistent sound-
spelling relations have been proven to be beneficial
for auditory word recognition (orthographic con-
sistency effect, initially discovered by Ziegler and
Ferrand, 1998). Consistent words, i.e., words with
phonological rhymes that can be spelled in only one
way (e.g. /2k/ – uck, as in duck) produce shorter
reaction times in a lexical decision task, thus are
easier to process, compared to inconsistent words
whose rhymes can be spelled in multiple ways (e.g.
/aIp/ can be spelled ipe like in pipe or ype like in
type). This effect is replicated in a variety of stud-
ies, using different experimental paradigms and
languages (see Petrova et al., 2011, Table 1, for an
overview, but also Beyermann and Penke, 2014;
Qu and Damian, 2016; Chen et al., 2016, for re-
cent studies). Furthermore, Ziegler et al. (2003)
demonstrate that not only the phonological but al-
so the orthographic neighborhood size of a word
has an impact on SWR. They report two opposing
effects, the inhibitory phonological effect, and the
facilitatory orthographic effect. Depending on a
large phonological or orthographic neighborhood
of a word, the SWR process is either impeded or
facilitated.

There is still a debate on how orthography exact-
ly influences the process of SWR. However, there
are two prominent hypotheses about the source of
orthographic effects in SWR (Pattamadilok et al.,
2014). According to the online hypothesis, or-
thographic representations are co-activated during
phonological processing, whereas the offline hy-
pothesis claims that phonological representations
change through the acquisition of reading and writ-
ing such that they also incorporate orthographic
information.
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In what follows, we present two models of SWR
using a long short-term memory (LSTM) archi-
tecture (Hochreiter and Schmidhuber, 1997) and
distributed representations, while focusing on Ger-
man as a language. Our major outcomes are: (1)
We design two models of SWR that instantiate the
offline and the online hypothesis on the source of
orthographic effects, respectively. (2) We replicate
the inhibitory phonological and facilitatory ortho-
graphic effect, showing that these models are able
to reproduce human-like behavior. (3) We provide
testable hypotheses for future research based on
the models’ behavior, which allows us to further
validate the online or offline hypothesis.

2 Methodology

2.1 Model architectures

We propose a recurrent model of SWR that consists
of an LSTM that takes a sequence of phonemes as
input and produces a meaning representation as
output. The procedure of processing, e.g., the Ger-
man word Maus (mouse) is illustrated in Figure 1.
First, the model takes the respective phonemic se-
quence of [/m/, /aU/, /s/] as input. Then, it should
build a vector representation that corresponds to a
phoneme sequence, thus the phonological form of
the entire word, to then produce a word meaning
representation as output. This meaning represen-
tation should be as close as possible to the actual
ground truth, which is the word embedding of Maus
(mouse).

Phoneme embeddings learn the phonemic dis-
tribution well and implicitly capture articulatory
distinctive features of phonemes (Silfverberg et al.,
2018; Kolachina and Magyar, 2019). Therefore,
phoneme vector representations are trained using
word2vec (Mikolov et al., 2013) on the phonetic

Word
Embedding

LSTM
RecurrenceLSTM LSTM LSTM

Phoneme 
Embeddings

Phonological
Representation

Meaning
Representation

Figure 1: Sketch of a recurrent neural model of SWR.

transcription of the NEGRA corpus (Skut et al.,
1997). The transcription is generated with the
grapheme-to-phoneme converter tool provided by
the Bavarian Archive for Speech Signals (BAS)
(Reichel, 2012, 2014). The cbow model and nega-
tive sampling is used with window size 1 to obtain
30-dimensional phoneme embeddings.

Word meanings are approximated by word em-
beddings. We use pre-trained German fastText em-
beddings (Grave et al., 2018) as the output mean-
ing representations of our models (see also Baayen
et al., 2019; Chuang et al., 2020; Hendrix and Sun,
2020, for the similar use of word embeddings as
semantic representations in models of word recog-
nition).

The offline model The first architecture imple-
ments the theoretical assumption that a prelexical
phonemic representation is mapped onto a lexical
meaning representation, without incorporating ex-
plicit orthographic representations at the prelexical
level. The offline model, which instantiates the
offline hypothesis, processes one phoneme per time
step. After the last phoneme of a phonological
sequence is processed, a linear transformation is
performed on the output of the LSTM layer which
consists of 400 units. The resulting fully connected
layer has 400 neurons and is then connected to the
output layer. A tangent activation function is used
on the output layer (300 units).

The online model The second proposed model
architecture includes explicit orthographic informa-
tion at the prelexical level, instantiating the online
hypothesis. The online model processes two kinds
of inputs – a sequence of 30-dimensional phoneme
representations and a localist orthographic repre-
sentation of a word that is based on character bi-
grams (818 units). The first input layer (30 units)
is connected to an LSTM cell (400 units) which is
fully connected to an intermediate layer (400 units).
This intermediate layer is connected to an inter-
mediate phonological layer (400 units). A tangent
non-linearity is then used on it. On the other side
of the model, a linear transformation together with
a tangent non-linearity is applied on the second
input layer to obtain a 100-dimensional layer. The
intermediate phonological and orthographic repre-
sentation are concatenated to a 500-dimensional
vector which is then fully connected to a hidden
layer of size 300. This hidden layer serves as an
intermediate processing stage that processes both
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types of information, auditory and visual ones, to
then give the 300-dimensional meaning representa-
tion as output.

2.2 Training
A good model should be able to learn the meaning
of spoken words seen during training and gener-
alize to similar but unseen words. We expect the
model to learn that very similar sounding words
have a very similar meaning (e.g., duck and ducks
share nearly the same semantic concept of a water
bird with short legs). By training the model on
inflected forms and lemmas, e.g. Maus (mouse),
Mäuse (mice) and Häuser (houses), one can after-
ward test whether the model can get to the cor-
rect meaning representation of an unseen lemma
like Haus (house), even if it never encountered the
phonological sequence and word meaning repre-
sentation during the training phase.

For the training and test data, the most frequent
singular and plural nouns in nominative case are
extracted from the German Morphology Lexicon
(Lezius, 2000), leading to 3118 inflected forms
and their lemmas, as well as 583 single inflected
forms in the training set, and their corresponding
583 testing lemmas in the test set. In this data set,
a lemma is always one of the ten nearest neigh-
bors (measured by cosine similarity) of its inflected
form such that the meaning representations of an
inflected form and the respective lemma are similar
to each other in the embedding space.

The offline model is trained for 100 and the on-
line model for 150 epochs, using the Adam opti-
mizer with its default parameters in PyTorch, as
well as the CosineEmbeddingLoss to minimize the
cosine distance between the output of a model and
the correct word embedding.

2.3 Evaluation
To evaluate the models, the cosine similarity be-
tween a model’s output and every possible ground
truth vector representation is computed. The set
of competing word vectors, therefore, consists of
3701 word embeddings during training, and of
4284 (3701 training + 583 testing) vectors during
testing. Given these competing word embeddings,
Recall@k (R@k) is computed as the proportion of
times that the set of top k word embeddings which
are closest to the model’s output also includes the
ground truth vector representation. If the ground
truth is most similar to the output vector of a model,
then this contributes to R@1. Furthermore, a word

contributes to R@5 (R@10), if the corresponding
ground truth word embedding is within the top 5
(top 10) most similar words to the output vector.

2.4 Simulation data
The model is considered to be successful if it can
reproduce human behavioral data that is measured
by Ziegler et al. (2003) in an auditory lexical de-
cision task. The stimuli either have a large (+)
or a small (-) number of phonological (PN) and
orthographic neighbors (ON), which leads to the
four categories ON-PN-, ON+PN-, ON-PN+, and
ON+PN+. A word is considered to be an ortho-
graphic (phonological) neighbor of a target item if
it is possible to create it by substituting one letter
(one phoneme) in the target word (Coltheart’s N,
Coltheart et al., 1977). For example, tape is an or-
thographic neighbor of type, whereas /paIp/ (pipe)
is a phonological neighbor of /taIp/ (type). The
authors report two different effects on SWR.

The inhibitory phonological effect A large
phonological neighborhood size impedes access-
ing the correct meaning representation of a word;
whenever a stimulus has a large phonological neigh-
borhood size (PN+), the reaction time in a down-
stream task like lexical decision is larger compared
to a word that has a small phonological neighbor-
hood size (PN-). A model should thus also have
more difficulties to get to the correct word meaning
representation for PN+ vs. PN- words.

The facilitatory orthographic effect Words
with a large orthographic neighborhood size (ON+)
produce shorter reaction times than words with a
small orthographic neighborhood size (ON-). A
large orthographic neighborhood size, therefore,
facilitates SWR. Therefore, it should be easier for
a model to produce the correct meaning representa-
tion for an ON+ compared to an ON- word.

2.5 Linking hypothesis
In a lexical decision task, shorter reaction times are
associated with fast and effortless processing which
is a result of strong word activations (Scharenborg
and Boves, 2010). As word activation is assumed
to be dependent on the degree of match between
processed and stored information in the SWR pro-
cess (Weber and Scharenborg, 2012), we infer the
response time by comparing the model’s output
(processed information) with the ground truth rep-
resentation of a word (stored information). A large
difference would, therefore, indicate a relatively
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weak word activation, which suggests a larger re-
sponse time. On the other hand, a smaller error sig-
nals a stronger word activation, which corresponds
to a smaller reaction time.

A larger error score for PN+ vs. PN- words, thus,
corresponds to the inhibitory phonological effect ,
as a large phonological neighborhood size (PN+)
impedes accessing the correct meaning represen-
tation of a word. By contrast, a large orthograph-
ic neighborhood size (ON+) facilitates the word
recognition process. Hence, a lower error score for
ON+ vs. ON- words is assumed to be an analog for
the facilitatory orthographic effect.

3 Experiments

3.1 Word meaning retrieval task

After training, the models are evaluated on the train-
ing and the test set to compute the training and
testing recall (Table 1). Training recall is nearly
perfect for both models, showing that they are able
to memorize the data well. However, the online
model achieves a higher R@1 of 100% than the
offline model in the training data. Overall, both
models perform well in the word meaning retrieval
task, which concerns activating the correct mean-
ing representation based on a phonological word
form.

3.2 Generalization task

On the test set, the offline model reaches an R@10
of 62.95%, an R@5 of 56.78%, and an R@1 of
21.61%, whereas the online model again performs
comparatively better with a testing recall of 70.67%
for R@10, 59.35% for R@5, and 22.98% for R@1.
This is very good, given that the models have never
encountered the exact phonological sequence, nor
the word embedding of a testing item during train-
ing. The generalization performance of the models
is an indicator that they globally learn how word
forms and their semantics relate to each other. As
for future work, one can compare these results with
the performance of the models on unseen words
which are semantically unrelated to those in the
training set. Considering both training and testing
recall values, the online model performs compar-
atively better in learning the meaning of spoken
words. However, it still needs to be verified to
what extent each of the models is able to reproduce
human-like behavior.

Model Split R@10 R@5 R@1

Offline Train 100 100 99.32
Test 62.95 56.78 21.61

Online Train 100 100 100
Test 70.67 59.35 22.98

Table 1: Training and testing recall in percent.

Figure 2: Mean cosine distance between the outputs
and ground truths of the items of the four neighborhood
categories. Error bars show standard errors.

3.3 Simulation task

To simulate the study by Ziegler et al. (2003),
their experimental design is mimicked by divid-
ing the German training data into the four neigh-
borhood categories ON-PN-, ON+PN-, ON-PN+,
and ON+PN+. Analogous to their categorisation, a
word is considered to be part of the ON- category,
when it has zero or one orthographic neighbor, oth-
erwise it belongs to ON+. If a word has less than 3
phonological neighbors, it belongs to the PN- cat-
egory, otherwise, it is considered to be part of the
PN+ condition. For each of these four groups, we
sample 70 items with similar mean word length,
frequency, and density of the embedding space.
The frequency of a word is estimated using the
module wordfreq (Speer et al., 2018), whereas the
density of the semantic space is approximated by
subtracting the cosine distance between the ground
truth word embedding and the mean vector of its
ten nearest neighbors from 1.

Figure 2 shows a bar plot for each model that
presents the mean cosine distance between the mod-
el’s output of each word and the corresponding
ground truth per condition after the models have
been trained. For both models, the mean cosine dis-
tance is higher in the conditions with a large phono-
logical neighborhood size (ON-PN+ and ON+PN+,
pink bars in Figure 2) compared to the conditions
with a low phonological neighborhood size (ON-
PN- and ON+PN-, turquoise bars in Figure 2). This
corresponds to a relatively lower word activation
for PN+ items, indicating higher reaction times.
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Thus, both models can reproduce the inhibitory
phonological effect. A large orthographic neigh-
borhood size (ON+PN- and ON+PN+, striped bars
in Figure 2) has a beneficial impact on the mod-
els’ performance. The mean cosine distance within
the ON+PN- condition is lower compared to the
ON-PN- group and it is also lower for the ON+PN+
compared to the ON-PN+ condition. This corre-
sponds to the facilitatory orthographic effect and
can also be observed for both model architectures.
It is larger in the offline model which is surpris-
ing, because as opposed to the online model, it has
no access to orthographic information. As the of-
fline model instantiates the offline hypothesis which
claims the phonological representation themselves
contain implicit orthographic information, it is in-
vestigated whether also the phonological sequences
of the training items reveal information about or-
thography which could have a beneficial effect on
a model’s performance.

Analysis of orthographic information A friend
of a target word is a word that has the same rhyme
and the same rhyme spelling, whereas enemies are
words that have the same rhyme, but a different
rhyme spelling (Ziegler et al., 2004). Therefore,
words that have friends but zero enemies naturally
fall into the category of consistent words (see Sec-
tion 1), whereas words that have at least one enemy
can be considered as being inconsistent. Based on
the phonological sequence of a consistent word,
one can infer its orthographic form, as its rhyme
is always spelled in only one way. Therefore, con-
sistent words provide implicit orthographic infor-
mation in their phonological forms. An analysis
of the friends and enemies in the training data re-
veals that the majority of items in the two groups
with a large orthographic neighborhood, ON+PN-
and ON+PN+, are consistent words. Furthermore,
the mean error score for all consistent (253) and
inconsistent words (62) in the training data (see
Figure 3), shows that it is easier for the offline mod-
el to produce a good lexical meaning representation
whenever a word is consistent, compared to incon-
sistent words that do not reveal reliable orthograph-
ic information. By contrast, the online model is not
influenced by consistency. Therefore, the underly-
ing reason for the facilitatory orthographic effect
in the offline model is likely to be the phonology-
orthography-consistency, rather than the size of the
orthographic neighborhood.

To assess whether consistency is an explanatory

Figure 3: Mean cosine distance between the outputs
and ground truths of consistent and inconsistent words.
Error bars show standard errors.

Figure 4: Mean cosine distance between the outputs
and ground truths of Finnish items. Error bars show
standard errors.

factor for the facilitatory orthographic effect, we
eliminate the difference between consistent and in-
consistent words by training the models on Finnish
data. Finnish has a grapheme to phoneme mapping
that is nearly one to one which leads to little to no
inconsistent words (Joshi and Aaron, 2016).

Excluding the factor of consistency For the
Finnish training data, the 2378 most frequent words
are extracted from the vocabulary of the Finnish
fastText embeddings (Grave et al., 2018). For the
input of the models, Finnish phoneme embeddings
are trained on the transcription of Finnish news
texts (Newscrawl 2017, Goldhahn et al., 2012).
Finnish fastText embeddings are used as meaning
representations, as well as 540-dimensional local-
ist orthographic representations within the online
model. Four balanced samples of size 70 that corre-
spond to the four neighborhood groups are drawn
from the training data to then monitor the mean
error score of each model per condition (see Figure
4).

The results after training the offline model on
Finnish data show an inverse pattern compared
to the German results. The offline model would,
therefore, predict that no facilitatory orthographic
effect can be observed in a lexical decision task
with Finnish participants as every phonological
sequence is nearly equally informative w.r.t. or-
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thographic information. If this prediction proves
true, this would further validate the offline hypoth-
esis on the source of orthographic effects. For the
online model, the general order of error scores is
similar across languages. As it is not affected by
consistency, the online model can also reproduce
the facilitatory orthographic effect in Finnish. If
this effect can be observed in a lexical decision task
with Finnish participants, this would further vali-
date the online model as a plausible model SWR,
as well as the online hypothesis.

4 Conclusion

In this work, we propose two models of SWR that
instantiate either the online or the offline hypothe-
sis on the source of orthographic effects. We show
that both models perform well in word meaning
retrieval and in simulating the inhibitory phono-
logical and facilitatory orthographic effect. The
online model achieves the best training and testing
performance, and shows the same pattern of results
independent of the language of the data. It is not
influenced by consistency, which indicates that the
size of the orthographic neighborhood is at the ori-
gin of the facilitatory orthographic effect under the
online hypothesis. This contrasts with the offline
model that produces an orthographic consistency
effect. When words don’t differ in their consis-
tency, the facilitatory orthographic effect is not
present, which suggests that consistency is the un-
derlying mechanism for this effect under the offline
hypothesis. The models predict mutually exclusive
outcomes in a lexical decision task in a language
like Finnish that has a high phonology-orthography
consistency. By testing these predictions, further
evidence for either the offline or the online hypoth-
esis can be provided.
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Abstract 

In this work, we present a methodology that 

aims at bridging the gap between high and 

low-resource languages in the context of 

Open Information Extraction, showcasing 

it on the Greek language. The goals of this 

paper are twofold: First, we build Neural 

Machine Translation (NMT) models for 

English-to-Greek and Greek-to-English 

based on the Transformer architecture. 

Second, we leverage these NMT models to 

produce English translations of Greek text 

as input for our NLP pipeline, to which we 

apply a series of pre-processing and triple 

extraction tasks. Finally, we back-translate 

the extracted triples to Greek. We conduct 

an evaluation of both our NMT and OIE 

methods on benchmark datasets and 

demonstrate that our approach outperforms 

the current state-of-the-art for the Greek 

natural language. 

1 Introduction 

Open Information Extraction (OIE) techniques 

generally shine in high-resource languages (e.g. 

English, German) for which either linguistic 

principles leading to triple extraction have been 

identified or large annotated corpora and pre-

trained language models can be used. For low-

resource languages like Modern Greek however, 

there is a relative sparsity of raw textual resources 

and annotated corpora that could lead to the 

development of similar systems. On the bright 

side, the need for multilingual resources (e.g. 

movie subtitles, applications, web content) has 

fueled several projects of compiling parallel 

corpora (i.e. collections of texts translated into one 

or more other languages than the original) over the 

last years. In this work, we propose a methodology 

that aims at enabling OIE for low-resource 

languages, focusing on the Greek OIE use case. To 

achieve this, we rely on Neural Machine 

Translation (NMT) as an intermediate step to 

translate the texts to English, in order to exploit the 

plethora of methods that exist for transforming 

English text to its structured representation. 

We present PENELOPIE (Parallel EN-EL 

Open Information Extraction), a pipeline for 

information extraction from Greek corpora. An 

overview of our methodology is given in Figure 1. 

The code and related resources can be found in 
https://github.com/lighteternal/PENE

LOPIE.  

 

Our study has the following objectives:  

PENELOPIE: Enabling Open Information Extraction for the Greek Language  

through Machine Translation 
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Figure 1: Steps of the PENELOPIE pipeline 
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1. to release a series of Transformer-based 

NMT models for English-to-Greek 

(EN2EL) and Greek-to-English (EL2EN) 

translation, trained on a consolidated 

parallel corpus and compare the 

translation results to the current-state-of-

the-art, 

2. to leverage the aforementioned NMT 

models for the translation of Greek texts 

to their English counterpart and feed them 

to our English-based NLP pipeline. This 

pipeline incorporates a series of pre-

processing tasks including in-place 

coreference resolution and extractive 

summarization, as well as an OIE system 

comprising of three extractors based on 

different approaches for more robust 

results. The extracted triples are finally 

back-translated to Greek and their quality 

is evaluated to facilitate comparison with 

other methods. 

2 Background 

In this section, we provide background information 

on neural machine translation and open 

information extraction approaches. 

2.1 Neural Machine Translation 

NMT aims at modelling a direct mapping between 

source and target languages with deep neural 

networks. It has become the dominant paradigm of 

machine translation, achieving promising results in 

recent years which are usually surpassing those of 

traditional Statistical Machine Translation (SMT) 

approaches,  given enough training data (Stahlberg, 

2020). The invention of novel encoder-decoder 

architectures, from  recurrent (Sutskever et al., 

2014; Bahdanau et al., 2015) and convolutional 

neural networks (Kalchbrenner et al., 2014; 

Gehring et al., 2017) to self-attention 

(Transformer) mechanisms (Vaswani et al., 2017; 

So et al., 2019) has significantly pushed ahead the 

state-of-the-art, in terms of quality and efficiency, 

especially for morphologically rich languages.  

Another parallel line of research towards 

improving translation quality is to devise effective 

token encoding methods that can handle out-of-

vocabulary (OOV) words, targeting the lack of 1-

to-1 correspondence between source and target 

languages, due to differences in their 

morphological structure. Sennrich et al. (2016) 

utilized variants of byte-pair encoding (BPE) 

methods for word segmentation to enable the 

representation of rare and unseen words as a 

sequence of subword units, showing that NMT 

methods are capable of open-vocabulary 

translation. The latest advances in the field also 

include pretraining cross language models on 

multilingual data (Conneau and Lample, 2019) or 

exploiting monolingual corpora for semi-

supervised learning through back-translation 

(Sennrich et al., 2016a). It appears that not much 

effort has been targeted towards the Greek 

language with the notable exception of the Helsinki 

NLP group which has released EN2EL and EL2EN 

translation models evaluated on the Tatoeba dataset 

(Tiedemann and Thottingal, 2020). 

2.2 Information Extraction 

Open information extraction (OIE) systems aim at 

distilling structured representations of information 

from natural language text, usually in the form of 

{subject, predicate, object} triples or n-ary 

propositions. Since OIE follows a relation-

independent extraction paradigm, it can play a key 

role in many NLP applications including natural 

understanding and knowledge base construction, 

by extracting phrases that indicate semantic 

relationships between entities. In order to extract 

triples, most approaches try to identify linguistic 

extraction patterns, either hand-crafted or 

automatically learned from the data. An abundance 

of such systems exists, relying on concepts ranging 

from rule-based paradigms that focus on the 

grammatical and syntactic properties of the 

language (Fader et al., 2011; Del Corro and 

Gemulla, 2013), to supervised learning-based ones 

that leverage annotated data sources to train 

classifiers, with more recent implementations 

making use of language models (Kolluru et al., 

2020; Ro et al., 2020). Despite the existence of so 

many approaches however, the majority of them 

just focuses on evaluating the efficiency of 

different triple extraction tools on raw data, 

without incorporating any preprocessing strategies 

to limit the number of potentially uninformative 

triples (Niklaus et al., 2018). Some more recent 

methods go beyond the triple extraction task by 

encompassing more thorough preprocessing and 

postprocessing strategies, including discourse 

analysis, coreference resolution or summarization 

to improve the quality of the extracted triples 

(Kertkeidkachorn and Ichise, 2017; Papadopoulos 
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et al., 2020). There is currently no OIE system for 

the Greek language, although latest approaches 

that leverage pretrained language models allow for 

multilingual extractions through zero-shot learning 

(Ro et al., 2020). 

3 Methodology 

The NMT architecture used in this paper for 

English-to-Greek (EN2EL) translation and Greek-

to-English (EL2EN) back-translation is a variant of 

the Transformer model (Vaswani et al., 2017), 

driven by the fact that self-attentional networks 

tend to perform distinctly better than other 

architectures on translation tasks (Tang et al., 

2020). Both the encoder and the decoder are 

composed of stacked, multi-head, self-attention 

and fully-connected layers. One key difference 

between the two implementations is that ours 

includes a fully connected feed-forward network 

with an inner-layer dimensionality of 𝑑𝑓𝑓 = 1024, 

as opposed to the original one that uses a hidden 

layer with 𝑑𝑓𝑓 = 2048,  in an effort to reduce 

computational cost, as our training testbed had 

limited memory capabilities. With regard to 

vocabulary construction, we relied on subword 

units extracted with BPE, experimenting with two 

different configurations of merge operations 

Our approach for efficient open information 

extraction on translated texts combines a series of 

distinct modules for in-place coreference 

resolution, extractive summarization and parallel 

triple extraction with the following specifications: 

Coreference Resolution: We rely on a variant 

of the pretrained end-to-end coreference resolution 

model from Lee et al. (2017) using Span-BERT 

embeddings (Joshi et al., 2020), trained on the 

OntoNotes 5.0 dataset. Each translated sequence is 

pre-processed by the in-place coreference 

resolution component, where all noun phrases 

(mentions) referring to the same entity are 

substituted with that entity. 

Summarization: Extractive text summarization 

is used on the coreference-resolved text to reduce 

the original documents’ length by omitting 

peripheral information while highlighting key 

features that are appropriate for triple extraction. 

We use the transformer-based implementation 

from Miller (2019) where all sentences are 

embedded into the multi-dimensional space using 

 
1 https://github.com/moses-smt/mosesdecoder  

BERT embeddings. K-means clustering is then 

used on the sentence representations to identify 

those closest to the cluster’s centroids for summary 

selection. 

Parallel Triple Extraction: Here we combine 

three popular OIE systems, relying both on rule-

based (handcrafted extraction heuristics and 

clauses) and learning-based (semantic role 

labelling and sequence BIO tagging) systems, 

relying on the complementarity between the 

different approaches to ensure maximum recall. 

We provide additional information regarding the 

technical implementation of the described 

information extraction pipeline in the following 

section. 

4 Experimental Setup 

4.1 NMT Setup 

Dataset: We exploited most of the EN-EL 

resources available in the OPUS repository 

(Tiedemann, 2012), with main ones being the 

ParaCrawl, OpenSubtitles, EUBookshop, DGT 

and Europarl datasets. We combined these with the 

available parallel corpora of CCMatrix (Schwenk 

et al., 2019)  mined in the textual content of 

Wikipedia, to create a dataset comprising 

50451352 sentences (~6.3GB). 

Preprocessing: We applied a cleaning script on 

the corpus that discarded any segment with a word 

exceeding 1000 characters, leading to a corpus of 

36251157 sentences. We tokenized these using the 

Moses1  tokenizer and split the dataset so that 1 

every 23 sentences were assigned to the validation 

set and the rest to the training set. For the 

construction of the model dictionaries, we worked 

towards the creation of two different preprocessing 

setups leading in two training configurations:  

a. For the first setup, we lower-cased all 

tokens in the train and test set, in an effort 

to reduce the dictionary size without 

losing translation quality. We then applied 

BPE segmentation2 with an encoding size 

of 10000 to speed up training and 

inference. This resulted in dictionaries of 

12892 and 9932 tokens for Greek and 

English accordingly.  

b. For the second setup, we applied BPE 

segmentation directly to the mixed-case 

text with an encoding size of 20000, 

2 https://github.com/rsennrich/subword-nmt  
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resulting in dictionaries of size 23220 and 

15284 for Greek and English respectively. 

NMT Model Settings and Training: We 

utilized Fairseq (Ott et al., 2019), a popular 

sequence-to-sequence toolkit maintained by 

Facebook AI Research to train our models with 

data from both setups and ran our experiments on 

a machine with a single NVIDIA GeForce RTX-

2080 SUPER (8GB of VRAM). We implemented 

a shallower variant of the Transformer architecture 

with 4 attention heads, 6 encoder and 6 decoder 

layers, both with an embedding size of 512 and a 

feed-forward hidden layer dimension of 1024. 

During training, regularization was done with a 

dropout of 0.3 and label smoothing of 0.1. We used 

the Adam optimizer (Kingma and Ba, 2015) with 

4000 warm-up steps and a maximum learning rate 

of 0.0005. The model was trained for 5 epochs and 

the best checkpoint was selected based on the 

perplexity of the validation set. We used mixed 

precision during training (Narang et al., 2018), 

using FP16 precision to address our hardware 

limitations by reducing the memory consumption 

and time spent in memory. The produced models 

(4 in total) are as follows: i. a lower-case EL2EN 

and a lower-case EN2EL model from the first setup 

based on shorter dictionaries, ii. a mixed-case 

EL2EN and EN2EL model from the second setup 

on larger dictionaries.  

4.2 Information Extraction Setup 

Coreference Resolution Framework: Each 

EL2EN translated sequence was processed by the 

pretrained neural model from AllenNLP which 

relies on Lee et al. (2017) but has the original 

GloVe embeddings substituted with Span-BERT 

embeddings. This approach considers all possible 

spans in a document as potential mentions and 

learns distributions over possible antecedents for 

each span. Its ability to solve challenging pronoun 

disambiguation problems facilitated the creation of 

more informative triples. 

Summarization Framework: In order to 

reduce the size of the ingested text, we relied on the 

pretrained extractive summarizer from Miller  

(2019) made available by HuggingFace, that 

utilizes the BERT model for text embeddings and 

k-means clustering to identify sentences close to 

the centroid for summary selection. 

 
3 https://tatoeba.org/  

Triple Extraction Engines: We integrated 3 

OIE engines based on different extraction 

strategies: a. Open IE 5.1 from UW and IIT Delhi 

which is based on the combination of four different 

rule-based and learning-based OIE tools, b. 

ClausIE from MPI that follows a clause-based 

approach, and c. AllenNLP OIE that formulates the 

triple extraction problem as a sequence BIO 

tagging problem and applies a bi-LSTM transducer 

to produce OIE tuples. We further employed a 

deduplication process to keep only the unique 

triples and eliminate all redundant extractions. 

Since the goal of our work was to provide triples in 

the Greek language and the produced triples were 

in English, we used our EN2EL NMT model to 

translate them back to Greek.  

5 Results and Discussion 

We provide results both for the EL-EN NMT tasks 

and for the OIE task on Greek corpora, since the 

former can be evaluated independently. 

5.1 NMT performance 

Table 1 shows the evaluation of our models (lower-

case and mixed-case) on the Tatoeba3 and XNLI4 

test sets.  

 

Evaluation on Tatoeba test set (EN-EL) 

Model BLEU chrF 

Helsinki-2019-12-04-EN2EL 52.7 0.721 

Helsinki-2019-12-18-EN2EL 56.4 0.745 

OURS-lower-case-EN2EL 77.3 0.739 

OURS-mixed-case-EN2EL 76.9 0.733 

Helsinki-2019-12-04-EL2EN 69.4 0.801 

OURS-lower-case-EL2EN 79.9 0.802 

OURS-mixed-case-EL2EN 79.3 0.795 

Evaluation on XNLI test set (EN-EL) 

Model BLEU chrF 

OURS-lower-case-EN2EL 66.1 0.606 

OURS-mixed-case-EN2EL 65.4 0.624 

OURS-lower-case-EL2EN 67.4 0.633 

OURS-mixed-case-EL2EN 66.2 0.623 

Table 1:  EN2EL and EL2EN NMT evaluation results 

& comparison with other models. 

For both EN-EL and EL-EN directions we 

compare with the current state-of-the-art models 

produced by the Helsinki NLP group, evaluated on 

4 https://github.com/facebookresearch/XNLI  
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the Tatoeba dataset (Tiedemann and Thottingal, 

2020). Another relevant implementation from the 

Facebook AI team provides results of their XLM-

R model on the XNLI dataset (Ruder et al., 2019); 

however -given the different scope of that paper- 

results are presented in terms of cross-lingual 

classification accuracy and not in terms of NMT 

translation quality (e.g. BLEU), hindering direct 

comparisons. Nevertheless, we also provide BLEU 

and chrF scores on the parallel EN-EL corpus of 

the XNLI dataset hoping that it will facilitate 

comparisons with future models. 

The results on the Tatoeba test set showcase a 

significant performance gain of our models in 

terms of BLEU (+10.9 BLEU for EN2EL and 

+10.5 BLEU for EL2EN translations) over the 

Helsinki ones, while all models have very close 

chrF scores. The apparent difference in 

performance gains between the two different 

metrics can ascribed to the idiosyncratic 

morphological and syntactic properties of the 

Greek language (accent, inflation, declension etc.) 

that may result in the produced translations being 

slightly different from the original sequences. 

Since chrF incorporates character matches while 

BLEU does not, it is possible to produce 

translations that achieve low BLEU but acceptable 

chrF scores. Therefore, given that BLEU is an n-

gram-based metric and chrF is a character-based 

one, we consider the good results on both metrics 

as a positive characteristic towards producing 

quality estimates that are as close as possible to 

human judgements. The results also seem 

promising on the more challenging XNLI test set, 

although a direct comparison with other models 

would have been more useful. While the lower-

case models seem to perform slightly better on 

every test, the richer vocabulary and correct casing 

of the mixed-case ones compensates for the 

slightly worse metrics scores. It should be noted 

that in order to ensure a fair comparison, the 

mixed-cased models were evaluated on the original 

reference translations, while the lower-case models 

were evaluated on a lower-case version of the same 

translations. Another aspect that adds to the reason 

why lower-case NMT models were able to 

showcase slightly better scores is that the former 

reduce the expansion of the vocabulary by 

neglecting some morphology information, while 

mixed-case models will increase the vocabulary to 

 
5 https://huggingface.co/lighteternal  

keep the original morphological form and as a 

result may lose connections with the lowercase 

forms of some words. Finally, while our models 

were trained using the Fairseq framework, we also 

ported them to HuggingFace Transformers format 

and made them publicly available5. 

5.2 OIE performance 

We evaluate the performance of PENELOPIE 

using the CaRB benchmark which is widely used 

for the comparison of OIE systems (Bhardwaj et 

al., 2020). Given the lack of a gold standard of 

Greek annotated triples, we created a translated 

version of the original CaRB test set for our 

experiments, consisting of 2715 sentences and 

their extracted semantic triples. The test set was 

automatically translated using our EN2EL mixed 

case model. We compare our extraction results 

with Multi2OIE from Ro et al. (2020), an OIE 

engine with state-of-the-art performance on 

English corpora. Multi2OIE relies on the 

pretrained multilingual BERT model and can 

perform multilingual extractions through zero-shot 

learning (it is trained on English data); thus it can 

be leveraged to produce results on the Greek CaRB 

test set. For PENELOPIE, results are only provided 

using the mixed-case NMT model (similar results 

to the lower-case one). It should be noted that the 

summarization module was not utilized during the 

benchmark, as the gold dataset consisted of single 

sentences. This is a general shortcoming in the 

assessment of OIE systems that leverage 

preprocessing features (such as summarization or 

coreference resolution); the gold triples and the 

metrics involved in the evaluation process favour 

exact matches of the processed sentences, rather 

than focusing on the usability of the extracted 

results.  As a result, some of the gold triples in 

benchmark datasets -although valid- may have low 

contextual value. The scores are presented in terms 

of precision, recall and F1-score in Table 2:  

 

Model Prec. Rec. F1 

Multi2OIE 0.200 0.084 0.118 

PENELOPIE 0.231 0.284 0.255 

 
Table 2:  PENELOPIE evaluation results on the 

translated CaRB testset & comparison with Multi2OIE. 
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Our pipeline outperforms the state-of-the-art 

Multi2OIE on the Greek OIE task, on all metrics. 

The most remarkable difference in performance is 

shown in terms of recall, which can be partially 

attributed to the fact that PENELOPIE leverages a 

number of different extraction tools leading to a 

recall-oriented approach. In addition, given that all 

triples are individually back-translated to Greek, it 

is not guaranteed that the translation output of each 

element will match the span of the derived 

sentence, especially in languages with rich 

morphology (e.g. conjugation, declension). This 

justifies the relatively low scores of PENELOPIE 

compared to English OIE systems, whose F1-

scores may exceed 0.50 for state-of-the-art 

approaches (although a direct comparison between 

different languages is not straightforward). To this 

end, a source-target word alignment approach 

inspired by the work of Garg et al. (2020) was 

explored, but current implementations seem to 

have difficulties in aligning tokens with accents6 

(e.g. Greek ones). 

6 Conclusions and Future Work 

We have presented the use of NMT models 

integrated in an OIE pipeline to achieve triple 

extraction for low-resource languages, showcasing 

our approach on the Greek language. To this end, 

we trained 4 models (2 EN2EL and 2 EL2EN) that 

outperform the state-of-the-art by a significant 

margin (>10 BLEU) and made them publicly 

available. We leveraged these along with a set of 

preprocessing and triple extraction tools to 

construct the PENELOPIE pipeline aiming at 

information extraction from Greek texts. We 

demonstrated the efficiency of our methodology 

via a benchmark framework and obtained 

significantly better results (+116% in F1-score) 

compared to the best multilingual OIE system 

currently available.  

For future work, we will focus more on word-

level alignment to improve the quality of our 

extractions. We would also like to explore transfer 

learning approaches to create an end-to-end OIE 

system for Greek without relying on annotated 

datasets.  
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Abstract

WikiHow is an open-domain repository of in-
structional articles for a variety of tasks, which
can be revised by users. In this paper, we
extract pairwise versions of an instruction be-
fore and after a revision was made. Starting
from a noisy dataset of revision histories, we
specifically extract and analyze edits that in-
volve cases of vagueness in instructions. We
further investigate the ability of a neural model
to distinguish between two versions of an in-
struction in our data by adopting a pairwise
ranking task from previous work and showing
improvements over existing baselines.

1 Introduction

Instructional texts aim to describe the actions nec-
essary to accomplish a task or goal, in as clear
and concise a manner as possible. WikiHow1 is an
extensive compendium of instructional guides for
various topics and domains. Any user may edit the
articles, and WikiHow collates these revision histo-
ries. The edit history of such informal instructional
articles is a source of user-generated data that can
help identify possible reasons and necessities for
editing. wikiHowToImprove (Anthonio et al., 2020)
is a dataset that compiles revision histories for the
analysis of linguistic phenomena that occur in edits
of instructional texts, ranging from the correction
of typos and grammatical errors to the clarification
of ambiguity and vagueness.

In this paper, we focus on cases of lexical vague-
ness, defined as “lexeme[s] with a single but non-
specific meaning” (Tuggy, 1993), which can po-
tentially cause misunderstandings in instructional
texts. Specifically, we study vagueness based on
the change in the main verb in the original and
revised version of an instruction. We say that an
instruction was vague if, upon revision, the revised

1https://www.wikihow.com/

Original Sentence Revised Sentence
Then, make the floor
and walls of your
house.

Then, design the floor
and walls of your
house.

When you go to the
Hogwarts park...

When you visit the
Hogwarts park...

Get a flexible single
cord.

Purchase a flexible sin-
gle cord.

Table 1: Examples of vague instructions and their more
clarified versions from the wikiHowToImprove Dataset

main verb is contextually more specific than the
original version. Some examples of vague and
clarified instructions are provided in Table 1. As in-
dicated by the examples, the revised verb is usually
more specific in that it provides additional informa-
tion on how or why an action needs to be taken.

The classification of vague and clarified instruc-
tions is a first step towards automatic text editing
for clarification based on linguistic criteria such
as ambiguity and vagueness at a sentence level.
Existing tools for text editing focus on text simpli-
fication and fact editing (Malmi et al., 2019), while
others are designed for grammatical error correc-
tion (Xie et al., 2018). Our work acts as the first
step towards automated editing based on linguistic
criteria by identifying vague instructions and dif-
ferentiating them from “clarified” ones. Our use
of the wikiHowToImprove corpus also utilizes a re-
source of edit pairs, therefore introducing a new
dataset for the linguistic study of vagueness as well
as exploring the general versatility of such corpora.

Our contributions are to create a dataset of vague
and clarified instructions, provide an analysis based
on semantic frames, and demonstrate the first re-
sults of a neural model’s ability to distinguish the
two versions. We create and analyze the dataset by
extracting relevant instances from wikiHowToIm-
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prove, using POS tags, dependency features, and
edit distance as constraints, as well as FrameNet
frames as features (Section 3). We then devise a
pairwise ranking task, where we train and evaluate
different neural models and analyze their perfor-
mance based on frame relations and differences in
distributional word representations (Section 4).

2 Related Work

Our paper focuses on revisions in wikiHow for
a specific linguistic phenomenon, namely vague-
ness. The motivation to use revision histories as
corpora for NLP tasks was introduced by Ferschke
et al. (2013). The task of defining and categoriz-
ing edit intentions has been explored well for the
Wikipedia edits corpus (Yang et al., 2016, 2017).
More recently, Anthonio et al. (2020) performed a
similar categorization on the revisions in WikiHow.

Traditional computational analyses of vague
statements have been based on logical represen-
tations (DeVault and Stone, 2004; Tang, 2008). In
contrast, our focus is on vagueness in terms of lex-
ical changes in revisions, which is more similar
to previous analyses that considered the context-
dependent resolution of vague expressions such as
colour references (Meo et al., 2014). Other com-
putational approaches to vagueness include, the
detection of vague sense definitions in ontologi-
cal resources (Alexopoulos and Pavlopoulos, 2014)
and website privacy policies (Lebanoff and Liu,
2018) as well as the verification of historical docu-
ments (Vertan, 2019).

Our approach to identifying and classifying
vagueness is analyzed using FrameNet frames
which provide specialized relations among concep-
tual categories, in a manner similar to recent ad-
vances in neural models that use sentence-level in-
formation to perform hyponymy–hypernymy clas-
sification. Roller et al. (2018) analyzes lexico-
syntactic pattern-based instances of word-specific
hypernymy-hyponymy constructions. Snow et al.
(2004) explores the extraction of predefined pat-
terns for hypernyms and hyponyms in the same
sentence, while Shwartz et al. (2016) incorporates
distributional methods for their classification using
sentence-level features.

3 Data Creation, Preprocessing, and
Analysis

WikiHow articles mostly contain instructions, but
also include descriptions, explanations, and other

non-instructional sentences that provide additional
context. The wikiHowToImprove corpus (Antho-
nio et al., 2020) is an unfiltered corpus of revision
histories. Therefore, we first need to extract those
revisions where the original and revised versions
are both instructional sentences, which can be done
based on syntactic properties (§3.1). We then use a
FrameNet parser to determine the frames (and their
relationships) evoked by the root verb in the origi-
nal and revised version of an instruction (§3.2).

The final extracted data consists of only those
revisions where the root verb has been modified
to be more specific to the sentence. This extracted
corpus consists of 41,615 sentences.

3.1 Data Extraction and Cleaning
wikiHowToImprove is a noisy source of data with
misspellings, non-standard abbreviations, grammat-
ical errors, emoticons, etc. In order to use the data
for our task, we first perform some cleaning and
preprocessing.

We filter the typos and misspellings in the dataset
by comparing all the vocabulary words to words
in the English dictionary using the Enchant python
API2. After filtering the typos, we POS tag and
dependency parse the data using the Stanza library3

(Qi et al., 2020). We discard all sentence pairs
where the sentences are shorter than four or longer
than 50 words.

We then create a sub-corpus of instructional sent-
neces by extracting those edit pairs in which both
the original and revised version of a sentence fulfill
at least one of the following criteria:

• imperative form—the root verb has no nomi-
nal subject (e.g. “Please finish the task”);

• instructional indicative form—the nominal
subject of the root verb is ‘you,’ ‘it’ or ‘one’
(e.g. “You should finish the task”);

• passive form with ‘let’—the sentence is in
passive voice, and the root verb is ‘let’ (e.g.
“Let the paper be put on the table.”).

Finally, we retain only those sentence pairs
whose character edit distance is smaller than 10.
This filter was added after empirical tests to ac-
commodate changes in the verb form and syntactic
frame while ensuring that there are little to no ad-
ditional edits (often just vandalism or spam).

2https://pyenchant.github.io/
3https://stanfordnlp.github.io/stanza/
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3.2 Verb Frame Analysis
We perform an analysis of verb frame relations
from this extracted corpus using the FrameNet
hierarchy (Baker et al., 1998). In order to iden-
tify evoked frames from the data, we use the
INCEpTION Project’s neural FrameNet Tools
parser4 (Klie et al., 2018; Markard and Klie, 2020).
FrameNet Tools identifies the frame-evoking ele-
ments, the evoked frames, and the context elements’
roles in these frame for a given sentence. In this
work, we ignore role assignments and only consider
predictions of evoked frames, which we found to
be generally reliable in our data.5

We extract the frame of the root verb in the
original and revised sentences. For each pair, we
identify the frame relation, if any, using the NLTK
FrameNet API6(Schneider and Wooters, 2017). We
found that most edits could be categorized into one
of the following frame relations between the frames
evoked by the original and revised verb frames:

1. Subframe-of: The original frame refers to
a complex scenario that consists of several
individual states, one of which is the revised
frame. (e.g. TRAVERSING→ARRIVING: “Go
to the thumbs up log.” is revised to “Visit the
thumbs up log.”)

2. Inherits-from: The frame of the revised verb
elaborates on the frame evoked by the original
verb (e.g., DECIDING→CHOOSING: “Deter-
mine the card you want to buy” is revised to
“Choose which card you want to buy.”)

3. Uses: The frame of the revised verb
uses or weakly inherits properties of
the original verb frame (e.g., PERCEP-
TION ACTIVE→SCRUTINY: “Look for the
best fit for your taste” is revised to “Search
for the best fit for your taste.”).

We also find cases of contextually relevant clar-
ifications for phrasal verbs, such as “Make your
bed” vs. “Fix your bed. . . ” which are not covered
in FrameNet. Further, there are cases in which the
FrameNet Tools parser did not identify the main

4https://github.com/inception-project/
framenet-tools

5Although automatic frame identification is noisy, the tools
used here are implementations of the unimodal model pre-
sented in Botschen et al. (2018), which achieves a high accu-
racy of over 88%.

6http://www.nltk.org/howto/framenet.
html

Relation Total Train Test Val

Usage 15,243 11,084 2,194 1,965
Inheritance 13,166 9,179 2,008 1,793
Subframe 9,481 6,835 1,720 926
Other 3,925 2,833 649 443

Total 41,615 30,044 6,237 5,334

Table 2: Number of sentences in the extracted dataset
and distribution of FrameNet relations between original
and revised verbs. We also show the distribution of
train, test and validation for each frame relation.

verb or could not assign a frame. For instance,
the verb compel as in “you may feel compelled
. . . ” is not in FrameNet. We categorize these in-
stances, which are fewer in number than the other
categories, under a single Other category and leave
further inspection to future work. A distribution
of instances over categories is shown in Table 2.
Apart from instances from the ‘Other’ category, we
indeed found the main verbs in the revised versions
of a sentence to be more specific than in the original
versions.

4 Pairwise Ranking Experiments

In this section, we investigate if a neural model
can distinguish between the original and revised
version of the same instruction. We describe a
neural architecture that uses a joint representation
designed for comparing two versions of a sentence
before predicting an output. We compare our re-
sults to a standard BiLSTM-Attention model used
in previous work (Anthonio et al., 2020).

4.1 System and Training Details

The initial components of our system are two BiL-
STM modules, LSTM1A and LSTM1B , that each
takes one version of a sentence as input. The in-
dividual BiLSTMs are followed by a joint layer
LSTMAB and an additional layer of BiLSTM mod-
ules, LSTM2A and LSTM2B , that re-encode the
sentence based on the joint representations. The
final layer is trained to predict for each sentence,
whether it is the original or revised version, label-
ing them 0 or 1, respectively.

In practice, we first encode versions A and B
of an instruction using FastText embeddings or
BERT. The embedded sentences SA and SB are
then passed through LSTM1A and LSTM1B one
(sub-word) token at a time. The hidden layers h1A
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and h1B are then concatenated and passed through
LSTMAB , whose output hAB is then concatenated
again with the original hidden states to re-encode
each sentence version in LSTM2A and LSTM2B .
Lastly a classification layer, trained using a cross-
entropy objective, transforms the final representa-
tions h2A and h2B into a real-valued output score
using self-attention, which is normalized by soft-
max and rounded to {0, 1}. The equations below
give a simplified summary of our implementation.7

h1A =LSTM1A(SA) (1)

h1B =LSTM1B(SB) (2)

hAB =LSTMAB(h1A · h1B) (3)

h2A =LSTM2A(hAB · h1A) (4)

h2B =LSTM2B(hAB · h1B) (5)

lA =

[
exp(w>h2A)

exp(w>h2A) + exp(w>h2B)

]
(6)

lB =

[
exp(w>h2B)

exp(w>h2A) + exp(w>h2B)

]
(7)

Training Details We experiment with both Fast-
Text (Grave et al., 2018) and BERT (Devlin et al.,
2019), using representations with a dimensional-
ity of 300 components. The BiLSTMs modules
LSTM1A,LSTM1B,LSTM2A and LSTM2B each
comprise one hidden layer with 256 components,
whereas the joint LSTMAB comprises one layer
with 512 components. We train for 5 epochs with a
batch size of 32 and a learning rate of 10−5. The
model is trained with a dropout of 0.2 for regu-
larization. No dropout is applied to any BiLSTM
layers or the self-attention layer.

For training, development, and testing, we split
our data according to the existing partition given in
wikiHowToImprove.8 The resulting split consists
of 30,044 sentence revision pairs in the training set,
6,237 pairs in the test set, and 5,334 pairs in the
validation set.

4.2 Results and Discussion
Table 3 shows the results of the pairwise ranking
task. We find that our proposed model with BERT
embeddings is the most accurate model for this
task by a margin of about 7%. We compare our
results against the baseline provided by Anthonio
et al. (2020), which also makes use of ranking and
a BiLSTM architecture. In contrast to our model,

7We will make the code available upon publication.
8https://github.com/irshadbhat/

wikiHowToImprove

Model Description Dataset Accuracy

Anthonio et al. (2020) Entire 74.50%

Anthonio et al. (2020) Filtered 64.08%
Our Model + FastText Filtered 71.16%
Our Model + BERT Filtered 78.40%

Table 3: Results of the pairwise ranking task, on the full
wikiHowToImprove dataset (Entire) and our subset of
instructional sentences (Filtered).

Frame Relation Sentence Pair
(#errors / total)

Usage Make a comic in Flash
(503 / 1,965) Create a comic in Flash

Inheritance Check the “made in” label
(352 / 1,793) Inspect the “made in” label

Subframe Let your hair dry
(137 / 926) Allow your hair to dry

Other Next, try to sneak out...
(160 / 443) Next, attempt to sneak out...

Table 4: Some examples of sentences which our BERT-
based classifier could not distinguish between the orig-
inal (top) and revised (bottom) versions. We find that
confusable verbs (marked in bold) are mostly synony-
mous. The error and total counts from the validation
set are provided in parenthesis for each relation type.

their baseline is a simple BiLSTM-Attention clas-
sification model using FastText embeddings. It
does not use an intermediate joint representation
to compare representations of two versions of an
instruction. The baseline model has the advantage
of being trained on individual sentences, but the
increase in model accuracy for training sentence
pairs by sharing context highlights the efficacy of
the training regime.

Their model provides an accuracy of about
64.08% when trained and evaluated on the filtered
corpus. Our model with FastText embeddings
achieves an accuracy of 71.16% (+7.08%), which
shows the relative importance of the joint represen-
tation.

Discussion We find that version pairs that in-
volve a subframe relation are the easiest to dis-
tinguish across our model using both FastText and
BERT, while pairs involving the usage relation are
most often confused. The model using BERT em-
beddings performs better than the FastText-based
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model on revisions that do not involve any frame-
to-frame relations according to FrameNet (referred
to as ‘other’ in Table 2).

In Table 4, we provide examples where the
model failed using both FastText and BERT. We
observe that the models fail to correctly distinguish
between sentences when the main verbs are syn-
onymous. The embeddings of the most commonly
confused verb pairs, which include 〈allow, permit〉,
〈choose, decide〉 and 〈create, make〉, have a cosine
similarity of 0.8 or higher, while the average cosine
similarity between the representation of verb pairs
is 0.47. This insight shows that embeddings by
themselves might be insufficient for this classifica-
tion task. In future work, we will explore additional
features such as indicator features derived from the
discourse context (e.g., the position of a sentence)
and from the FrameNet resource (e.g., properties
of the frames evoked in a sentence).

5 Conclusion

In this paper, we extracted a corpus of clarifications
of instructions from the wikiHowToImprove corpus.
We described a methodology for extracting version
pairs of a sentence that are both instructional. We
then identified cases in which a revision has clari-
fied a vague instruction by analyzing the relation-
ship between the frames evoked by the ‘original’
verb and the ‘revised’ verb.

In our experiments, we adopted a simple pair-
wise ranking task, in the same vein as performed
by Anthonio et al. (2020) on the entire wikiHow-
ToImprove dataset. We extended a simple BiLSTM
architecture with a joint component and explored
different embeddings methods, observing that both
modifications lead to improvements over baselines
presented in previous work.

We hope that our methodology of extracting lin-
guistically interesting cases of revisions from a
noisy dataset can be extended to more phenomena
and other corpora in future work. This direction
has the potential of paving the way for developing
automated revision and editing methods beyond
typo, style, and grammar correction.
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Abstract

Language Identification is the task of identify-
ing a document’s language. For applications
like automatic spell checker selection, language
identification must use very short strings such
as text message fragments. In this work, we re-
produce a language identification architecture
that Apple briefly sketched in a blog post. We
confirm the bi-LSTM model’s performance and
find that it outperforms current open-source
language identifiers. We further find that its
language identification mistakes are due to con-
fusion between related languages.

1 Introduction

Automatic Language Identification is the task
of identifying a document’s language, an es-
sential task for document classification and ma-
chine translation (Ling et al., 2013). General-
purpose, open-source Language Identification tools
like langid.py (Lui and Baldwin, 2012) and Fast-
Text (Grave, 2017) are the de facto standards for
Language Identification in large documents.

During the last two decades, text messaging and
social media have generated large amounts of short
plain-text documents. Language identification on
partial and complete short texts presents unique
challenges (Jauhiainen et al., 2019). Successful
Language Identification can support marketing, po-
litical, and socioeconomic analyses on large cor-
pora of short texts such as tweets. Such analyses
can, for example, study hate speech towards im-
migrants and women (Basile et al., 2019) or seek
to understand support groups for smoking cessa-
tion (Prochaska et al., 2012).

On a smartphone, Language Identification on
short texts can support several features. Language
identification of incoming text messages can help
virtual assistants read incoming text messages,

∗Equal contribution

which can be an essential tool for minorities such
as visually impaired multilingual speakers.

Language identification can also help when typ-
ing short texts. Identifying language from the first
few characters typed (a very short string) can al-
low a smartphone to select the correct spelling
and grammar checker automatically. Such fea-
tures motivated a team at Apple to study character-
level Language Identification using bi-directional
LSTMs (Apple, 2019).

This paper reproduces the architecture presented
in an industry blog post (Apple, 2019) on Lan-
guage Identification on extremely short strings (10
characters or less). The blog post briefly sketches
the language identification system used by Apple’s
smartphones and computers. However, due to the
use of internal, proprietary corpora, the architec-
ture’s performance cannot be compared with the
current de facto standards for Language Identifi-
cation: the open-source tools langid.py (Lui and
Baldwin, 2012) and FastText (Joulin et al., 2017,
2016; Grave, 2017).

Our reproduction confirms the performance de-
scribed in the original blog post (Apple, 2019).
We go beyond mere reproduction and (1) compare
the bi-LSTM model with the current de facto stan-
dards for Language Identification and (2) analyze
performance on related languages. We find that
the bi-LSTM is more accurate than out-of-the-box
FastText and langid.py, even outperforming the
re-trained FastText. Our results suggest that the
bi-LSTM architecture could be an alternative to
FastText and langid.py for Language Identification
on short strings.1

1Our source code and models are available at https://
github.com/AU-DIS/LSTM_langid. End-users can
download our code as a library from the Python Pack-
age Index (PyPI) via https://pypi.org/project/
LanguageIdentifier/.
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2 Related work

The simplest Language Identification methods dis-
criminate using elementary distinguishing traits
like unique character combinations, frequent or
unique words, diacritics, or common n-grams (Dun-
ning, 1994; Souter et al., 1994; Truică et al., 2015).
Increasing model complexity, some Language Iden-
tification methods model sequences of words, char-
acters, or bytes. Some methods focus on mod-
eling the frequency of n-grams, e.g., frequency
of character n-grams (Ahmed et al., 2004; Souter
et al., 1994). Such methods outperform techniques
based on unique words. Markov model-based ap-
proaches estimate the probability of a string based
on n-grams of characters or bytes (Dunning, 1994),
as is the case of langid.py (Lui and Baldwin, 2012,
2011). Due to its availability as an open-source
library, langid.py is one of the most popular lan-
guage identifiers.

Recent language identifiers increasingly use
word representations. For example, in a blog post,
Grave (2017) shows how to identify languages
using FastText vectors (Bojanowski et al., 2016;
Joulin et al., 2017, 2016), which model character
n-grams. Language identification with FastText
vectors is as performant as langid.py (Grave, 2017).
Similar to langid.py, FastText language identifica-
tion models are open-source and, therefore, popu-
lar.

LanideNN (Kocmi and Bojar, 2017) identifies
languages in multilingual documents using a recur-
rent neural network with a single layer of gated
recurrent units (GRU). Unlike Markov-based meth-
ods, recurrent neural network architectures do not
model character sequences with a fixed window
of context. The language identifier that Apple
briefly sketched in a blog post (Apple, 2019) uses
a recurrent neural network with a two-layer bi-
directional LSTM to model character sequences.
Apple’s method differs from LanideNN in architec-
ture complexity (two layers, LSTM cells instead of
the simpler GRU cells) and in its focus. LanideNN
works with long multilingual documents, whereas
Apple classify extremely short monolingual strings.

In a survey, Jauhiainen et al. (2019) present more
than the techniques above, discuss challenges, and
identify remaining research questions. Among the
remaining research questions are very short texts
(the problem motivating Apple) and discrimination
of related languages. In this paper, we go beyond
reproducing Apple’s work by analyzing the effect

Figure 1: The bi-LSTM architecture. Figure reproduced
from Apple (2019).

of related languages.

3 Model architecture

Figure 1 gives an overview of the two-layer bi-
directional LSTM architecture powering Apple’s
products, as briefly sketched in a blog post (Apple,
2019).

The model takes as input strings of characters.
In the following, we describe the left-to-right direc-
tion of the bi-directional LSTM. The right-to-left
direction is identical but mirrored. In the first step,
vector embeddings replace all characters in the in-
put string. The network uses a single embedding
for all languages since the language is unknown at
this point. At each time step, the LSTM ingests a
character’s embedding and the hidden layer repre-
sentation from the previous step. The per-character
output from the left-to-right LSTM layer is con-
catenated with that of the right-to-left layer. The
concatenated vectors pass to a second LSTM layer
that is identical to the first but does not share pa-
rameters. After the second layer, the concatenated
vectors go through a single linear layer, producing
a distribution over all supported languages. The
linear layer provides character-level language iden-
tification. In other words, for each input character,
the network generates a probability distribution
over the possible languages.

With the outputs from the linear layer, Apple
(2019) state that A max pooling style majority vot-
ing decides the dominant language of the string.
However, max pooling and majority voting are dif-
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ferent techniques. A combination of the two is
impossible as one cannot perform majority vot-
ing over outputs that have been max pooled, and
vice versa. Instead, we sum over the linear layer’s
output values at each time step and softmax the
summed output to obtain a prediction. We expect
this approach to be what the original authors in-
tended. The similarity between our reproduction’s
performance and what Apple report in the original
blog post confirms our approach.

4 Data sets

Apple (2019) only mention the kind of data used
in their experiments. Therefore, we use two large
and openly available data sets of the same kind
as Apple: a subset of OpenSubtitles (Lison and
Tiedemann, 2016) to study performance on dialog;
and Universal Dependencies (UD, Zeman et al.,
2019) for prose. Following Apple, we trim strings
to 50 characters per sample, with all samples start-
ing at the beginning of a word, and remove special
characters.

Apple test on 20 languages that use the Latin
alphabet, but only show results on 9 of the 20 and
do not specify the remaining 11 languages. Be-
sides the 9 languages in the original blog post, we
select 11 languages, some of which are closely re-
lated. Thus, our experimental setup2 is similar to
Apple’s. Including closely related languages in-
creases our data sets’ difficulty but supports more
interesting and more representative experiments.
Specifically, it supports performance analysis on
related languages, an open research question (Jauhi-
ainen et al., 2019).

5 Experiments and results

We use five-fold cross-validation in all experiments.
Following Apple (2019), we evaluate on strings
of 10 characters. We test all models on the same
strings.

We use the AdamW optimizer with default pa-
rameters in PyTorch; we set the character embed-
ding dimension to 150 and the bi-LSTM’s hidden
dimension to 150; we train for 25 epochs using
batches of 64 examples and use weighted cross-
entropy for the loss function.

2The languages we use are: Catalan (ca), Czech (cs),
Danish (da), French (fr), German (de), English (en), Span-
ish (es), Estonian (et), Finnish (fi), Croatian (hr), Hungarian
(hu), Italian (it), Lithuanian (lt), Dutch (nl), Norwegian (no),
Portuguese (pt), Polish (pt), Romanian (ro), Swedish (sv), and
Turkish (tr).

Figure 2: Apple (2019)’s original results.

Out-of-the-box, FastText and langid.py can iden-
tify more than our set of 20 languages. For fair eval-
uation, we limit the set of languages that the mod-
els output. For langid.py, we use a built-in method
that limits the number of languages under consid-
eration. For FastText, we take the probability dis-
tribution over all language predictions, extracting
only the relevant 20. We use the large pre-trained
FastText model3. When re-training FastText, we
use 15 epochs, with a minimum n-gram length of
one character and a maximum of six characters.
We leave all other parameters at their default.

5.1 Comparison with original work
Figure 3 contains the results of our reproduction
of the experiment in Figure (b) from Apple (2019),
a confusion matrix of the bi-LSTM model trained
and evaluated on the UD data set. Since Apple
do not include averaged results, we use the confu-
sion matrices for comparison. Figure 2 includes
a copy of Figure (b) from Apple (2019) for easier
comparison. We find that performance per lan-
guage is similar between the two implementations.
While in one case, accuracy is almost identical
(Turkish, tr), for most languages, our implementa-
tion is either a few points of accuracy below (e.g.,
French, fr, −2.85 points, and Italian, it, −2.62) or
above the original model (e.g., Dutch, nl, +1.87).
For some languages, our implementation consider-
ably underperforms the original (e.g., English, en,
−7.4 points, and Spanish, es, −16.7). Our imple-
mentation considerably outperforms the original
on German (de +6.91) and Swedish (sv +7.54).

3Available at https://fasttext.cc/docs/en/
language-identification.html
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Figure 3: Confusion matrix for bi-LSTM on UD. Figure 4: Confusion matrix for re-trained FastText on UD.

We attribute the difference in performance to ran-
domness during training and differences in training
data. The original blog post does not state the size
nor language composition of the data set.

In Figure 3, we follow Apple and threshold
values in the confusion matrix at 1.0. Thus, we
can effortlessly compare error patterns. Interest-
ingly, the patterns are almost identical. Both matri-
ces show issues distinguishing between Italian (it)
and Portuguese (pt), German (de) and Dutch (nl),
French (fr) and English (en), and Italian (it) or
Portuguese (pt) vs. Spanish (es) or French (fr). Un-
surprisingly, most confusions appear for languages
from the same families, Romance (es, fr, it, pt) and
Germanic (de, nl).

5.2 Comparative analysis

In Tables 1 and 2, we include the comparative anal-
ysis results with the current de facto standards for
Language Identification: FastText and langid.py.
We use two weighing strategies for F1 to pro-
vide different insights. Macro-F1 averages the per-
language results and considers languages equally
important. Weighted-F1 takes into account the
popularity of the different languages in the data
sets. Weighted-F1 measures the performance on
the data set, while macro-F1 illustrates language
coverage as it is not affected by label frequency.
In multi-class classification, micro-F1 equals accu-
racy. We, therefore, include only accuracy, denoted
acc@1.

On both data sets, the bi-LSTM exceeds the
weighted- and macro-F1 of langid.py, pre-trained
FastText, and re-trained FastText. The performance
difference between the bi-LSTM and the next best

LSTM pFT rFT langid.py
wF1 87.41 72.45 78.67 64.89
maF1 79.22 61.20 67.90 51.66
acc @1 86.93 70.45 77.92 61.73
acc @3 96.07 85.84 90.59 82.83
acc @5 97.78 90.92 94.45 88.99

Table 1: Results on UD. pFT = pre-trained FastText;
rFT = re-trained FastText

LSTM pFT rFT langid.py
wF1 91.38 67.45 84.14 54.31
maF1 91.38 67.45 84.14 54.31
acc @1 91.37 67.73 84.13 53.47
acc @3 98.14 84.15 95.08 76.30
acc @5 98.93 89.31 97.38 84.22

Table 2: Results on OpenSubtitles. pFT = pre-trained
FastText; rFT = re-trained FastText

model (the re-trained FastText) also appears in the
confusion matrix. Figure 4 shows that even the
re-trained FastText exhibits confusion across all
pairs. It also shows a strong bias towards some lan-
guages like English (en), French (fr), or Dutch (nl)
regardless of the input language. All columns in
Figure 4 that correspond to these languages exhibit
confusion errors.

The OpenSubtitles data is more challenging than
UD for out-of-the-box langid.py and FastText, but
easier for bi-LSTM and re-trained FastText. Also,
there is a considerable improvement from the pre-
trained FastText to the re-trained FastText on both
data sets. These observations suggest that (1) do-
main adaptation has a considerable impact on Fast-
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ca es pt fr it ro da no sv de nl en cs pl hr lt et fi hu tr
Predicted

ca
es

pt
fr

it
ro

da
no

sv
de

nl
en

cs
pl

hr
lt

et
fi

hu
tr

Ac
tu

al

78.24 7.64 4.08 2.99 2.59

8.72 71.65 8.71 1.78 3.15 1.05

3.13 8.56 78.54 1.25 3.02 1.12

2.99 1.60 1.48 83.80 2.19 1.22 2.37

2.13 2.05 2.28 1.67 86.38 1.14

1.07 1.09 1.09 1.60 91.07

67.72 15.32 5.44 2.41 1.65 1.59

17.35 67.45 5.80 1.93 1.00 1.02

6.10 6.22 78.74 1.97 1.20

92.61 1.31 1.41

1.80 1.35 3.03 84.72 1.76

1.23 1.07 2.13 1.56 2.10 1.21 84.68

89.91 1.41 3.01

1.19 93.07 1.52

2.06 89.04 1.27

1.51 93.66

90.83 2.21

4.11 89.57

93.24

93.31

Figure 5: Confusion matrix for bi-LSTM on UD.

Text, and (2) that dialog is more difficult for the
out-of-the-box models. OpenSubtitles contains sub-
titles of movies predominantly produced in English.
Consequently, character names are also English-
centered, e.g., Jane. Character names can appear in
dialog, which might confuse the pre-trained models
to assign such dialog lines to English, despite their
translation.

5.3 Error analysis

Tables 1 and 2 show a jump from accu-
racy at the top of the list of prioritized pre-
dicted languages (acc@1) to accuracy at the top
three (acc@3). For most models, a smaller jump
follows to accuracy at the top five (acc@5). The
sizeable jump indicates that, even when the models
are wrong, the correct answer is usually among the
top three. For example, from acc@1 to acc@3, the
bi-LSTM jumps 9.14 points on UD and 6.77 on
OpenSubtitles, but only 1.71 and 0.79 from acc@3
to acc@5. The gap from acc@1 to acc@3 is much
larger for langid.py and FastText, illustrating a
higher confusion. Recent work in language identi-
fication suggests that the accuracy gap might be a
symptom of confusion of related languages (Haas
and Derczynski, 2020).

To understand the bi-LSTM’s jump in accuracy,
we turn to the complete confusion matrix. In Fig-
ure 5, we show the confusion matrix of the bi-
LSTM on all 20 languages in our experiments.

There is intense confusion between highly simi-
lar languages. We observe three large clusters of
confused languages: Romance (ca, es, fr, it, pt,
ro), West Germanic (de, en, nl), and languages of
Northern Europe (da, no, sv). More closely related
languages are more confusing, for example, Cata-
lan (ca) vs. Spanish (es) and Danish vs. Norwegian
(no). The clusters of confusion between related
languages indicate that, despite the bi-LSTM’s im-
proved performance, highly similar languages still
pose a challenge.

5.4 Storage requirements
Apple (2019) also consider storage requirements.
Our bi-LSTM uses 4 MB of storage, confirming
the claims in the original blog post. The re-trained
FastText model requires 1.5 GB of storage, but that
could reduce to approximately 150 MB, follow-
ing Joulin et al. (2016). langid.py’s model is only
2.5 MB. Given its language identification perfor-
mance and model size, the bi-LSTM is a great value
proposition, especially on storage-constrained mo-
bile devices, confirming Apple’s use case scenario.

6 Conclusions

We have reproduced the bi-LSTM language iden-
tification architecture described in a blog post by
Apple (2019). Our reproduction experiments con-
firm the performance claims in the original blog
post. We evaluated the bi-LSTM against the de
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facto open-source language identifiers in experi-
ments on two openly available data sets. Our eval-
uation considered dialog and prose, and targeted
twenty languages, including some highly similar
languages such as Danish (da) and Norwegian (no)
or Catalan (ca) and Spanish (es). Our experiments
illustrate the difficulty of identifying the language
in very short strings. The reproduced bi-LSTM
outperformed FastText and langid.py on all mea-
sures, even when training FastText on the same data.
However, we went beyond a straightforward re-
production and considered related languages. Our
analysis shows that the bi-LSTM can easily confuse
languages from the same family (e.g., Romance,
West Germanic, or Scandinavian) and highly simi-
lar languages such as Catalan (ca) and Spanish (es).
We publish our implementation’s source code and
make a trained model available as a library. In
the future, we would like to consider avenues for
improving the bi-LSTM architecture. For exam-
ple, we would like to replace the majority voting
mechanism in the bi-LSTM with a more robust
alternative.
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Abstract

Institutes are required to catalog their articles
with proper subject headings so that the users
can easily retrieve relevant articles from the in-
stitutional repositories. However, due to the
rate of proliferation of the number of articles in
these repositories, it is becoming a challenge
to manually catalog the newly added articles
at the same pace. To address this challenge,
we explore the feasibility of automatically an-
notating articles with Library of Congress Sub-
ject Headings (LCSH). We first use web scrap-
ing to extract keywords for a collection of ar-
ticles from the Repository Analytics and Met-
rics Portal (RAMP). Then, we map these key-
words to LCSH names for developing a gold-
standard dataset. As a case study, using the
subset of Biology-related LCSH concepts, we
develop predictive models by formulating this
task as a multi-label classification problem.
Our experimental results demonstrate the via-
bility of this approach for predicting LCSH for
scholarly articles.

1 Introduction

An Institutional Repository (IR) is the collection
of scholarly work hosted and maintained by insti-
tutions such as universities. For example, “Scholar-
Works1 is an open access repository for the capture
of the intellectual work of Montana State Univer-
sity (MSU) in support of its teaching and research
goals”. Repository Analytics and Metrics Portal
(RAMP) is a web service that accurately counts
item downloads for each article in the institutional
repository (Obrien et al., 2016; OBrien et al., 2017).
Besides counting the number of downloads, RAMP
stores metadata of the articles such as title, abstract,
and keywords. Currently, nearly 40 institutions
have registered their repositories with RAMP.

1https://scholarworks.montana.edu/

To facilitate the easy finding of articles, the IR
managers need to catalog them using different sub-
ject headings manually. One of the most popu-
lar vocabularies for cataloging is the Library of
Congress Subject Headings (LCSH) (Walsh, 2011).
LCSH is a subject indexing language that is actively
maintained since 1898 to catalog materials in the
Library of Congress and most widely adopted by
large and small libraries around the world (Work,
2016). A subject heading is the most specific word
or a group of words that capture the essence of
a subject category. Due to the rapid growth of
items in IRs, manual cataloging using LCSH or
other vocabularies is becoming highly resource-
consuming (Engelson, 2013).

Due to the above challenge, there have been a
few previous attempts on the automatic assignment
of LCSH through keyword extraction (Wartena
et al., 2010; Aga et al., 2016), by collecting LCSH
concepts that are assigned to similar texts (Paynter,
2005), using semantic similarity (Yi, 2010), and
co-occurrence-based mapping (Vizine-Goetz et al.,
2004). These techniques primarily depend on the
presence of the keywords or similar words/ phrases
within the actual text and do not utilize machine
learning. Furthermore, one of the studies claims
that the prediction of LCSH using machine learning
may be infeasible due to the large size of the vocab-
ulary leading to inadequate training data (Wartena
et al., 2010). Note that machine learning has been
used for a seemingly similar but actually differ-
ent task of predicting Library of Congress Classi-
fication (LCC) (Frank and Paynter, 2004). How-
ever, despite the similarity in their names, LCC and
LCSH are completely different vocabularies.

Semantic indexing with other vocabularies has
gained traction recently (Mirowski et al., 2010;
Salakhutdinov and Hinton, 2009; Wu et al., 2014).
Most notably, predicting Medical Subject Headings
(MeSH) for biomedical literature using machine
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learning and deep learning techniques has seen
significant recent interest (Mao and Lu, 2017; Jin
et al., 2018; Kehoe et al., 2017; Rios and Kavuluru,
2015; Kosmopoulos et al., 2015; Yan et al., 2016)
thanks to the BioASQ challenge on Biomedical
Semantic Indexing (Tsatsaronis et al., 2015).

In this work, we explore the feasibility of devel-
oping an automated pipeline for predicting LCSH
for scholarly articles using machine learning. As
a case study, we leverage an extensive collection
of scholarly articles from RAMP and generate a
gold-standard dataset by assigning Biology-related
LCSH concepts to each article through web scrap-
ing and string matching techniques. Using this
gold-standard data, we develop predictive mod-
els that can predict LCSH by modeling this as a
multi-label classification problem. Our experimen-
tal results indicate the effectiveness of the proposed
approach.

2 Methodology

2.1 Data

In this approach, we build a gold-standard dataset
by scraping RAMP data from 27 institutional repos-
itories (IRs). A high-level overview of our ap-
proach is shown in Figure 1.

RAMP

Web Scraping

Metadata Filtering

LCSH Mapping

LCSH Filtering

Gold-standard Data

DT
ANN

BERT

Figure 1: A high-level overview of our approach.

We identify the citable content downloads (CCD)
from each institutional repository (IR) between July
2017 and July 2018 . Then, we scrape all metadata
of each CCD from RAMP for the subset that in-
cludes all unique CCDs.

The raw data (scraped from RAMP) contains
457,879 articles and 270 different metadata types.
However, we use only title concatenated with ab-
stract, article type, and keywords for this study, and
discard other metadata. There are many reasons
why some of the metadata are empty. For example,
items such as newspapers do not include abstracts,
and sometimes IR managers add items into reposi-
tories without populating metadata. Therefore, we
first discard articles without a title, an abstract, or
keywords, which reduces the dataset to 126,655 ar-
ticles that have a title, an abstract, and at least one
keyword. Then, we map each keyword to the sub-
ject names from the 41st edition of LCSH2 using
full string matching (case insensitive). If a keyword
does not match with any subject, we ignore that
keyword.

Any article without at least one assigned subject
heading is discarded. This results in a smaller set
of articles with annotated subject headings. Then,
we filter out any subjects not related to Biology by
only retaining the concept Biology (sh85014203)3

and its descendants. Finally, we remove subject
headings that are annotated to less than 100 articles.
After all the above, we have a dataset composed
of 17,367 articles with 66 Biology-related subject
headings. This LCSH-annotated dataset is used
as the gold-standard dataset for developing predic-
tive models. Note that while the string matching
technique used in this study itself can potentially
be used for ”predicting” LCSH terms, we are as-
suming that unseen items that need to be annotated
with LCSH in real-life may not necessarily come
with keywords (and hence we resort to developing
predictive machine learning models). The distribu-
tion of articles across IRs in this dataset is shown
in Table 1.

2.2 Models

We model the task of predicting LCSH concepts
as a multi-label classification problem and develop
three supervised machine learning models using the
above generated gold-standard data. These models
are 1) Decision Tree (DT), 2) Artificial Neural Net-
works (ANN), and 3) Bidirectional Encoder Rep-
resentations from Transformers (BERT). All the
models are implemented using scikit-learn4, Ten-

2https://loc.gov/aba/publications/FreeLCSH/freelcsh.html
3http://id.loc.gov/authorities/subjects/sh85014203.html
4https://scikit-learn.org/
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IR Name # Articles
1 Deep Blue 7,820
2 DRUM 1,578
3 EASP 1,171
4 UWSpace 1,063
5 OpenBU 960
6 MacSphere 917
7 Texas ScholarWorks 849
8 Mountain Scholar 631
9 Epsilon Open Archive 576

10 K-REx 464
11 MSU ScholarWorks 405
12 OAKTrust 380
13 MD-SOAR 245
14 SHAREOK 192
15 Others 116

Total: 17,367

Table 1: Number of articles per institute in the gold-
standard dataset.

sorFlow5, Transformers6 and PyTorch7 libraries.
In our preliminary work, We also train models us-
ing Support Vector Machines and Random Forest
classifiers, but none of them perform better than
the models reported in this paper (data not shown).

We choose standard but varying pre-processing
steps independently for each model since certain
pre-processing techniques work well for some mod-
els over the others. For example, removing stop-
words is a common practice for Decision Tree mod-
els but not for BERT since stopwords typically can
act as noise for the former.

2.2.1 Decision Tree (DT) model
We apply the Decision Tree classifier to develop
a tree-based one-vs-rest classification model. We
use TF-IDF (term frequency-inverse document fre-
quency) vectorizer with a word-based analyzer for
feature extraction. We use lemmatization and stop
word removal as standard pre-processing steps. We
include both uni-grams and bi-grams as features
and train our model over the top 10,000 features.
Our model returns a binary value, i.e., either 0 or 1,
as the prediction.

2.2.2 Artificial Neural Network (ANN) model
For the shallow artificial neural network model,
we use the TF-IDF scores as input. These are

5https://www.tensorflow.org/
6https://huggingface.co/transformers/
7https://pytorch.org/

generated using scikit-learn’s TfidfVectorizer class.
All stop words (common words such as “the” or
“and”) are removed before vectorization, and only
the terms that appear in a minimum of 1% of all
documents are kept.

Our artificial neural network has four layers: an
input layer with 2,251 nodes, a dropout layer with
a rate of 0.1, a hidden layer with 132 nodes, and
an output layer with 66 nodes (one for each label)
with a sigmoid activation function. We initially
experimented with many different network struc-
tures but ultimately find that a single hidden layer
with 132 nodes, double the number in the output,
produces the best results (data not shown). We
use 5-fold nested cross-validation to find the op-
timal epoch for training the networks. We train
the largest network with 100 epochs and find 10
epochs as optimal as the learning curve reaches
convergence. We use this optimal epoch to train all
networks.

2.2.3 Bidirectional Encoder Representations
from Transformers (BERT) model

We use the pre-trained BERT-Base (uncased)
model (Devlin et al., 2018) and fine-tune it for
multi-label text classification. The base model has
12 transformer blocks, i.e., hidden layers, a hidden
size of 768, 12 attention heads, and 110 million
parameters (Devlin et al., 2018). The model is
pre-trained for English on uncased Wikipedia and
BooksCorpus. For fine-tuning the model, we use
Adam optimizer with a learning rate of 2e − 5,
ε = 1e− 8, L2 weight decay of 0.01, learning rate
warmup over the first 500 steps with linear decay
and Cross-Entropy Loss function. We observe the
learning curve over 5-fold nested cross-validation
and find 6 epochs as the optimal number. Any ex-
ample longer than the 512 token length restriction
enforced by the BERT-Base model is truncated.

2.3 Experimental Setup and Metrics

In order to obtain unbiased estimations of model
performance, we evaluate our models using 5-times
5-fold stratified cross-validation (Sechidis et al.,
2011; Szymański and Kajdanowicz, 2017). We pri-
marily report the performances of our models using
Maximum F1-score (Fmax), Precision at Fmax and
Recall at Fmax. Precision reports the percentage
of true samples among the samples that have been
predicted as true, whereas Recall reports the per-
centage of true samples retrieved by the model.
F1-score is the harmonic mean of precision and re-

45



Subject Frequency # subjects
DT ANN BERT

P R F1 P R Fmax P R Fmax
[100, 200) 35 0.36 0.35 0.36 0.48 0.40 0.43 0.51 0.43 0.43
[200, 300) 15 0.40 0.39 0.39 0.48 0.46 0.47 0.56 0.51 0.49
[300, 400) 6 0.31 0.30 0.30 0.42 0.44 0.43 0.55 0.55 0.54
[400, 900) 7 0.41 0.41 0.41 0.48 0.57 0.52 0.59 0.70 0.64
[1700, 2600] 3 0.40 0.40 0.40 0.46 0.67 0.54 0.57 0.71 0.63

Macro average: 0.38 0.37 0.37 0.46 0.51 0.48 0.56 0.58 0.55

Table 2: Model performance per subject frequency range. # subjects: Number of unique subjects within the range,
P: precision, R: recall.

Article Type Freq.
Length Average Number of Fmax

Avg Std Keywords Subjects DT ANN BERT
Thesis 6,765 379.89 191.32 30.24 1.15 0.31 0.38 0.41
Article 1,077 225.80 99.52 21.25 1.29 0.19 0.23 0.24
Report 880 442.89 280.80 15.80 1.09 0.14 0.18 0.19
Paper 364 207.68 111.74 22.29 1.17 0.10 0.12 0.16
Book 48 221.31 194.41 20.27 1.08 0.02 0.03 0.04
Others 383 164.54 116.59 24.53 1.30 0.12 0.14 0.19
NA 7,850 253.99 147.47 21.52 1.27 0.30 0.38 0.41

Table 3: Model performance per article type. NA: Not Available, Freq: number of articles in type, Length: number
of words in title and abstract, P: precision, and R: recall.

Subject Freq
Fmax

DT ANN BERT
Commencement
ceremonies

141 0.99 1.00 1.00

Discrimination 227 0.83 0.88 0.88
Irrigation 125 0.72 0.66 0.89
Machine
Learning

260 0.68 0.71 0.75

Nanoparticles 174 0.67 0.67 0.78
Self-efficacy 112 0.64 0.69 0.71
Animal
ecology

520 0.56 0.67 0.79

Autism 103 0.68 0.51 0.75
Feminism 113 0.63 0.52 0.76
Planning 245 0.50 0.65 0.69

Table 4: Top ten easiest to predict subjects. Freq: Fre-
quency of subject in the dataset.

call. Unlike F1, Fmax, which is computed across a
range of thresholds, is threshold independent. More
specifically, let threshold t ∈ [0, 1], then

Fmax = max
t

{
2 · precision(t) · recall(t)
precision(t) + recall(t)

}

For this study, we use a step size of 0.05 for thresh-
olds and Macro-averaging (arithmetic mean) for

Subject Freq
Fmax

DT ANN BERT
Social
psychology

157 0.05 0.14 0.02

Clinical
psychology

196 0.10 0.22 0.00

Metabolism 104 0.14 0.19 0.00
Molecular
biology

185 0.07 0.15 0.11

Developmental
psychology

174 0.14 0.20 0.00

Cognition 109 0.18 0.20 0.00
Epidemiology 224 0.17 0.20 0.04
Zoology 242 0.13 0.24 0.05
Physiology 190 0.12 0.20 0.11
Neurology 176 0.23 0.25 0.00

Table 5: Top ten hardest to predict subjects. Freq: Fre-
quency of subject in the dataset.

aggregating the performance across classes.Note
that since the DT model returns binary predictions
directly, without class probabilities, we report the
performance of this model only using F1 instead
of Fmax.
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Figure 2: Model performance against subject frequency. DT: Decision Tree, ANN: Artificial Neural Network.

3 Results and Discussion

The overall performance for all our models is de-
picted in Table 2. Overall, the BERT model per-
forms the best, and the DT model performs the
worst among the three models. The DT model
achieves an average F1 score of 0.37, whereas
the lowest F1 score (0.30) is observed for fre-
quency range [300, 400). The performance of
the DT model is seemingly immune to the fre-
quency of subjects. The ANN model notably out-
performs the DT model with an average Fmax of
0.48. The ANN model also struggles for frequency
range [300, 400). However, the lowest Fmax (0.43)
of ANN is higher than the best F1 score (0.40)
achieved by DT in any frequency range. Except for
frequency range [300, 400), we can see an increase
in Fmax of ANN as the frequency range increases.
The BERT model significantly outperforms both
DT and ANN models with an average Fmax of 0.55
and shows a positive correlation between Fmax and
frequency range.

Figure 2 shows variation of performance of all
three against the frequency. The subjects between
range [100, 200) are widely spread across the y-
axis (Fmax) for each model, which indicates that
the easiest and the hardest subject to predict have
similar subject frequencies. Top ten easiest and
hardest subjects across all three models are listed
in Table 4 and Table 5, respectively. We use macro-
averaged F-score from all three models to compile

these rankings. All three models show their best
performance for the same subject, Commencement
ceremonies. Both DT and ANN have a non-zero
F-score for each subject. Despite being the best
model, BERT shows zero Fmax for several subjects,
e.g., Clinical psychology.

We also assess the performance of each model
per document type, as reported in Table 3. For
the following analysis, we exclude the document
type denoted as NA for which the corresponding
metadata was missing. Same as before, BERT per-
forms the best, and ANN outperforms DT. All three
models show their best and worst performance for
the same article types across all models, Thesis
and Book, respectively. The frequency of each
type may have played a significant role in these
extremes. This is further supported by the fact that
the performance across all three models follows
the same trend: as the frequency decreases, the
performance decreases as well.

4 Conclusions and Future Work

In this work, we explore the feasibility of using ma-
chine learning for predicting LCSH for scholarly
articles. We first generate a gold-standard dataset
annotated with LCSH subjects by web scraping/
string matching and utilize this data for develop-
ing multi-label classification models. Our results
indicate the feasibility of our approach. We believe
our approach is applicable to other data similar to
LCSH concepts. This automated pipeline should
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be extremely valuable to librarians for expediting
the manual cataloging process. We plan to mea-
sure the efficiency gains of this method through the
Montana State University Library.

While our approach displays promising results,
there are many different avenues for future inves-
tigation. First, in this work, we map the web
scraped keywords to subject names (instead of iden-
tifiers or IDs). However, some subject names may
map to more than one identifier (e.g., Psychology:
sh85108459 or sh2002011487). So, we plan to ex-
plore two different solutions to this. One approach
is to develop a chain-classifier that can predict the
LCSH IDs using the already predicted subjects
(i.e., a second classifier for disambiguation). An-
other option is the improve the web scraping/ string
matching pipeline so that we can generate a gold-
standard dataset directly annotated with IDs.

To improve the performance of our traditional
machine learning models, we plan to investigate
the inclusion of hand-engineered features, other
resources such as MeSH terms, metadata fields
that were ignored in this study, and the hierarchi-
cal information from the LCSH. Besides, using
larger more sophisticated language models (e.g.,
Megatron-LM), using the complete set of LCSH
terms (without restricting to Biology-related), and
structured output models that explicitly use the
hierarchy information will likely improve perfor-
mance. Moreover, Extreme Multi-Label (XML)
models that are equipped to handle very large sets
of classes (Kumar et al., 2019) will also likely pro-
vide better performance.
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Abstract

While numerous methods have been proposed
as defenses against adversarial examples in
question answering (QA), these techniques are
often model specific, require retraining of the
model, and give only marginal improvements
in performance over vanilla models. In this
work, we present a simple model-agnostic ap-
proach to this problem that can be applied di-
rectly to any QA model without any retraining.
Our method employs an explicit answer can-
didate reranking mechanism that scores candi-
date answers on the basis of their content over-
lap with the question before making the final
prediction. Combined with a strong base QA
model, our method outperforms state-of-the-
art defense techniques, calling into question
how well these techniques are actually doing
and strong these adversarial testbeds are.

1 Introduction

As reading comprehension datasets (Richardson
et al., 2013; Weston et al., 2015; Hermann
et al., 2015a; Rajpurkar et al., 2016; Joshi et al.,
2017) and models (Sukhbaatar et al., 2015; Seo
et al., 2016; Devlin et al., 2019) have advanced,
QA research has increasingly focused on out-of-
distribution generalization (Khashabi et al., 2020;
Talmor and Berant, 2019) and robustness. Jia and
Liang (2017) and Wallace et al. (2019) show that
appending unrelated distractors to contexts can eas-
ily confuse a deep QA model, calling into ques-
tion the effectiveness of these models. Although
these attacks do not necessarily reflect a real-world
threat model, they serve as an additional testbed for
generalization: models that perform better against
such adversaries might be expected to generalize
better in other ways, such as on contrastive exam-
ples (Gardner et al., 2020).

In this paper, we propose a simple method for
adversarial QA that explicitly reranks candidate

answers predicted by a QA model according to a
notion of content overlap with the question. Specif-
ically, by identifying contexts where more named
entities are shared with the question, we can ex-
tract answers that are more likely to be correct in
adversarial conditions.

The impact of this is two-fold. First, our pro-
posed method is model agnostic in that it can be
applied post-hoc to any QA model that predicts
probabilities of answer spans, without any retrain-
ing. Second but most important, we demonstrate
that even this simple named entity based question-
answer matching technique can be surprisingly
useful. We show that our method outperforms
state-of-the-art but more complex adversarial de-
fenses with both BiDAF (Seo et al., 2016) and
BERT (Devlin et al., 2019) on two standard adver-
sarial QA datasets (Jia and Liang, 2017; Wallace
et al., 2019). The fact that such a straightforward
technique works well calls into question how reli-
able current datasets are for evaluating actual ro-
bustness of QA models.

2 Related Work

Over the years, various methods have been pro-
posed for robustness in adversarial QA, the most
prominent ones being adversarial training (Wang
and Bansal, 2018; Lee et al., 2019; Yang et al.,
2019b), data augmentation (Welbl et al., 2020) and
posterior regularization (Zhou et al., 2019). Among
these, we compare our method only with tech-
niques that train on clean SQuAD (Wu et al., 2019;
Yeh and Chen, 2019) for fairness. Wu et al. (2019)
use a syntax-driven encoder to model the syntactic
match between a question and an answer. Yeh and
Chen (2019) use a prior approach (Hjelm et al.,
2019) to maximize mutual information among con-
texts, questions, and answers to avoid overfitting
to surface cues. In contrast, our technique is more
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Figure 1: Our model agnostic answer reranking system (MAARS). Given each answer option (right column), we
extract named entities and compare them to named entities in the question. The overlap is used as a reranking
feature to choose the final answer. The ground truth answer containing sentence is highlighted in green, the ground
truth answer is boxed and the distractor sentence is highlighted in red.

closely related to retrieval-based methods for open-
domain QA (Chen et al., 2017; Yang et al., 2019a)
and multi-hop QA (Welbl et al., 2018; De Cao et al.,
2019): we show that shallow matching can improve
the reliability of deep models against adversaries
in addition to these more complex settings.

Methods for (re)ranking of candidate pas-
sages/answers have often been explored in the con-
text of information retrieval (Severyn and Mos-
chitti, 2015), content-based QA (Kratzwald et al.,
2019) and open-domain QA (Wang et al., 2018;
Lee et al., 2018). Similar to our approach, these
methods also exploit some measure of coverage of
the query by the candidate answers or their sup-
porting passages to decide the ranks. However, the
main motive behind ranking in such cases is usu-
ally to narrow down the area of interest within the
text to look for the answer. On the contrary, we use
a reranking mechanism that allows our QA model
to ignore distractors in adversarial QA and can
also provide model- and task-agnostic behavior un-
like the commonly used learning-based (re)ranking
mechanisms.

In yet another related line of research, (Chen
et al., 2016; Kaushik and Lipton, 2018) reveal the
simplistic nature and certain important shortcom-
ings of popular QA datasets. Chen et al. (2016)
conclude that the simple nature of the questions
in the CNN/Daily Mail reading comprehension
dataset (Hermann et al., 2015b) allows a QA model
to perform well by extracting single-sentence rela-
tions. Kaushik and Lipton (2018) perform an ex-

tensive study with multiple well-known QA bench-
marks to show several troubling trends: basic
model ablations, such as making the input question-
or passage-only, can beat the state-of-the-art perfor-
mance, and the answers are often localized in the
last few lines, even in very long passages, thus pos-
sibly allowing models to achieve very strong per-
formance through learning trivial cues. Although
we also question the efficacy of well-known ad-
versarial QA datasets in this work, our core focus
is on exposing certain issues specifically with the
design of the adversarial distractors rather than the
underlying datasets.

3 Approach

Neural QA models are usually trained in a su-
pervised fashion on labeled examples of contexts,
questions, and answers to predict answer spans; we
represent these as (s, e) tuples, where s represents
the sentence and e the candidate span. Prior work
(Lewis and Fan, 2019; Mudrakarta et al., 2018; Yeh
and Chen, 2019; Chen and Durrett, 2019) has noted
that the end-to-end paradigm can overfit superficial
biases in the data causing learning to stop when
simple correlations are sufficient for the model to
answer a question confidently. By explicitly en-
forcing content relevance between the predicted
answer-containing sentence and the question, we
can combat this poor generalization.

Specifically, we explicitly score the candidate
sentences as per the word-level overlap in named
entities common to both the question and a sen-
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Model Original AddSent AddOneSent
Adversarial Mean Adversarial Mean

BERT-S 89.4/82.1 40.9/35.9 68.0/61.7 54.6/48.4 74.1/67.2
BERT-S + QAInfoMax 87.7/82.1 41.8/37.2 67.5/62.3 55.5/49.7 73.5/67.8

BERT-S + MAARS 80.2/71.1 61.2/53.6 71.8/63.4 71.3/63.5 76.3/67.8

Table 1: AddSent and AddOneSent results with BERT-S. MAARS outperforms the vanilla and baseline models
on adversarial data but its performance drops a bit on the original data due to constrained reranking of answers.

tence. We refer to our method as Model Agnostic
Answer Reranking System (MAARS).

Figure 1 illustrates the workflow of MAARS.
MAARS can be applied to any arbitrary QA model
that predicts answer span probabilities. First, we
use the base QA model to compute the n best
answer spans A = {(s1, e1), . . . , (sn, en)} for a
context-question pair (c, q) where n is a hyperpa-
rameter. Any answer span not lying in a single
sentence is broken into subspans that lie in separate
sentences and A is updated accordingly.

Next, we extract the set of candidate sentences
L from the context containing these n answer
spans. For the question and each sentence, we
compute a set of named entity chunks using an
open-source AllenNLP (Gardner et al., 2017) NER
model. We then compute the set of words inside
named entity chunks from each candidate sentence
NER(lk) ∀ lk ∈ L and the question NER(q); note
that NER(·) refers to a set of words and not a set
of named entities. Each candidate sentence lk is
then given a score SC(lk) = NER(lk) ∩ NER(q)
and the answer spans are reranked per the scores
of the sentences containing them. In the case of
ties or if there are multiple spans in the same candi-
date sentence, they are reranked among themselves
according to the original ordering as per the QA
model. Finally, the span with the highest rank after
reranking is chosen as the final answer.

Compared to the base QA model, this approach
only relies on an additional NER model that can be
used without any retraining of the base model. Note
that the architecture doesn’t depend on any specific
tagger, and the other content matching models like
word matching could also be used in the system
here.

4 Experiments

4.1 Evaluation settings

Datasets and baselines. We evaluate MAARS
on two well-known adversarial QA datasets built
on top of SQuAD v1.1: Adversarial SQuAD (Jia
and Liang, 2017) and Universal Adversarial Trig-
gers (Wallace et al., 2019). For brevity, we don’t

Model Original AddSent
Adv. Mean

BiDAF 72.4/62.4 21.4/16.0 49.9/42.0
BiDAF + SLN 72.3/62.4 22.8/17.2 50.5/42.5

BiDAF + MAARS 72.3/62.9 45.4/38.0 60.4/51.9

Table 2: AddSent results with BiDAF. Here, MAARS
beats the vanilla and baseline models across all metrics.

include the adversarial distraction generation pro-
cess for either of the datasets and point the inter-
ested reader to the original papers for exact details.
For Adversarial SQuAD, we test MAARS with
both BiDAF and BERT and compare against state-
of-the-art baselines on adversary types used in the
original papers. To the best of our knowledge, there
is no pre-existing literature that proposes a defense
technique for Universal Triggers. We also find that
it fails to degrade the performance of our vanilla
BERT model, probably because the attacks were
originally generated for BiDAF. Thus, we only eval-
uate on this dataset in the BiDAF setting, using all
four triggers Who, When, Where and Why.

For BiDAF, we compare MAARS against the
Syntactic Leveraging Network (SLN) by Wu
et al. (2019) on AddSent. SLN encodes predicate-
argument structures from the context and question,
a conceptually similar structure matching approach
as MAARS but trained end-to-end with many more
parameters. For BERT, we benchmark MAARS
against QAInfoMax (Yeh and Chen, 2019) on
AddSent and AddOneSent. In addition to the
standard loss for training QA models, QAInfoMax
adds a loss to maximize the mutual information
between the learned representations of words in
context and their neighborhood, and also between
those of the answer spans and the question.

Implementation details. We use the uncased
base (single) pretrained BERT from Hugging-
Face (Wolf et al., 2019) and finetune it using Adam
with weight decay (Loshchilov and Hutter, 2019)
optimizer and an initial learning rate of 3e−5 on
SQuAD (Rajpurkar et al., 2016) v1.1 for 2 epochs
for both vanilla BERT and BERT + QAInfoMax.
We set the training batch size to 5 and the propor-

52



Adv. type BiDAF BiDAF + MAARS

Who 74.4/67.3 76.3/68.9
When 80.1/75.5 81.8/77.1
Where 63.5/52.8 68.8/56.7
Why 51.9/34.1 51.6/34.1

Table 3: Results on Universal Triggers with
BiDAF (BERT-specific triggers unavailable publicly).
MAARS is better than the vanilla model for most ad-
versaries but with smaller performance gains than Ad-
versarial SQuAD.

.

tion of linear learning rate warmup for the opti-
mizer to 10%.

Our BiDAF (Seo et al., 2016) model has a hid-
den state of size 100 and takes 100 dimensional
GloVe (Pennington et al., 2014) embeddings as in-
put. For character-level embedding, it uses 100 one-
dimensional convolutional filters, each with a width
of 5. A uniform dropout (Srivastava et al., 2014)
of 0.2 is applied at the CNN layer for character
embedding, all LSTM (Hochreiter and Schmidhu-
ber, 1997) layers and at the layer before the logits.
We train it with AdaDelta (Zeiler, 2012) and an
initial learning rate of 0.5 for 50 epochs. We set
the training batch size to 128. For our Syntactic
Leveraging Network, we follow the exact hyperpa-
rameter settings of (Wu et al., 2019).

Other hyperparameters common to both BERT
and BiDAF include an input sequence length of
400, maximum query length of 64, and 40 predicted
answer spans per context-question pair. For NER
tagging, we use an ELMo-based implementation
from AllenNLP (Gardner et al., 2017) that has been
finetuned on CoNLL-2003 (Tjong Kim Sang and
De Meulder, 2003). Finally, we set the value of n
(the number of candidates considered for reranking)
in MAARS to 10 across all our experiments.

4.2 Results

In all our results tables, we report the macro-
averaged F1 and exact match (EM) scores separated
by a slash in each cell. In Tables 1 and 2, Original
and Adversarial (Adv.) refer to a model’s per-
formance on only clean and only adversarial data
respectively. Mean denotes the weighted mean of
the Original and Adversarial scores, weighted by
the respective number of samples in the dataset.
Both AddSent and AddOneSent have 1000 clean
and 787 adversarial instances.

Adversarial SQuAD. Table 1 shows the results
with BERT-single (-S) on AddSent and AddOne-
Sent. MAARS outperforms both the vanilla model

and QAInfoMax on both Adversarial and Mean
metrics. The performance gains are also substan-
tial, especially on Adversarial where MAARS im-
proves F1 over QAInfoMax by about 20 points on
AddSent and 16 points on AddOneSent. This clearly
shows that our method is much more capable of
avoiding distractors in data and it is a much stronger
defense technique in this setting. For both QAInfo-
Max and MAARS there is a drop in performance
on clean data, but the drop for MAARS is larger.
This drop naturally arises from the simplicity of
the heuristic: matching words in named entities
with the question sometimes assigns a higher score
to a candidate sentence which has a higher over-
lap in terms of named entities with the question
but doesn’t contain the right answer. One such ex-
ample where MAARS fails to pick the correct top
candidate after reranking is shown in fig. 2a.

Table 2 details the results with BiDAF on
AddSent.1 Here, we also see significant perfor-
mance gains over the vanilla model and the SLN
baseline. MAARS results in an increase in ad-
versarial F1 by 24 points over vanilla BiDAF and
about 22 points over BiDAF + SLN. Interestingly,
the performance on clean data doesn’t drop as in
the case of BERT. This difference may be a result
of BiDAF using more surface word matching itself,
leading to a closer alignment between its predic-
tions and the reranker’s choices. However, note
that our simple heuristic still performs well even
with a complex model like BERT.

Discussion. Overall, our results on this dataset
look promising for both BERT and BiDAF despite
our method’s inherent simplicity. This raises two
questions. First, how effective is the Adversarial
SQuAD dataset as a testbed for adversarial attacks?
When a simple method can achieve large gains, we
cannot be sure that more complex methods are truly
working as advertised rather than learning such
heuristics. Second, how effective are these current
defenses? They underperform a simple heuristic in
this setting; however, because the full breadth of
possible adversarial settings has not been explored,
it’s hard to get a holistic sense of which methods
are effective. Additional settings are needed to
fully contrast these techniques.
Universal Adversarial Triggers. We create a
dataset that has purely adversarial instances using
the open-source code from Wallace et al. (2019)

1BiDAF + MAARS gives a similar F1/EM trend on Ad-
dOneSent (Adversarial: 46.1/38.5, Mean: 60.8/52.1).

53



(a) Wrong top candidate picked (b) Lack of attention to question type (c) Multiple similar spans co-occur

Figure 2: Common failure cases for MAARS. The distractor sentence is highlighted in red, the predicted answer
is underlined and the ground truth answer is boxed.

and present the results in Table 3. In particular, we
append the following distractors for different ad-
versary types. The target answers in the distractors
have been bolded.

• Who: how ] ] there donald trump ; who who
did

• When: ; its time about january 2014 when may
did british

• Where: ; : ’ where new york may area where
they

• Why: why how ; known because : to kill ameri-
can people .

Due to unavailability of prior work on trigger-
specific defense and BERT-specific triggers, we re-
port only vanilla BiDAF and BiDAF with MAARS.
F1 drops by a small amount (0.3 points) from
BiDAF to BiDAF with MAARS while the EM
score doesn’t change at all for Why. The scores
improve by around 1-2 points for the other adver-
sary types. However, the gains are much lower
in comparison to Adversarial SQuAD. These re-
sults indicate the promise of simple defenses, but
more exhaustive evaluation of defenses on different
types of attacks is needed to draw a more complete
picture of the methods’ generalization abilities.

4.3 Failure cases
Besides the instances where the primary error
source is picking a wrong top candidate (refer
to Fig. 2a), we notice two other common failure
case types with MAARS. One directly stems from
MAARS’ inability to attend to the question type
during reranking. In Fig. 2b, the question word is
How but MAARS picks Scottish devolution refer-
endum which is not the appropriate type of answer
here. The other type of failure occurs when mul-
tiple similar span types are present in the same
candidate, thus creating ambiguity for the base QA
model. In the example shown in Fig. 2c, the QA
model fails to distinguish between the two spans

and retrieve specific information about the US. Bet-
ter base QA models may resolve these issues, or a
more powerful reranker could also be used. How-
ever, rerankers learned end-to-end would suffer
from the same issues as BERT and require addi-
tional engineering to avoid overfitting the training
data.

5 Conclusion

In this work, we introduce a simple and model ag-
nostic post-hoc technique for adversarial question
answering (QA) that predicts the final answer af-
ter re-ranking candidate answers from a generic
QA model as per their overlap in relevant content
with the question. Our results show the potential of
our method through large performance gains over
vanilla models and state-of-the-art methods. We
also analyze common failure points in our method.
Finally, we reiterate that our main contribution is
not the heuristic defense itself but rather its abil-
ity to paint a more complete picture of the current
state of affairs in adversarial QA. We seek to il-
lustrate that our current adversaries are not strong
and generic enough to attack a wide variety of QA
methods, and we need a broader evaluation of our
defenses to meaningfully gauge our progress in
adversarial QA research.
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Abstract

Recently, various information retrieval mod-
els have been proposed based on pre-trained
BERT models, achieving outstanding perfor-
mance. The majority of such models have
been tested on data collections with partial rel-
evance labels, where various potentially rel-
evant documents have not been exposed to
the annotators. Therefore, evaluating BERT-
based rankers may lead to biased and unfair
evaluation results, simply because a relevant
document has not been exposed to the anno-
tators while creating the collection. In our
work, we aim to better understand a BERT-
based ranker’s strengths compared to a BERT-
based re-ranker and the initial ranker. To this
aim, we investigate BERT-based rankers per-
formance on the Cranfield collection, which
comes with full relevance judgment on all doc-
uments in the collection. Our results demon-
strate the BERT-based full ranker’s effective-
ness, as opposed to the BERT-based re-ranker
and BM25. Also, analysis shows that there
are documents that the BERT-based full-ranker
finds that were not found by the initial ranker.

1 Introduction

Transformers-based pre-trained language represen-
tations, such as ELMo (Peters et al., 2018), BERT
(Devlin et al., 2019), and T5 (Raffel et al., 2020)
have been counted as a promising approaches to
various information retrieval tasks, such as docu-
ment ranking (Nogueira and Cho, 2019) and ques-
tion answering (Yang et al., 2019a).

Prior work argued that utilizing BERT for rank-
ing can achieve state-of-the-art results on popu-
lar ad-hoc retrieval collections such as Robust04
(MacAvaney et al., 2019; Akkalyoncu Yilmaz et al.,
2019; Yang et al., 2019b; Dai and Callan, 2019),
ClueWeb09-B (Dai and Callan, 2019), and MS
MARCO (Padigela et al., 2019; Nogueira and Cho,

2019; Nogueira et al., 2019). However, two major
limitations make these collections unfair to BERT.

One of the limitations of these collections is that
they have not been created to reflect BERT’s supe-
riority to its best (Yilmaz et al., 2020). As BERT-
based models did not contribute to their assessment
pool, testing a BERT-based ranking system with
these collections can lead to unfair and biased re-
sults (Yilmaz et al., 2020). There may be relevant
documents that traditional methods could not find,
hence assumed irrelevant in the pooling process.
Therefore, new collections are needed or collec-
tions with full relevant judgments.

The second limitation is that although reusable
test collections play an important role in IR, con-
ducting a lot of research on a single collection can
direct the results to an outstanding value by chance
(Carterette, 2015).

To avoid these two limitations, we use a previ-
ously unused collection with characteristics such
as containing a relatively large number of queries
in the form of short, full questions. Also, to ad-
dress the first mentioned limitation, the collection
contains a full set of judgments for each query.

The Cranfield1 collection has all the mentioned
features. Unlike other collections, Cranfield’s main
feature is a complete judgment, so documents
uniquely found by a BERT-based ranker can be
fairly assessed. This collection is built using ab-
stracts of aerospace-related documents such as pa-
pers, research reports and articles from the col-
lection of the College of Aeronautics, Cranfield,
England. (Richmond, 1963). The documents’ au-
thors were asked to provide a set of related terms
for their documents which were turned into natural
language queries (Robertson, 2008). The collection
contains 225 queries and 1400 documents. The col-
lection has not been used for document ranking

1http://ir.dcs.gla.ac.uk/resources/
test_collections/cran/
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with BERT before and can also address the second
limitation. Furthermore, queries and most of the
documents are short, which seems to be a good fit
for BERT due to the BERT’s token limitation.

Using the Cranfield collection, we address the
following research questions:

• RQ1: Can we replicate a BERT-based re-
ranker on a previously unused collection?

• RQ2: Does BERT only learn how to re-rank,
or can it learn to find relevant documents that
are not found by a bag-of-words baseline?

Our work to answer these research questions
includes two steps: first, we provide experimen-
tal results on the Cranfield collection for docu-
ment re-ranking with BERT, following the BERT-
based re-ranker of Nogueira and Cho (2019) us-
ing BM25 (Robertson et al., 1995) as the ini-
tial ranker. Second, we study BERT’s behav-
ior as a full-ranker. In the paper, We refer to
a ranker without any initial filtering method as
a full-ranker. The code to reproduce our results
is available at https://gitlab.science.ru.nl/
nghasemi/bert-meets-cranfield.

The contributions of this work are as follows:

• We show that document re-ranking with
BERT significantly improves the BM25 base-
line on an unseen collection, although differ-
ent hyperparameter settings may be needed.

• Our Analysis of the BERT-based full-ranker
reveals better results than the re-ranker. More-
over, the BERT-based full-ranker retrieved
documents are quite different from BM25,
demonstrating BERT’s ability to find relevant
documents not found by a bag-of-words ap-
proach.

The rest of the paper is structured as follows:
Section 2 reviews the related works on BERT and
its usage in ranking problems. In Section 3, we
describe the model used for document ranking with
BERT in more detail. Experimental results and
analysis are presented in Section 4. The final Sec-
tion 5 concludes the paper and discusses potential
research questions for future work.

2 Related Work

2.1 BERT
BERT’s architecture is mostly designed based on
several transformer blocks introduced by Vaswani

et al. (2017); however, these blocks only consist
of encoders. The authors introduce two differently
sized BERT models. BERT-base and BERT-large
consist of 12 and 24 transformer blocks, respec-
tively. BERT is trained on two different unsuper-
vised tasks. Train loss is the sum of the mean of
both tasks’ likelihood. The first task is the Masked
Language Model, which trains to predict all the
masked words. The second task is Next Sentence
Prediction: This task aims to find if the second half
of the input is the following sentence of the first
half, or a random sentence.

BERT is not limited to the discussed pre-trained
tasks. The self-attention mechanism in the trans-
formers block makes BERT capable of model-
ing many tasks as long as the task inputs are
appropriately processed with BERT’s desired se-
tups, namely using proper special tokens ([CLS],
[SEP ]) and BERT’s specialized tokenizer. Fine-
tuning the BERT pre-trained model helps to gain
better performance on a specific task. Adding
one additional output layer to a BERT pre-trained
model is suggested in the fine-tuning phase to min-
imize the number of learning parameters. We refer
readers to Devlin et al. (2019) for more details.

2.2 Collections and BERT-based Rankers

Many valuable collections in the information re-
trieval community, such as MS MARCO, Robust,
and Clueweb, are standard collections for rank-
ing tasks. Robust and Clueweb are popular TREC
collections. TREC extensively uses the pooling
method to create each collection. They assume
that each participant system’s top-k ranked items
are likely to cover most of the collection’s rele-
vant documents; therefore, judging this pool would
make a decent collection. The k number for Ro-
bust04 is 100 (Voorhees, 2004) and for Clueweb12
is 20 or less (Collins-Thompson et al., 2014). The
MS MARCO dataset is formed based on Bing’s
query samples and related human-generated an-
swers. The corpus was initially formed by retriev-
ing the top-10 passages from the Bing search en-
gine. On average, each query has one relevant pas-
sage. However, there are queries with no relevant
passages as well (Nguyen et al., 2016).

A recent work proposed by Yilmaz et al. (2020)
analyzes the reusability of the collections for infor-
mation retrieval ranking tasks when a deep neural
approach is being used, especially when the col-
lection is created solely using traditional methods.
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Figure 1: BERT re-ranker results for different hyperparameters. LR shows the value of the Learning Rate. Different
batch sizes and epochs are shown as {Batch Size, Epoch}. Max Length shows the BERT token limitation.

The analysis argues that collections created with-
out having neural rankers in their assessment pool
should be used cautiously. They may lead to biased
results for neural models compared to traditional
methods. This work inspired us to use Cranfield,
which contains a full set of relevant judgments.

Nogueira and Cho (2019) propose a common
re-ranking approach to enhance the top results re-
trieved by BM25. In their method, a pre-trained
BERT model is tuned to find the representation
of a concatenated sequence, including query and
document tokens.

Experiments by Padigela et al. (2019) show that
a BERT-based re-ranker generally achieves higher
performance as BM25 is more biased towards
higher query term frequency than BERT. Also, the
BERT-based re-ranker retrieves documents with
more novel words.

Although BERT has shown to be very successful
in all the described re-ranking models and many
approaches have been proposed to improve the
re-ranker, investigating a BERT-based full-ranker
performance is still an open question. Of course,
BERT-based models use re-ranking for efficiency
reasons; however, if the full-ranker outperforms the
re-ranker, it can be considered for offline systems
and, more importantly, as an essential baseline to
create high-quality search collections.

3 Method

Although BERT pre-trained models were trained
on large corpora, fine-tuning is necessary for us-

ing BERT effectively. Inspired by the work pro-
posed by Nogueira and Cho (2019), we fine-tuned
the BERT model and used it to find the repre-
sentation of the query and document pairs. Due
to limited resources, we use the BERT-base, un-
cased, pre-trained model. This model produces
768-dimensional representation vectors.

Our input vector to BERT is similar to the next
sentence prediction task’s input vector used in
pre-training BERT. Following the BERT’s stan-
dard input format (Devlin et al., 2019), we con-
verted each query Q and document D to a pair
[CLS] + Q + [SEP ] + D + [SEP ]. The query
always remains unchanged, but as BERT has a lim-
itation on the number of tokens, we truncate docu-
ments that were longer than the model’s maximum
length.

We use a pre-trained BERT model with an added
single linear classification layer on top of the
[CLS] output vector to suit the ad-hoc retrieval
task. In this case, Each input’s [CLS] output vec-
tor would be fed to the classification layer, and both
the pre-trained BERT model and the additional un-
trained classification layer is tuned on training sam-
ples of queries and documents from the Cranfield
collection.

As mentioned in Section 1, the Cranfield collec-
tion contains 225 queries and 1400 documents. All
queries in the Cranfield collection have full, graded
relevance judgments. There are five different rel-
evancy grades. Grades one to four are known to
be relevant, and five shows irrelevant documents.
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Figure 2: BERT full-ranker results for different hyperparameters. LR shows the value of the Learning Rate. Dif-
ferent batch sizes and epochs are shown as {Batch Size, Epoch}. Max Length shows the BERT token limitation.

To use judgments in classifier tuning, we turn them
to binary labels despite its relevance grade. We
assumed all the documents with grades one to four
to be relevant.

We follow the many methods mentioned in Sec-
tion 2 that fine-tune BERT on a re-ranking task
using the top-k BM25 results. Tuning and testing
process is performed using 5-fold cross-validation
and the top-100 selection of BM25 results for each
query. Folds are split by queries and are available
in the code repository.

We test a BERT-based re-ranker and a BERT-
based full-ranker, using the same fine-tuning
method and hyperparameters. After tuning the
BERT model, we use the top-100 BM25 results
to do re-ranking, but we use all documents for full-
ranking. We evaluate the results using MAP@100,
and NDCG@20 (Järvelin and Kekäläinen, 2002)
for both models.

4 Results

4.1 Re-ranker Analysis
For our experiments, we use BM25 and a BERT-
based re-ranker to address RQ1, and we use a
BERT-based full-ranker to investigate RQ2. We
train both models following the hyperparameter
value ranges recommended by Devlin et al. (2019).

For the initial ranker, BM25 parameters are as
follows: k1 = 1.5 and b = 0.75. To fine-tune
BERT, we use the ADAM optimizer with three
different learning rate values of 2e − 5, 3e − 5,
and 5e− 5 without the recommended learning rate

warmup. Also, we use two batch size values of
16 and 32 and three epoch values of 2, 3, and 4.
As the Cranfield collection does not include large
documents (the average document length is 118
tokens), we limit the input token length with two
different values of 128 and 256. We did not test
512 tokens because we had limited resources avail-
able. Results for the BERT-based re-ranker and
full-ranker on NDCG@20 are shown in Figure 1
and Figure 2 respectively.

In all demonstrated and tabulated results, †
marks a statistically significant difference between
the proposed model and the BM25 baseline at
p < 0.05 based on a two-tailed paired t-test, and
‡ shows highly statistical significance at p < 0.01
based on a two-tailed paired t-test.

Experiments show that a lower learning rate is
more effective in fine-tuning for the Cranfield col-
lection. The same applies to the number of epochs.
We perform our analysis on the model with the
learning rate of 2e − 5, batch size of 32, epoch
numbers of 2, and the maximum length of input
tokens limited to 256. We only report NDCG@20
due to space limitations; however, similar trends
were observed with MAP@100.

4.2 Full-ranker Analysis

Table 1 shows the results of two BERT-based ranker
models, namely re-ranker and full-ranker. Compar-
ing the full-ranker with the same re-ranker results
shows more improvement over the BM25 baseline.
In this section, we provide more detail comparing
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Figure 3: Unique Relevant (UR) percent of documents
found by BM25 and the Full-ranker at different depths

the BERT-based full-ranker with the BM25 initial
ranker to address RQ2.

We observe performance improvement using
full-ranking. We believe this behavior is rooted
in two possible reasons: (1) The number of unique,
relevant documents, which BERT-based ranker
finds, that BM25 does not consider; (2) the BERT-
based full-ranker can find more highly-ranked new
documents.

Method MAP@100 NDCG@20
BM25 0.3274 0.4714
Re-ranker 0.4198‡ 0.5525‡
Full-ranker 0.4404‡ 0.5670‡

Table 1: Results for Learning Rate=2e − 5, Epoch=2,
Batch Size=32, Max Length=256

To investigate these possible reasons, we went
through the unique documents each model re-
trieves. Table 2 presents the results for the per-
centage of retrieved relevant documents that BM25
found that were not found by the full-ranker,
and vice versa, for different depths. We are in-
terested in comparing two different types of re-
trieved relevant documents: URBM25,Full−ranker
and URFull−ranker,BM25 which are defined as fol-
lows:

• URBM25,Full−ranker (Unique Relevant
found by BM25): the relevant documents
retrieved by BM25 but not retrieved by the
Full-ranker

• URFull−ranker,BM25 (Unique Relevant
found by Full-ranker): the relevant documents
retrieved by the Full-ranker but not retrieved
by the BM25

Figure 3 demonstrates these results in more
detail, showing the full-ranker’s power to find
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Figure 4: Unique Relevant (UR) percent of documents
found by the Re-ranker and the Full-ranker at different
depths

more relevant documents than BM25, espe-
cially in the top results. Besides, We
investigated another types of retrieved rele-
vant documents: URRe−ranker,Full−ranker and
URFull−ranker,Re−ranker which are defined as fol-
lows:

• URRe−ranker,Full−ranker (Unique Relevant
found by Re-ranker): the relevant documents
retrieved by the Re-ranker but not retrieved by
the Full-ranker

• URFull−ranker,Re−ranker (Unique Relevant
found by Full-ranker): the relevant documents
retrieved by the Full-ranker but not retrieved
by the Re-ranker

Table 3, and Figure 4 show the full-ranker’s
power in comparison with the re-ranker. It is worth
mentioning that the re-ranker and the BM25 re-
trieved documents are the same in depth@100,
but they have different rankings as the re-ranker
changes the documents’ ranking scores. Although
there is a lower difference rate as the re-ranker itself
outperforms BM25, the full-ranker still finds more
unique, relevant documents than the re-ranker.

As shown in the results, (1) is a correct assump-
tion. The BERT-based full-ranker can find more
new relevant documents compared to BM25 and
re-ranker, which confirms the RQ2 hypothesis. It
is also worth mentioning that there are 67.6% new
documents in the BERT-based full-ranker model
in total (both relevant and irrelevant) at top-100
results, which makes it a substantially different
ranker than BM25.

Table 4 investigates the relevance degree (RD)
of the unique, relevant documents found by each
model at their top-100 results. The collection has
four different grades indicating the relevancy of
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Method depth@10 depth@20 depth@100
URBM25,Full−ranker 0.08 0.04 0.009
URFull−ranker,BM25 0.19 0.11 0.02

Table 2: Unique Relevant (UR) percent of documents found by BM25 and the full-ranker at different depths

Method depth@10 depth@20 depth@100
URRe−ranker,Full−ranker 0.1 0.05 0.009
URFull−ranker,Re−ranker 0.13 0.08 0.02

Table 3: Unique Relevant (UR) percent of documents found by the re-ranker and the full-ranker at different depths

Method RD1 RD2 RD3 RD4
BM25/Re-ranker 0.26 0.45 0.22 0.07

Full-ranker 0.22 0.4 0.23 0.15

Table 4: Percentage of relevant documents per Rel-
evance Degree (RD). RD4 indicates the highest rele-
vance degree.

the document to a query. In this collection, RD4
indicates the highest relevance degree. The obser-
vations confirm (2). Results show that the BERT-
based full-ranker is more likely to retrieve highly
relevant documents.

5 Conclusion

This paper investigates BERT for document rank-
ing. In our experiments, we explore the Cranfield
collection, which has not been used on BERT-based
ranking approaches and gives new insights because
of its characteristics, such as full relevance judg-
ments and a large number of queries. In addition
to the document re-ranking with BERT, we consid-
ered using a full-ranker under the same experimen-
tal settings. The results show that the re-ranker and
the full-ranker improve a BM25 baseline signifi-
cantly. Furthermore, the BERT-based full-ranker
outperforms the BERT-based re-ranker. Based on
our studies, the BERT-based full-ranker is a differ-
ent model than the BM25 ranker as it retrieves a
notable number of new documents that were not
found by BM25. This is especially true for highly
relevant documents.
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Abstract

Recommender systems play an important role
in e-commerce websites as they improve the
customer journey by helping the users find
what they want at the right moment. In
this paper, we focus on identifying a com-
plementary relationship between the products
of an e-commerce company. We propose a
content-based recommender system for detect-
ing complementary products, using Siamese
Neural Networks (SNN). To this end, we
implement and compare two different mod-
els: Siamese Convolutional Neural Network
(CNN) and Siamese Long Short-Term Memory
(LSTM). Moreover, we propose an extension
of the SNN approach to handling millions of
products in a matter of seconds, and we reduce
the training time complexity by half. In the ex-
periments, we show that Siamese LSTM can
predict complementary products with an accu-
racy of ∼ 85% using only the product titles.

1 Introduction

As much as the diverse and rich offers on e-
commerce websites help the users find what they
need at one market place, the online catalogs are
sometimes too overwhelming. Recommender sys-
tems play a significant role in making this process
convenient for users. A specific case for recom-
mender systems is complementary products (also
known as add-ons), which are the products that are
sold separately but are used together, each creat-
ing a demand for the other. Figure 1 shows some
examples of complementary products.

Detecting complementary products in many
of the current platforms is mainly based on co-
purchase history and business rules. In this ap-
proach, if two items have been bought together
more than a certain number of times, they are as-
sumed to complement one another with a high prob-
ability. However, complementarity among products

Figure 1: Complementary product examples.

cannot be accurately detected using only the pur-
chase history because (i) identical items having
different sizes or colors are likely to be bought
together and are pure substitutes instead of com-
plementary products (e.g., a user buys three flower
vases in different sizes), and (ii) if there are no pur-
chases made yet, the ground truth is missing (it is
known as the cold-start problem). One solution to
overcome these problems is to introduce human
labeling for accurate validation. The problem of
this approach lies in the time and scalability limita-
tions. Moreover, these approaches focus on popu-
lar items; thus, unpopular (less frequently bought)
products will stay undiscovered.

To address the aforementioned problems, we pro-
pose a supervised deep learning approach based on
Siamese Neural Networks (SNN) (Chicco, 2021),
and in particular Siamese Convolutional Neural
Network (CNN) and Siamese Long Short-Term
Memory (LSTM). To train the model, we give
the input dataset in the format of MainProduct,
AddOnProduct, and Label(Y/N) that identifies if
two products are complementary. Using this data,
the SNN creates embeddings and generates vector
outputs that show the actual distance between the
two given products in terms of their complemen-
tarity. For each product, we consider the title, the
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Figure 2: The proposed model pipeline using SNN.

description, and the brand as its attributes. Figure
2 shows the pipeline of the proposed model.

The objectives of this work are three-fold:

1. Studying the performance of Siamese CNN
and Siamese LSTM in predicting complemen-
tary products using textual attributes.

2. Studying the impact of different product at-
tributes (such as the product title, the descrip-
tion, and the brand) on predicting complemen-
tary products.

3. Transforming the problem into a K-Nearest-
Neighbour (KNN) solution to predict com-
plementarity among millions of products in a
matter of seconds.

Our work builds upon the Siamese CNN intro-
duced by Zhao et al. (2017) by comparing Siamese
CNN and Siamese LSTM models and showing how
Siamese architecture can be transformed to handle
massive data. Through the experiments we show
that Siamese LSTM outperforms Siamese CNN
in predicting complementary products using tex-
tual product attributes with an accuracy of ∼ 85%.
We also observe that among different attributes of
products, the product title produces results with a
higher accuracy. Moreover, we show that we can
extend the proposed Siamese LSTM approach to a
KNN problem that reduces the time complexity by
half. The source code of our model is available on
GitHub1.

2 Preliminary

In this section, we briefly present the SNN archi-
tecture and explain how it works. SNN (Chicco,

1https://github.com/marinaangelovska
/complementary products suggestions

Figure 3: Three types of SNNs (a) late merge, (b) inter-
mediate merge, and (c) early merge (Fiaz et al., 2019).

2021) is a twin neural network (NN) composed of
two separate NNs sharing the same architecture
and the same weights, with no limitation on the
NN architecture (Figure 2). In other words, SNN
is an NN architecture capable of learning similarity
between data samples by receiving pairs of sam-
ples and analyzing the differences between their
features to map them to a multidimensional feature
space (Martin et al., 2017). By receiving two dif-
ferent inputs, the main goal of such networks is
to develop similarity knowledge between the two
produced outputs.

Fiaz et al. (2019) categorize SNNs in three
groups based on the time of merging the layers:
late merge (LM), intermediate merge (IM), and
early merge (EM), which are shown in Figure 3. In
LM, the output vectors of each network are merged
at the last dense layer. IM suggests to merge the
outputs of the two networks in the middle of the
network and process them as one output in the last
layers. In EM, the two inputs are merged right be-
fore the actual network, resulting in a single-like
NN architecture.

One of the benefits of using SNN is its scalability.
It processes each data sample once and then com-
putes each pair’s compatibility score, which results
in a significantly lower complexity than iterating
through the whole model for each pair of products.
In a real-life scenario, we are usually given target
products set Q = {q1, q2, · · · , qn} and candidate
set for the add-ons C = {c1, c2, · · · , cm} where n
and m have values larger than 106, indicating a few
millions of products. Thus, to train a NN, we need
to create n × m pairs of products to make input
samples to the NN. However, usually, we are in-
terested in the top k candidate add-ons for a given
target product, and SNNs enable us to do so.

3 Method

We now discuss the network architectures used
in our Siamese CNN and Siamese LSTM models.
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Figure 4: The difference between IM and LM in the
implementation of the proposed model.

The input to these networks is the pair of any two
product attributes (e.g., title and description).

CNN Architecture. The CNN network has 11
layers. The first layer is an embedding layer to
create embeddings for each of the words in the
product’s attributes. The output dimension is set to
300, so that each word will be represented in 300
different features in the multi-dimensional space.
Then, the ZeroPadding1D, the Conv1D, and the
MaxPooling1D layers follow one after each other.
We repeat these three layers by only reducing
their filter length and pooling size. Finally, after
flattening we use a dense layer with 100 neurons
and ReLU activation. We use the dot layer to
combine the two products from the Siamese input
and compute their similarity. By normalizing the
input given to the dot layer we compute the cosine
proximity between the products.

LSTM Architecture. The LSTM network has
seven layers in total. Like the CNN architecture,
the embedding layer is the first layer with the
output dimension of 300. The LSTM layer with
150 neurons and ReLU activation is the core
part of this pipeline that learns the sequential
characteristics of the words in the product titles
or descriptions. After the flatten layer, for the
same reasons as in the CNN architecture we use
dot layer to merge the two inputs and obtain their
similarity score. Then, we have a dense layer,
which is a fully-connected layer with 100 neurons.

In both CNN and LSTM models, we use the Sig-
moid activation in the output layer for the binary
classification problem. Figure 4 illustrates the dif-

Figure 5: The place where we save the weights in the
SNN architecture.

ference between IM and LM in our implementation.
In IM, we apply the dot layer right after the flatten
layer, meaning that one dense layer is available
after the merging and before the final output layer.
LM represents the architecture when the dot layer
is implemented right before the final output layer.
For comparing both Siamese architectures (IM and
LM), we apply exactly the same layers just in a
different order.

In both CNN or LSTM implementations, the
Siamese approach can efficiently find the top K
most complementary products for a given product
over massive data (Martin et al., 2017). For a target
product q and a candidate add-on product c from
the sets of Q and C, we first generate their vector
representations. However, we are only interested
in the weights that the network produces before
applying the dot product. The Siamese setup treats
each product separately until the merge point in the
model, thus for each of the products in sets Q and
C, we can get the weights as shown on Figure 5.
This means that the embeddings part is done only
once for each product separately.

Once we have the vector representationsXQ and
XC for each product from Q and C, respectively,
we can compute the similarity. From this point on,
we have a KNN problem. Then, we save those
weights in the forms of matrices and apply the
normalized dot product between the two matrices
having the weights for each target and candidate
product (we calculate the cosine similarity), repre-
senting their complementarity.

4 Experiments

In this section, we first explain the dataset and the
preprocessing step to make it ready to be given to
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the models, and then present the experiments.

4.1 Dataset

To train the models, we use manually labeled data
points from an e-commerce company2. We con-
sider the product title, description, and brand as the
attributes for each product. We get pairs of posi-
tive matches for each product, which has at least
one add-on, meaning that if a product has mul-
tiple add-ons, it will appear multiple times as the
MainProduct in the dataset. Also, a product might
be an add-on for multiple different main products.

Initially, there are 18346 pairs of complemen-
tary products. We assume that two products are
non-complementary if they were never bought to-
gether and are not included in our initial dataset.
Moreover, we want each product to have the same
number of positive and negative samples, so that
the model is able to generalize well. We achieve
this by iterating through the add-ons list, and for
each add-on, we make sure that we generate as
many negative samples as there are positive.

For example, given Product5, which is an add-
on to 10 different products, we find another 10
products for which product Product5 will not be
an add-on. After making sure that we have 50− 50
ratio in terms of the labels for each add-on in our
dataset, we repeat the same process for the main
products. In the end, we end up having 60442 total
pairs of products, out of which 35978 are unique
products.

Before giving the data to the models we: lower-
case all letters, remove punctuation signs, digits,
measurements (e.g., cm, m), and stop words. We
observe that excluding the digits from the products
in the dataset improves the performance by 10%.
We consider 80% of the dataset for training the
models and the rest for testing them. We also use
10% of the training data for validation during train-
ing. To make sure that the model’s performance
is calculated on new unseen data, we use Group
Shuffle Split so that each product that will appear as
an add-on in the train set will not appear as an add-
on in the test set. We train the embeddings using
Word2Vec (Mikolov et al., 2013) before the embed-
ding layer in the models. Word2vec was trained
using the whole corpus of titles in the category of
interest. Once we have the embeddings for each of

2Due to the company’s policy we do not reveal the com-
pany’s name. It is an e-commerce company that offers various
products in multiple categories.

Table 1: Comparative results showing the performance
of Siamese CNN and Siamese LSTM based on the
place of merging the two product outputs.

Siamese model AUC Accuracy

CNN - IM 72% 65%
CNN - LM 82% 78%
LSTM - IM 93% 85%
LSTM - LM 80% 75%

the words in the corpus, we add those weights to
the weights parameter in the embedding layer.

4.2 Results

Before conducting the experiments, we measure the
impact of the merging location in the two Siamese
models. Table 1 shows that Siamese CNN performs
better with LM. However, Siamese LSTM performs
better with IM and outperforms all other models’
architectures, thus that is the architecture we will
use in the rest of the experiments.

We first compare the performance of Siamese
LSTM with three frequently used methods: Ran-
dom Forest (RF), Single LSTM network, and
Vanilla NN. The RF baseline, which is used in Mar-
tin et al. (2017), combines the inputs from each
sample in the dataset and tokenizes the product ti-
tles using Bag of Words representation. The single
LSTM is the second baseline we consider.

The main difference between the single and the
Siamese LSTM is in the way the input is processed.
In the single LSTM model’s input, we concate-
nate the two products’ attributes in the form of
MainProductTitle AddonProductTitle. On
the other hand, in the Siamese approach the two in-
put products are treated separately until the moment
of merging the two vector outputs. This enables us
to later transform the Siamese approach to a KNN
model. Lastly, we also implement and test a vanilla
NN with six layers: input, emedding, flatten, dense,
dropout and output layer. The dense layer has 100
neurons and ReLU activation.

Figure 6 shows the accuracy and AUC score for
each of these models. Although Siamese LSTM
and the Single LSTM perform with the same ac-
curacy, Siamese LSTM can be transformed to a
KNN model and used with massive data. To pair
13000 unique products from the test dataset with
each other, we would get roughly 170M pairs of
products for which we want to know their comple-
mentary relationship. However, in this work, due
to the hardware limitations, we only take 1M pairs
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Figure 6: Comparative results showing the accuracy
and AUC for Siamese LSTM, Single LSTM, Vanilla
NN and Random Forest.

Table 2: Comparing the time needed for predicting
complementarity among 1M pairs of products and the
time complexity for creating the embeddings in the
NN.

Model Prediction
time

Time
complexity

Single LSTM 11min O(N2)
Siamese LSTM 8min O(N2)

Transformed Siamese LSTM 10sec O(N)

of products in the following experiments. Both, the
single and Siamese LSTM network are traversed
1M times, once for creating the embeddings for
each pair of products.

The Siamese LSTM has a slightly better time
performance due to the ability to learn faster. In
the transformed Siamese LSTM, we calculate the
embeddings for each product only once by using
the Siamese LSTM model and we save those em-
beddings before the dot layer. This means that the
Siamese LSTM will be traversed only 13000 times,
once for each product. Once we have these em-
beddings for each of the 13000 products, the com-
plementarity score for the 1M pairs is calculated
very fast, as we do simple matrix multiplication
operation using cosine similarity.

Here we use cosine similarity as it is basically
a normalized dot product. If we were using single
LSTM approach, we would not have been able to
achieve this because in that setup we cannot get
embeddings for a single product, but only for a pair
of products. Table 2 shows the time analysis for the
three approaches, where N represents the number
of unique products.

Using the transformed Siamese LSTM (the KNN
approach), we compute the complementarity score
between all possible products from the test set
within seconds. Table 3 shows the complementar-
ity score (cosine similarity) of the top five add-ons

Table 3: Complementarity score for five add-on sugges-
tions using the the initial Siamese LSTM model and the
transformed Siamese LSTM.

Table 4: Comparing accuracy, AUC score and train-
ing time for Siamese LSTM using different product at-
tributes when the training was done on 10 epochs.

Product
attribute(s) Accuracy AUC Training

time
Title 85% 93% 13min

Title +
Description 89% 95% 58min

Description 72% 81% 58min
Title + Brand 80% 83% 14min

suggested by the KNN approach for a randomly
selected product. The third and fifth products from
Table 3 are newly detected add-ons, while the sec-
ond product is a correctly detected add-on already
present in the ground truth. The first and fourth
products are substitutes to the target product, hence
false positives. Our KNN approach suggests substi-
tute products because, in some cases, in the ground
truth, the add-on products can be similar/substitute
products to the target product. Ideally, we would
not want to have this in our training set.

Table 4 shows the results from including differ-
ent textual attributes (e.g., the title, the description,
and the brand) in the Siamese LSTM. Although the
description, as an addition to the title, increases the
accuracy and AUC score, we conclude that speed-
accuracy trade-off needs to be made since including
the description slows down the training process for
about four times.

5 Related Work

We split the available methods for measuring simi-
larity and complementarity into two groups: unsu-
pervised and supervised learning approaches.

One of the most common unsupervised learn-
ing methods using co-purchase history is the Fre-
quent Pattern (FP) Growth (Han et al., 2004) algo-
rithm. Other groups of research focus on using the
paradigm of Word2Vec (Mikolov et al., 2013). Gr-
bovic et al. (2015) propose a Prod2Vec model that
learns product representations from sequences of
past orders by considering the purchase sequence
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as a sentence and products within the sequence as
words. The Meta-Prod2Vec model by Vasile et al.
(2016) extends the Prod2Vec model by taking into
account products’ metadata. The BB2Vec model
(Trofimov, 2018) eliminates the cold-start problem
by using browsing and purchase session data, and
is a combination of several Prod2Vec models.

Zhao et al. (2017) introduce the Siamese CNN
approach, which this work is based on. Other super-
vised learning approaches focus on image data, text
attributes, or both. SCEPTRE is a model introduced
by McAuley et al. (2015), and its main goal is topic
modeling using Latent Dirichlet Allocation (LDA)
(Blei et al., 2003) and edge detection of related
topics. Zhang et al. (2018) suggest ENCORE, a
three-step algorithm: (i) detecting the complemen-
tarity among products based on their embedding
distances of image and text attributes, (ii) taking
into account user preferences for detecting validity
of each complementarity distance, and (iii) training
a NN with the outcomes of the previous two steps
(Yu et al., 2019). Kalchbrenner et al. (2014) explore
Dynamic CNN (DCNN) for semantic modeling of
sentences using CNNs.

6 Conclusion

In this paper, we present a supervised learning ap-
proach for complementary product recommenda-
tions. We take manually labelled pairs of com-
plementary products from an e-commerce com-
pany and propose a scalable solution. To this
end, we design and compare Siamese CNN and
Siamese LSTM architectures to create embeddings
for products’ features and compute a complemen-
tarity score for a given pair of products. We con-
clude that Siamese LSTM outperforms Siamese
CNN and its baselines. We show that the product
title is the most valuable attribute. Lastly, we show
that our model can be transformed into a KNN
solution to handle big data scenarios.

This work can be extended by introducing user
click history to include items that have been viewed
in the same session (items which are very similar)
in the negative training sample, thus teaching the
model the difference between substitute and com-
plementary relationships. Furthermore, including
more product attributes (such as the price or sub-
category) could improve the model’s performance.

References
D. Blei et al. 2003. Latent dirichlet allocation. the

Journal of machine Learning research, 3:993–1022.

F. Vasile et al. 2016. Meta-prod2vec: Product embed-
dings using side-information for recommendation.
In Proceedings of the 10th ACM Conference on Rec-
ommender Systems, pages 225–232.

H. Yu et al. 2019. Complementary recommendations:
A brief survey. In 2019 International Conference on
High Performance Big Data and Intelligent Systems
(HPBD&IS), pages 73–78. IEEE.

J. Han et al. 2004. Mining frequent patterns with-
out candidate generation: A frequent-pattern tree
approach. Data mining and knowledge discovery,
8(1):53–87.

J. McAuley et al. 2015. Inferring networks of substi-
tutable and complementary products. In Proceed-
ings of the 21th ACM SIGKDD international con-
ference on knowledge discovery and data mining,
pages 785–794.

K. Martin et al. 2017. A convolutional siamese network
for developing similarity knowledge in the selfback
dataset. CEUR Workshop Proceedings.

K. Zhao et al. 2017. Deep style match for complemen-
tary recommendation. In AAAI Workshops.

M. Grbovic et al. 2015. E-commerce in your inbox:
Product recommendations at scale. In Proceedings
of the 21th ACM SIGKDD international conference
on knowledge discovery and data mining, pages
1809–1818.

M. Fiaz et al. 2019. Deep siamese networks toward ro-
bust visual tracking. In Visual Object Tracking with
Deep Neural Networks. IntechOpen.

N. Kalchbrenner et al. 2014. A convolutional neural
network for modelling sentences. In 52nd Annual
Meeting of the Association for Computational Lin-
guistics. Association for Computational Linguistics.

T. Mikolov et al. 2013. Efficient estimation of word
representations in vector space. pages 1–12.

Y. Zhang et al. 2018. Quality-aware neural comple-
mentary item recommendation. In Proceedings of
the 12th ACM Conference on Recommender Systems,
pages 77–85.

Davide Chicco. 2021. Siamese neural networks: An
overview. Artificial Neural Networks, pages 73–94.

I. Trofimov. 2018. Inferring complementary products
from baskets and browsing sessions. arXiv preprint
arXiv:1809.09621.

70



Proceedings of the 16th Conference of the European Chapter of the Associationfor Computational Linguistics: Student Research Workshop, pages 71–79
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

Contrasting distinct structured views to learn sentence embeddings

Antoine Simoulin1,2 Benoı̂t Crabbé1
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Abstract

We propose a self-supervised method that
builds sentence embeddings from the combi-
nation of diverse explicit syntactic structures
of a sentence. We assume structure is cru-
cial to building consistent representations as
we expect sentence meaning to be a function of
both syntax and semantic aspects. In this per-
spective, we hypothesize that some linguistic
representations might be better adapted given
the considered task or sentence. We, there-
fore, propose to learn individual representation
functions for different syntactic frameworks
jointly. Again, by hypothesis, all such func-
tions should encode similar semantic informa-
tion differently and consequently, be comple-
mentary for building better sentential seman-
tic embeddings. To assess such hypothesis,
we propose an original contrastive multi-view
framework that induces an explicit interaction
between models during the training phase. We
make experiments combining various struc-
tures such as dependency, constituency, or se-
quential schemes. Our results outperform com-
parable methods on several tasks from stan-
dard sentence embedding benchmarks.

1 Introduction

We propose a self-supervised method that builds
sentence embeddings from the combination of di-
verse explicit syntactic structures. The method
aims at improving the ability of models to yield
compositional sentence embeddings. We evaluate
the embedding potential to solve downstream tasks.

Building generic sentence embeddings remains
an open problem. Many training methods have
been explored: generating past and previous sen-
tences (Kiros et al., 2015; Hill et al., 2016), discrim-
inating context sentences (Logeswaran and Lee,
2018), predicting specific relations between pairs
of sentences (Conneau et al., 2017; Nie et al., 2019).
While all these methods propose efficient train-

ing objectives, they all rely on a similar Recurrent
Neural Network (RNN) as encoder architecture.
Nonetheless, model architectures have been sub-
ject to extensive work as well (Tai et al., 2015; Zhao
et al., 2015; Arora et al., 2017; Lin et al., 2017), and
in supervised frameworks, many encoder structures
outperform standard RNN networks.

We hypothesize structure is a crucial element to
perform compositional knowledge. In particular,
the heterogeneity of performances across models
and tasks makes us assume that some structures
may be better adapted for a given example or task.
Therefore, combining diverse structures should be
more robust for tasks requiring complex word com-
position to derive their meaning. Hence, we aim
here to evaluate the potential benefit from inter-
actions between pairs of encoders. In particular,
we propose a training method for which distinct
encoders are learned jointly. We conjecture this as-
sociation might improve our embeddings’ power of
generalization and propose an experimental setup
to corroborate our hypothesis.

We take inspiration from multi-view learning,
which is successfully applied in a variety of do-
mains. In such a framework, the model learns rep-
resentations by aligning separate observations of
the same object. Such observations are referred
to as views. In our case, we consider a view for
a given sentence as the association of the plain
sentence with a syntactic structure.

As proposed in image processing (Tian et al.,
2019; Bachman et al., 2019), we aim to align the
different views using a contrastive learning frame-
work. Indeed, contrastive learning is broadly used
in NLP (Mikolov et al., 2013b,a; Logeswaran and
Lee, 2018). We intend to enhance the sentence em-
bedding framework proposed in Logeswaran and
Lee (2018) with a multi-view paradigm.

Combining different structural views has already
been proven to be successful in many NLP applica-
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tions. Kong and Zhou (2011) provide a heuristic to
combine dependency and constituency analysis for
coreference resolution. Zhou et al. (2016); Ahmed
et al. (2019) combine Tree LSTM and standard se-
quential LSTM with a cross-attention method and
observe improvements on a semantic textual simi-
larity task. Chen et al. (2017a) combine CNN and
Tree LSTM using attention methods and outper-
form both models taken separately on a sentiment
classification task. Finally, Chen et al. (2017b)
combine sequential LSTM and Tree LSTM for nat-
ural language inference tasks.

The novelty here is to combine distinct struc-
tured models to build standalone sentence embed-
dings, which has not yet been explored. This
paradigm benefits from several structural advan-
tages. It pairs nicely with contrastive learning,
as already mentioned. It might thus be trained
in a self-supervised manner that does not require
data annotation. Moreover, contrary to models pre-
sented in Section 2.2, our method is not specific to
a certain kind of encoder architecture. It does not
require, for example, the use of attention layers or
tree-structured models. Our setup could therefore
be extended with any encoding function. Finally,
our training method induces an interaction between
models during inference and, paramountly, during
the training phase.

2 Method

Given a sentence s, the model aims at discriminat-
ing the sentences s+ in the neighborhood of s from
sentences s− outside of this neighborhood. This is
contrastive learning (Section 2.1). The representa-
tion of each sentence is acquired by using multiple
views (Section 2.2).

2.1 Contrastive learning

Contrastive learning is successfully applied in a
variety of domains including audio (van den Oord
et al., 2018), image (Wu et al., 2018; Tian et al.,
2019), video or natural language processing for
word embedding (Mikolov et al., 2013b) or sen-
tence embedding (Logeswaran and Lee, 2018).
Some mathematical foundations are detailed in
(Saunshi et al., 2019). The idea supposes to build a
dataset such that each sample x is combined with
another sample x+, which is somehow close. For
word or sentence embeddings, the close samples
are the words or the sentences appearing in the
given textual context. For image processing, close

samples might be two different parts of the same
image. Systems are trained to bring close samples
together while dispersing negative examples.

In particular, a sentence embedding framework
is proposed by Logeswaran and Lee (2018). The
method takes inspiration from the distributional
hypothesis successfully applied for word, but this
time, to identify context sentences. The network
is trained using a contrastive method. Given a sen-
tence s, a corresponding context sentence s+ and a
set of K negative samples s−1 · · · s−K , the training
objective is to maximize the probability of discrim-
inate the correct sentence among negative samples:
p(s+|S) with S = {s, s+, s−1 · · · s−K}.

The algorithm architecture used to estimate p is
close to word2vec (Mikolov et al., 2013b,a). As
illustrated in Figure 1, two sentences encoders f
and g are defined and the conditional probability is
estimated as follow1:

p(s+|S) = ec(f(s),g(s
+))

ec(f(s),g(s+)) +
∑N

i=1 e
c(f(s),g(s−i ))

At inference time, the sentence representation is
obtained as the concatenation of the two encoders
f and g such as s→ [f(s); g(s)], as illustrated in
Figure 2. In Logeswaran and Lee (2018), f and g
use the same RNN encoder. However, the authors
observe that the encoders might learn redundant
features. To limit this effect, they propose to use a
distinct set of embeddings for each encoder.

We propose addressing this aspect by enhancing
the method with a multi-view framework and using
a distinct structured model for the encoders f and
g. We hypothesize that some structures may be
better adapted for a given example or task. For
example, dependency parsing usually sets the verb
as the root node. Whereas in constituency parsing,
subject and verb are often the right and left child
from the root node. Therefore, the combination of
different structures should be more robust for tasks
requiring complex word composition and be less
sensitive to lexical variations. Consequently, we
propose a training procedure that allows the model
to benefit from the interaction of various syntactic
structures. The choice for the encoder architecture
is detailed in the following section.

1Logeswaran and Lee (2018) simply use an inner product
for c such as c (x, y) = xT y. In our case, as the encoders f
and g are distincts, we choose a bilinear function defined as
c (x, y) = xTWy (Tschannen et al., 2020).
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Figure 1: Contrastive training method. The objective is to reconstruct the storyline. Sentences are presented in
their original order. Given an anchor sentence x, the model should identify the context sentence x+ out of negative
samples x−1 , x

−
2 . Sentences are encoded using separate views, which are composed within a pairwise distance

matrix.

2.2 Language views

Multi-view aims as learning representations from
data represented by multiple independent sets of
features. As depicted in Section 1, we generalize
the notion of view for a sentence as the application
of a specific syntactic framework. For each view,
we use an ad-hoc algorithm that maps the structured
sentence into an embedding space.

We consider structures including sequence and
trees detailed below. Although equivalences
might be derived between the two representations
schemes, we hypothesize that, in our context, the
corresponding sequence of operations might allow
capturing rather distinct linguistic properties. The
various models may, therefore, be complementary
and their combination allows for more fine-grained
analysis.

Vanilla GRU (SEQ) assumes a sequential struc-
ture where each word depends on the previous
words in the sentence. The framework is a bidi-
rectional sequential GRU (Cho et al., 2014). The
concatenation of the forward and backward last
hidden state of the model is used as sequence em-
bedding.

Dependency tree (DEP) In the dependency tree
model, words are connected through dependency
edges. A word might have an arbitrary number of
dependents. The sentence can be represented as a
tree where nodes corresponding to words and edges
indicate whether or not the words are connected in
the dependency tree. In our case, the dependency
tree is obtained using the deep biaffine parser from
Dozat and Manning (2017). The details of the pars-
ing operations are detailed in Appendix A.1. For
this view, we compute sentence embeddings with

the Child-Sum Tree LSTM model described in Tai
et al. (2015): Each node is assigned an embedding
given its dependent with a recursive function. The
recursive node function is derived from standard
LSTM formulations but adapted for tree inputs. In
particular, the hidden state is computed as the sum
of all children hidden states. Here, we consider an
Attentive Child-Sum Tree LSTM and we compute
h̃j as the weighted sum of children vectors as in
Zhou et al. (2016). The computation of h̃j in Equa-
tion 1 allows the model to filter semantically less
relevant children.

h̃j =
∑

k∈C(j)

αkjhk (1)

With C(j), the set of children of node j. All equa-
tions are detailed in Tai et al. (2015). The param-
eters αkj are attention weights computed using a
soft attention layer. Given a node j, we consider
h1, h2, . . . , hn the corresponding children hidden
states. the soft attention layer produces a weight αk
for each child’s hidden state. We did not use any
external query to compute the attention but instead
use a projection from the current node embedding.
The attention equations are detailed below:

qj =W (q)xj + b(q); pk =W (p)hk + b(p) (2)

akj =
qj · pᵀk

‖qj‖2 · ‖pk‖2
(3)

αkj = softmaxk(a1j · · · anj) (4)

The embedding at the root of the tree is used as
the sentence embedding as the Tree LSTM model
computes representations bottom up.

Constituency tree (CONST) Constituent analy-
sis describes the sentence as a nested multi-word
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structure. In this framework, words are grouped
recursively in constituents. In the resulting tree,
only leaf nodes correspond to words, while inter-
nal nodes encode recursively word sequences. The
structure is obtained using the constituency neural
parser from Kitaev and Klein (2018). The frame-
work is associated with the N-Ary Tree LSTM,
which is defined in Tai et al. (2015). Similarly to
the original article, we binarize the trees to ensure
that every node has exactly two dependents. The
binarization is performed using a left markoviza-
tion and unary productions are collapsed in a single
node. Again the representation is computed bottom-
up and the embedding of the tree root node is used
as sentence embedding. The equations detailed in
Tai et al. (2015) make the distinction between right
and left nodes. Therefore we do not propose to
enhance the original architecture with a weighted
sum as on the DEP view.

Figure 2: Multi-view sentence embedding. At in-
ference, embeddings are the concatenation from both
views.

3 Experiments

3.1 Training configuration

We train our models on the UMBC dataset 2,3 (Han
et al., 2013). We limited our corpus to the first
40M sentences from the tokenized corpus. Indeed,
Logeswaran and Lee (2018) already analyze the
effect of the corpus size, and we focus here on the
impact of our multi-view setting. We build batches
from successive sentences. Given a sentence in a
batch, other sentences not in the context are consid-
ered as negatives samples as presented in Section
2.1. Hyperparameters of the models such as the
hidden size and the optimization procedure such as
learning rate are detailed in Appendix A.2.

2https://ebiquity.umbc.
edu/blogger/2013/05/01/
umbc-webbase-corpus-of-3b-english-words/

3The bookcorpus introduced in Zhu et al. (2015) and tradi-
tionally used for sentence embedding is no longer distributed
for copyright reasons. Therefore, we prefer a corpus freely
available. The impact of the training dataset choice is analyzed
in Appendix A.3.

3.2 Evaluation on downstream tasks

As usual for models aiming to build generic sen-
tence embeddings (Kiros et al., 2015; Hill et al.,
2016; Arora et al., 2017; Conneau et al., 2017; Lo-
geswaran and Lee, 2018; Nie et al., 2019), we use
tasks from the SentEval benchmark (Conneau and
Kiela, 2018)4. SentEval is specifically designed to
assess the quality of the embeddings themselves
rather than the quality of a model specifically tar-
geting a downstream task, as is the case for the
GLUE and SuperGLUE benchmarks (Wang et al.,
2019b,a). Indeed, the evaluation protocol prevents
for fine-tuning the model during inference and the
architecture to tackle the downstream tasks is kept
minimal. Moreover, the embedding is kept identi-
cal for all tasks, thus assessing their properties of
generalization.

Therefore, classification tasks from the SentE-
val benchmark are usually used for evaluation
of sentence representations (Conneau and Kiela,
2018): the tasks include sentiment and subjectiv-
ity analysis (MR, CR, SUBJ, MPQA), question
type classification (TREC), paraphrase identifica-
tion (MRPC) and semantic relatedness (SICK-R).
Contrasting the results of our model on this set of
tasks will help to better understand its properties.

The MR, CR, SUBJ, MPQA tasks are binary
classification tasks with no pre-defined train-test
split. We therefore use a 10-fold cross valida-
tion. For the other tasks we use the proposed
train/dev/test splits. We follow the linear evalua-
tion protocol of Kiros et al. (2015), where a logistic
regression or softmax classifier is trained on top of
sentence representations. The dev set is used for
choosing the regularization parameter and results
are reported on the test set.

For the vocabulary, we follow the setup proposed
in Kiros et al. (2015); Logeswaran and Lee (2018)
and we train two models in each configuration. One
initialized with pre-trained embedding vectors. The
vectors are not updated during training and the
vocabulary includes the top 2M cased words from
the 300-dimensional GloVe vectors5 (Pennington
et al., 2014). The other is limited to 50K words
initialized with a Xavier distribution and updated
during training. For inference, the vocabulary is
expanded to 2M words using a linear projection.

4Senteval is posterior to most of the references. How-
ever, these studies do evaluate on tasks later included in the
benchmark.

5https://nlp.stanford.edu/projects/
glove/
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Model Dim Hrs MR CR SUBJ MPQA TREC MRPC SICK-R
Acc F1 r ρ MSE

Context sentences prediction

FastSent ≤ 500 2 70.8 78.4 88.7 80.6 76.8 72.2 80.3 — — —
FastSent + AE ≤ 500 2 71.8 76.7 88.8 81.5 80.4 71.2 79.1 — — —
Skipthought 4800 336 76.5 80.1 93.6 87.1 92.2 73.0 82.0 85.8 79.2 26.9

Skipthought + LN 4800 672 79.4 83.1 93.7 89.3 — — — 85.8 78.8 27.0
Quickthoughts 4800 11 80.4 85.2 93.9 89.4 92.8 76.9 84.0 86.8 80.1 25.6

Sentence relations prediction

InferSent 4096 — 81.1 86.3 92.4 90.2 88.2 76.2 83.1 88.4 — —
DisSent Books 5 4096 — 80.2 85.4 93.2 90.2 91.2 76.1 — 84.5 — —
DisSent Books 8 4096 — 79.8 85.0 93.4 90.5 93.0 76.1 — 85.4 — —

Pre-trained transformers

BERT-base [CLS] 768 96 78.7 84.9 94.2 88.2 91.4 71.1 — 75.7† — —
BERT-base [NLI] 768 96 83.6 89.4 94.4 89.9 89.6 76.0 — 84.4† — —

Our models (GloVe & Pretrained Embeddings)

SEQ, CONST† 4800 41 79.8 82.9 94.6 88.5 90.4 76.4 83.7 86.1 78.9 26.3
DEP, SEQ† 4800 27 79.7 82.2 94.4 88.6 91.0 77.9 84.4 86.6 79.8 25.5

DEP, CONST† 4800 39 80.7 83.6 94.9 89.2 92.6 76.8 83.6 87.0 80.3 24.8

Table 1: SentEval Task Results Using Fixed Sentence Encoder. We divided the table into sections. The first
range of models is directly comparable to our model as the training objective is to identify context sentences.
The second section objective is to identify the correct relationship between a pair of sentences. The third section
reports pre-trained transformers based-models. The last section reports the results from our models. FastSent is
reported from Hill et al. (2016). Skipthoughts results from Kiros et al. (2015) Skipthoughts + LN which includes
layer normalization method from Ba et al. (2016). We considered the Quickthoughts results (Logeswaran and Lee,
2018) with a pre-training on the bookcorpus dataset. DisSent and Infersent are reported from Nie et al. (2019)
and Conneau et al. (2017) respectively. Pre-trained transformers results are reported from Reimers and Gurevych
(2019). The Hrs column indicates indicative training time, the Dim column corresponds to the sentence embedding
dimension. † indicates models that we had to re-train. Best results in each section are shown in bold, best results
overall are underlined. Performance for SICK-R results are reported by convention as ρ and r × 100.

3.3 Results analysis

We compare the properties of distinct views combi-
nation on downstream tasks. Results are compared
with state of the art methods in Table 1. The first
set of methods (Context sentences prediction) are
trained to reconstruct books storyline. The sec-
ond set of models (Sentence relations prediction)
is pre-trained on a supervised task. Infersent (Con-
neau et al., 2017) is trained on the SNLI dataset,
which proposes to predict the entailment relation
between two sentences. DisSent (Nie et al., 2019)
proposes a generalization of the method and builds
a corpus of sentence pairs with more possible re-
lations between them. Finally, we include models
relying on transformer architectures (Pre-trained
transformers) for comparison. In particular, BERT-
base model and a BERT-model fine-tuned on the
SNLI dataset (Reimers and Gurevych, 2019). In
Table 1, we observe that our models expressing a
combination of views such as (DEP, SEQ) or (DEP,
CONST) give better results than the use of the same

view (SEQ, SEQ) used in Quick-Thought model. It
seems that the entanglement of views benefits the
sentence embedding properties. In particular, we
obtain state-of-the-art results for almost every met-
ric from MRPC and SICK-R tasks, which focus
on paraphrase identification. For the MRPC task,
we gain a full point in accuracy and outperform
BERT models. We hypothesize structure is impor-
tant for achieving this task, especially as the dataset
is composed of rather long sentences. The SICK-
R dataset is structurally designed to discriminate
models that rely on compositional operations.

This also explains the score improvement on this
task. Tasks such as MR, CR or MPQA consist in
sentiment or subjectivity analysis. We hypothesize
that our models are less relevant in this case: such
tasks are less sensitive to structure and depend more
on individual word or lexical variation.

3.4 Impact of the multi-view
We aim to measure the impact of multi-view specif-
ically. Table 2 compares all possible view pairs out
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of DEP, CONST and SEQ views. For each multi-
view model, we report the average score from Sen-
tEval tasks6. The first section of the Table corre-
sponds to single-view models, for which both views
from the pair are identical. The second section re-
ports multi-view models.

Multi-view models outperform those using a sin-
gle view. Given our experiment, it is advantageous
to use multiple views instead of one. It also con-
firms our hypothesis that combining multiple struc-
tured models or views yield richer sentence embed-
dings.

Model Avg. SentEval Score

Single-view models

CONST, CONST 84.4
DEP, DEP 84.6
SEQ, SEQ 84.9

Multi-view models

SEQ, CONST 85.1
SEQ, DEP 85.3

DEP, CONST 86.0

Table 2: Impact of the multi-view. The first section
corresponds to single-view setups for which f and g
are the same views. The second section reports multi-
view models. For each model, we report the average
score on the SentEval benchmark.

4 Conclusion and future work

Inspired from linguistic insights and supervised
learning, we hypothesize that structure is a central
element to build sentence embeddings. The novelty
here is detailed in Section 2 and consists in jointly
learning structured models in a contrastive frame-
work. In Section 3 we evaluate the standalone
sentence embeddings and use them as a feature
for the dedicated SentEval benchmark. We obtain
state-of-the-art results on tasks which are expected,
by hypothesis, to be more sensitive to sentence
structure. We show in Section 3.4 that multi-view
embeddings yield better downstream task results.
Our setup confirms our hypothesis that combin-
ing diverse structures should be more robust for
tasks requiring to perform complex compositional
knowledge.

6We scale all metrics as percentages. In particular, we use
100 - MSE for the SICK-R task. The final score corresponds
to the average of all tasks. We average the scores for tasks
with multiple metrics (MRPC and SICK-R).

References
Mahtab Ahmed, Muhammad Rifayat Samee, and

Robert E. Mercer. 2019. Improving tree-lstm with
tree attention. In 13th IEEE International Confer-
ence on Semantic Computing, ICSC 2019, Newport
Beach, CA, USA, January 30 - February 1, 2019,
pages 247–254.

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2017.
A simple but tough-to-beat baseline for sentence em-
beddings. In 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings.

Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E.
Hinton. 2016. Layer normalization. CoRR,
abs/1607.06450.

Philip Bachman, R. Devon Hjelm, and William Buch-
walter. 2019. Learning representations by maximiz-
ing mutual information across views. In Advances
in Neural Information Processing Systems 32: An-
nual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, 8-14 December 2019,
Vancouver, BC, Canada, pages 15509–15519.

Liu Chen, Guangping Zeng, Qingchuan Zhang, and
Xingyu Chen. 2017a. Tree-lstm guided attention
pooling of DCNN for semantic sentence modeling.
In 5G for Future Wireless Networks - First Inter-
national Conference, 5GWN 2017, Beijing, China,
April 21-23, 2017, Proceedings, pages 52–59.

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei,
Hui Jiang, and Diana Inkpen. 2017b. Enhanced
LSTM for natural language inference. In Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics, ACL 2017, Vancou-
ver, Canada, July 30 - August 4, Volume 1: Long
Papers, pages 1657–1668.

Kyunghyun Cho, Bart van Merrienboer, Çaglar
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A Appendices

A.1 Parsing procedure
We use an open-source implementation7 of the de-
pendency parser (Dozat and Manning, 2017) and
replace the pos-tags features with features obtained
with BERT. Therefore we do not need pos-tags
annotations to parse our corpus. Regarding the
inference speed, The constituency parser is the
bottleneck in this case and parse around 500 sen-
tences/second. In our case, the parsing of the entire
corpus (40M sentences) take about a day to com-
plete. Regarding the model, we implemented tree
models using an efficient batching method which
allows us to keep training in a reasonable range
(maximum 41 hours.)

A.2 Hyper parameters
Model hyper parameters are fixed given literature
on comparable work (Tai et al., 2015; Logeswaran
and Lee, 2018). All models are trained using a
batch size of 400 and the Adam optimizer with a
5e−4 learning rate. Regarding the infrastructure,
we use a Nvidia GTX 1080 Ti GPU. All model
weights are initialized with a Xavier distribution
and biases set to 0. We do not apply any dropout.

A.3 Impact of the training dataset
We train our model on the UMBC dataset. We have
chosen to make use of a distinct corpus as the Book-
Corpus dataset is no longer distributed for copy-
right reasons. We have run QuickThought scripts
(Logeswaran and Lee, 2018) using our dataset
based on the UMBC corpus to compare both setups.
Results are detailed in the first Section from Table 3
and are rather close in both configurations. Indeed,
except for the SUBJ and MR task, the use of our
dataset penalizes the results. Our corpus is indeed
restricted to 40M sentences, in comparison with
74M for the Bookcorpus. Regarding the dataset
size and the SentEval results, we have considered
the comparison holds.

A.4 Biases toward embedding size
SentEval evaluation framework is suspected to suf-
fers from biases toward the embedding size (Eger
et al., 2019). Moreover, some works on sentence
embedding evaluation methods points surprising
good results may be achieved using randomly ini-
tialized encoders (Wieting and Kiela, 2019). We

7https://github.com/yzhangcs/
biaffine-parser
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Model MR CR SUBJ MPQA TREC MRPC SICK-R
Acc F1 r ρ MSE

Impact of the pretraining corpus on QuickThought

Quickthoughts (results from paper) 80.4 85.2 93.9 89.4 92.8 76.9 84.0 86.8 80.1 25.6
Quickthoughts (UMCB 40M)† 80.9 84.4 95.1 88.9 92.2 75.8 — 86.0 — —

Impact of the embedding size

BERT-base [CLS] † 77.3 81.3 92.7 85.0 80.2 69.9 — 61.0 — —
BERT-base [CLS] /w random projection † 77.1 82.6 93.1 85.9 80.8 71.3 — 71.0 — —

Impact of pre-training

DEP, CONST† 80.7 83.6 94.9 89.2 92.6 76.8 83.6 87.0 80.3 24.8
Rand LSTM 77.2 78.7 91.9 87.9 86.5 74.1 — 86.0 — —

Table 3: Ablation study on SentEval task results. The first section compares the impact of the training dataset for
QuickToughts. The next section focuses on the impact of the embedding size. To this end, hidden representations
are projected into a larger embedding space using a random, fully connected layer. The final Section compares
models randomly initialized with those pre-trained on our self-supervised task. † indicates models that we had to
re-train.

provide extra analysis to discuss these potential
pitfalls.

Regarding the dependency on the embedding
size, we run experiments to analyze if such bias
could explain BERT low performances on SentEval
since the output hidden size is only of 768. Follow-
ing the protocol from Wieting and Kiela (2019), we
project the embedding from the CLS token using
a random matrix initialized with a glorot distribu-
tion. This setup expands BERT embedding into
4096 dimensions. We reported the results in Ta-
ble 3. We observe expanding the embedding size
seems to slightly improve the results. However, the
results are still below Quickthought vectors by a
large margin.

Regarding the effect of randomly initialized en-
coders (Wieting and Kiela, 2019), we reported the
results in Table 3. Although randomly initialized
encoders achieve surprisingly good results, they are
still below our results obtained with pre-training.
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Abstract

Reasoning about information from multiple
parts of a passage to derive an answer is
an open challenge for reading-comprehension
models. In this paper, we present an approach
that reasons about complex questions by de-
composing them to simpler subquestions that
can take advantage of single-span extraction
reading-comprehension models, and derives
the final answer according to instructions in
a predefined reasoning template. We focus
on subtraction based arithmetic questions and
evaluate our approach on a subset of the DROP
dataset. We show that our approach is compet-
itive with the state of the art while being inter-
pretable and requires little supervision.

1 Introduction

Automated reading comprehension (RC) is an im-
portant natural language understanding task, where
a model is presented with a passage and is asked to
answer questions about that passage. While models
have excelled at single-span extraction questions,
they still struggle with reasoning over distinct parts
of a passage (Dua et al., 2019). Several multi-hop
reasoning benchmarks have been proposed (Yang
et al., 2018; Khashabi et al., 2018; Dua et al., 2019),
of which, in this paper, we focus on the DROP (Dis-
crete Reasoning Over the content of Paragraphs)
dataset. Inspired by the semantic parsing literature,
the dataset contains questions that involve possibly
multiple steps of discrete reasoning over the con-
tents of paragraphs, including numerical reasoning.

Recent work has proposed several novel ap-
proaches to tackle DROP (Ran et al., 2019; Hu
et al., 2019; Andor et al., 2019; Gupta et al., 2020;
Chen et al., 2020). However, most approaches
provide little evidence of their reasoning process,
especially with regards to why specific operands
are chosen for a reasoning task. With the exception
of (Gupta et al., 2020; Chen et al., 2020), they also
suffer from limited compositionality.

'As of the 2000 United States Census of 2000, 
there were 47,829 people, 15,137 households, 
and 10,898 families residing in the city. The 
population density was 7,921.7 people per 
square mile (3,057.4/km2). There were 16,180 
housing units at an average density of 2,679.8 
per square mile (1,034.3/km2). The racial 
makeup of the city was 21.45% White (U.S. 
Census), 61.78% African American (U.S. 
Census), 0.41% Native American (U.S. Census), 
0.93% Asian (U.S. Census), 0.10% Pacific 
Islander (U.S. Census), 10.78% from Race 
(United States Census), and 4.55% from two or 
more races. Hispanic (U.S. Census) or Latino 
(U.S. Census) of any race were 25.16% of the 
population.'

P
as

sa
ge

How many more households are there than 
families?

Q

4239A

How many 
households are 
there?

How many families 
are there?

15,137 10,898

q

a

Op subtraction(                 ,                 )

Figure 1: Subtraction Template: Original question is
decomposed to two simpler subquestions that find the
values associated with the two compared entities as
span-extraction, and the final answer is calculated by
finding the absolute difference of the two partial an-
swers.

In this paper, we present a first attempt at build-
ing an interface between discrete reasoning and
unstructured natural language. We propose decom-
posing a question to simpler subquestions that can
more easily be solved by single-span extraction RC
models. Such decomposition is defined by Reason-
ing Templates, which also determine how to assem-
ble the computed partial answers. We demonstrate
the feasibility of our approach with the subtraction
based questions (illustrated in Figure 1). We show
that our approach is competitive with the state of
the art models on a subset of DROP’s subtraction
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questions while requiring much less training data
and providing visibility of the model’s decision-
making process.

2 Related Work

There has been a recent resurgence in research on
automated reading comprehension (RC) where an
automated system is capable of reading a docu-
ment in order to answer the questions pertaining
to the document. This has led to the creation of
several RC datasets to facilitate the research (Ra-
jpurkar et al., 2016, 2018; Yang et al., 2018; Reddy
et al., 2019; Dua et al., 2019; Huang et al., 2019).
Among these, SQuAD (Rajpurkar et al., 2016) is
a popular single-hop question answering dataset
where a question can be answered by relying on a
single sentence from the document. SoTA models
have achieved near-human performance on such
single-hop question answering tasks.1 However,
answering a question by only identifying the most
relevant span leaves models prone to exploiting
advanced pattern matching algorithms.

On the other hand, multi-hop questions make
reading-comprehension more challenging, as they
require integrating information from multiple parts
in a passage (Yang et al., 2018; Khashabi et al.,
2018; Dua et al., 2019). DROP (Dua et al., 2019)
is one such dataset that contains questions covering
many types of reasoning, such as counting, sort-
ing, or arithmetic. The dataset was constructed
by adversarially crowdsourcing questions on a set
of Wikipedia passages known to have many num-
bers. Special model architectures have been built
to tackle DROP, and these fall into two general di-
rections: the first direction augments reading com-
prehension models that were successful on single-
span extraction questions with specialized modules
that tackle more complex questions. These include
NAQANet (Dua et al., 2019), NumNet (Ran et al.,
2019) , and MTMSN (Hu et al., 2019). The second
direction works on predicting programs that would
solve the question, CalBERT (Andor et al., 2019)
defines a set of derivations and scoring functions
for each of them, while more recent work NMN
(Gupta et al., 2020) and NeRd (Chen et al., 2020)
utilize LSTMs to decode variable-length programs
from question and passage embeddings.

By definition, models with specialized modules
have limited compositional reasoning abilities. The
two directions vary in their interpretability; the first

1https://rajpurkar.github.io/SQuAD-explorer/

shows which module has been used, and the second
shows the resulting programs which have been gen-
erated to compute the answer. However, none of
these directions indicate why operands in the pas-
sage were selected. For all approaches, the dataset
is augmented with all possible derivations that lead
to the gold answer, by performing an exhaustive
search. Moreover, all approaches assume a pre-
processing step that extracts all numbers in the
passage and their indices, which massively reduces
the search space for arithmetic questions.

In this work, we build upon DecompRC (Min
et al., 2019) for question decomposition, where a
model is trained to extract key parts of content from
the question which are then used for decomposition.
Arithmetic questions, which we focus on in this
work, are a known limitation of DecompRC. An
alternative approach to decomposition is QDMR
(Wolfson et al., 2020), a recently proposed for-
malism for decomposing questions into a series of
simpler steps based on predefined query operators.
QDMR breaks down a question to its atomic parts
directly, whereas we propose recursively decom-
posing questions to simpler ones. While (Wolfson
et al., 2020) provides a dataset of annotated ques-
tions, QDMR parsing remains an open challenge.
In the following section we present our approach
that focuses on answering arithmetic questions.

3 Approach

We propose a pipelined approach that focuses on
breaking down complex questions that require rea-
soning over multiple parts in the passage to simpler
single-hop questions. The latter can be resolved
by taking advantage of state of the art single-hop
reading comprehension models. The main build-
ing block of our approach is a reasoning template.
Each reasoning type is associated with a single
template, which contains instructions on how to
decompose a question and how to combine partial
answers to arrive at the final answer.

Figure 2 illustrates our pipeline. First, the ques-
tion and passage are fed to our system, which se-
lects a template depending on the reasoning type
required (classification task). The template decom-
poses the question to simpler subquestions that are
then passed on to a single-hop RC model. Partial
answers are used to arrive at an answer accord-
ing to the instructions provided by the template.
Some questions need further decomposition, and
the appropriate template will be chosen for the sub-

81



?

Pa
ss

ag
e

Q

1) Instructions to
decompose
question

2) Instructions to
assemble answer

Reasoning Templates

Final Answer

Single-hop RC
(e.g. BERTQA)
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Questions & Passage

Partial 
Answers

Further 
Decomposition

Figure 2: Model Overview: Given a question, decom-
pose it into simpler questions according to a template
such that they can be answered by a single-hop RC
model, and assemble the final answer by applying the
operation associated with the template.

question.2

For the question decomposition component, our
approach closely follows and builds upon Decom-
pRC (Min et al., 2019), originally proposed for
multihop, multidocument question answering. We
repurpose the model for multihop arithmetic ques-
tions. DecompRC uses a two step approach to de-
compose questions. First, a pointer model is trained
to identify a key part of the question that is used to
formulate the sub-questions. Second, the predicted
pointers are used to procedurally change the origi-
nal question into two or three sub-questions. The
approach is defined for three types of questions:
Bridging, Intersection, and Comparison; each of
them uses a different pointer model and a different
heuristic procedure to generate the sub-questions.

In this paper, we propose the discrete reasoning
template framework and demonstrate its potential
by defining a single template: subtraction. We
describe in detail our approach in the following
subsections.

3.1 Question Decomposition
Question decomposition is a two-step process that
includes identifying relevant information in the text
of the original question (span extraction), and then
using those spans for heuristic generation of sub-
questions. The output of this step are simpler sub-
questions, see ‘q’ in Figure 1.

Span Extraction For subtraction questions, the
spans we are interested in identify two entities
whose associated values are to be subtracted. Con-
sider ‘0How 1many 2more 3households 4are 5there

2Further decomposition and template selection modules
are left for future research.

6than 7married 8couples 9living 10together11?’.
We need to extract the start and end indices of
the first entity households, and the start and end
indices of the second entity married couples living
together, which are [3, 3, 7, 10].

The pointer model is trained to predict 4 pointers,
the start and end indices of the first and second en-
tity respectively. Concretely, the model extracts 4
indices, p1 ≤ p2 ≤ p3 ≤ p4, that surround the two
spans of interest, maximizing the joint probability:

p1, · · · , p4 = argmax
{i1≤···≤i4}

4∏

j=1

P(ij = indj)

where P(ij = indj) = Yij is the probability that
the ith word is the jth index produced by the
pointer, and

Y = softmax(UW ) ∈ Rn×4

where W is a learned weight matrix of size h× 4
and U is the contextualized embeddings of length h
produced by pre-trained BERT(Devlin et al., 2019)
of the n tokens in the original question:

U = BERT(S) ∈ Rn×h

We then train this model using cross entropy loss
until convergence.

Subquestion Generation We find that the sub-
questions needed in our approach have a high de-
gree of overlap with the original question, making
them amenable to heuristic decomposition as in
DecompRC (Min et al., 2019). While DecompRC
is defined for bridging, intersection and compar-
ison type questions, we extend it with a separate
procedure to handle subtraction type questions as
described below. We outline in Algorithm 1 how
subquestions can be generated for subtraction ques-
tions, given the pointers that have been predicted by
the previous step. The algorithm keeps words that
are common for both subquestions and then places
each of the entities in the center of the generated
questions. First, we chunk the original question
into parts using the pointers as in lines 2-6. In lines
7-9, we remove comparative adjectives and adverbs
from the first part. Before concatenating the differ-
ent parts again, we remove the extra words from
the middle part, utilizing the dependency parse of
the original question.
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Algorithm 1: Subquestion generation for
subtraction questions

Data: Original question q: string, pointers P4: array
of length 4

Result: subquestions q1, q2: strings
1 dep parse= dependency parse(q);
2 part1← q[0:p1];
3 ent1←q[p1:p2 + 1];
4 middle←q[p2 + 1:p3];
5 ent2←q[p3:p4 + 1];
6 part2← q[p4 + 1:end];
7 for word in part1 do
8 if word.pos tag in [‘JJR’, ‘RBR’] then
9 remove word from part1;

10 head← dep parse.parent(ent2);
11 i← head.i;
12 prev i← i;
13 while (head in middle) AND (prev i-i ≤ 1) do
14 new head← dep parse.parent(head) ;
15 remove head from middle;
16 head← new head;
17 prev i← i;
18 i← head.i;
19 q1← part1+ent1+middle+part2;
20 q2← part1+ent2+middle+part2;

3.2 Single-hop question answering

Once we have decomposed questions into simpler,
single-hop questions, we can use the subquestions
to extract the appropriate operands for reasoning
from the passage. We opt to make use of a pre-
trained off-the-shelf single-span extraction model,
details provided in section 4. This is one possible
instantiation for the model, and we can use any
robust span-extraction model in its place.

3.3 Operation

A reasoning template includes instructions on how
to perform two main steps; the first step decom-
poses a question to simpler subquestions as we
have described in section 3.1. The second step,
operation, is designed to derive the final answer
given partial answers to decomposed questions. In
the case of subtraction, it is simply the absolute
difference between the two retrieved values, see
‘Op’ in Figure 1. In the case where a span retrieved
for a decomposed question contains more than a
single number, we use the first number in the span.

4 Experiments

We start with a single template to demonstrate our
approach: subtraction. Subtraction questions rely
on finding the difference between two numbers to
find the answer, they are usually in the form of

‘How many more..?’ or ‘How many fewer..?’.

Dataset For evaluation, we collect two sets of
subtraction questions from the DROP development
set. The first, clean, is a subset of 52 questions
curated by filtering the original dataset to find ques-
tions that contain words with ‘JJR’ or ‘RBR’ pos-
tags (comparative adjective and comparative ad-
verb respectively), and from those we randomly
sample 10 questions at a time and manually iden-
tify subtraction questions. We also annotate each
of these questions with gold decompositions, two
subquestions for each complex question. The other
evaluation set, noisy, is a larger dataset that has
been heuristically generated, this is intended to
support generalizability of results on the smaller
evaluation set. It contains 892 questions that have
been filtered using trigrams at the beginning of the
question: ‘How many more’ or ‘How many fewer’.

There are two learning components in our
pipeline: a pointer model to extract relevant en-
tities from the question and a single-hop RC model
to answer decomposed questions. For the latter, we
use an off-the-shelf pre-trained BERT (Devlin et al.,
2019) question answering model, which has been
fine-tuned on SQuAD (Rajpurkar et al., 2016), a
single-hop reading comprehension dataset. Specifi-
cally, we use the one provided by the huggingface
transformer library (Wolf et al., 2020). As for the
former, to train the pointer model we follow (Min
et al., 2019) and annotate 200 examples. The data
for this was gathered from the DROP training set
in the same way we curated the clean evaluation
set, for this step we simply identify the compared
entities and delimit them with ‘#’.

4.1 Results and Discussion

Evaluating Question Decomposition In Table 1
we report the accuracy of the pointer model on the
clean subtraction evaluation set, and in Table 2 we
measure the overlap between the resulting spans
and the annotated entities. While getting all point-
ers to match label succeeds for 73% of the data,
we note that the accuracy of each of the pointers is
much higher. We find that the pointer delimiting
the start of the first entity is seemingly the most
difficult to predict, which is also seen in lower F1
score for the first entity. We conjecture this to be
the likely case as the second entity is usually pre-
ceded by words such as ‘than’ or ‘compared to’.
We also measure the similarity between decom-

posed questions generated by our approach and the
manually annotated gold decompositions. Table 3
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p1 p2 p3 p4 all

Acc 84.0± 0.9 88.5± 1.6 98.1 94.9± 0.9 73.1

Table 1: Accuracy of Pointer4 model, we list the accu-
racy of individual pointers separately and accuracy of
all pointers for each example. Results are reported as
an average of 3 runs of the model with different random
seeds.

First Entity Second Entity

F1 0.89± 0.02 0.97± 0.003
Precision 0.91± 0.018 0.96
Recall 0.90± 0.023 0.99± 0.006

Table 2: Measured overlap between resulting spans of
the predicted pointers and the annotated entities, aver-
aged over all questions in clean evaluation set.

displays the Word Mover’s Distance metric (Kus-
ner et al., 2015) and cosine similarity, based on
the GloVe word embeddings shipped with SpaCy’s
(Honnibal et al., 2020) en core web lg model.
For most questions, the two subquestions match
perfectly between the gold annotations and the gen-
erated ones. However, upon manual inspection, we
find that the generated subquestion might some-
times omit the final verb. This is because of our
traversal of the dependency parse in Algorithm 1.
We found BERTQA was robust to these differences
when extracting the related span from the passage.

Evaluating the Approach Table 4 shows the ac-
curacy of each of the models on the subtraction
evaluation sets. Since the result is a number, ac-
curacy is evaluated as an exact match between the
predicted answer and its label. We compare our
approach with the state-of-the-art; MTMSN (Hu
et al., 2019), the best performing model with spe-
cialized modules; and NeRd (Chen et al., 2020),
the most recent work based on program induc-
tion. These were evaluated on the original ques-
tions in subtraction evaluation set. For our work,
we evaluate two different variations: We run the
pipeline on the gold decompositions that have been
manually rewritten, and automatically-decomposed
questions generated by our approach, using BERT
single-hop RC described in section 4. For both
gold-decompositions and learned-decompositions
we get promising results that are on par with the
state-of-the-art on this dataset.

When investigating the mistakes that our ap-
proach makes on the clean set, we find that many

Similarity Measure q1 q2

WMDmax 3.56 4.43
WMDavg 0.2266 0.6714
WMDmedian 0.0 0.0
cos(θ)min 0.9538 0.9476
cos(θ)avg 0.9959 0.9913
cos(θ)median 1.0 1.0

Table 3: Reported similarities between manually de-
composed questions (gold) and decompositions gener-
ated by our approach. We use word mover’s distance
(WMD) and cosine similarity of average word embed-
dings. For the former we report max distance, while in
the latter we report min similarity as these highlight the
worst-case of all subquestions. For most examples, the
gold decompositions and generated subquestions over-
lap perfectly, as indicated by median score.

Model Accc Acc−c # MM Accn
So

TA MTMSN 86.5 89.4 3 81.3
NeRd 73 76.6 2 62.3

O
ur

s DecompG 78.8 85.1 1 -
DecompL 74.4± 2.4 79.9± 2.6 1 64

Table 4: Accuracy of models for subtraction questions.
We report accuracy on clean evaluation set (52 ques-
tions) in Accc, accuracy after omitting 5 mislabeled
questions in the second column (Acc−c ) and specify
how many of these Mislabeled questions Match the pre-
diction in the #MM. The last column ( Accn) reports
accuracy on the noisy evaluation set (892 questions).
Learned Decompositions (DecompL) are averaged over
3 random seeds in pointer model training.

of the mistakes are actually due to incorrect la-
bels. The gold answer (or label) does not match
the correct answer for a certain question. To vali-
date this, we check the entire clean evaluation set
and manually label each question. We find that 5
of the 52 questions are incorrectly annotated, one
of these questions is actually invalid as the infor-
mation needed to answer it does not exist in the
passage. To better understand the effect of this,
we discard incorrectly labeled examples and report
accuracy in the second column of Table 4. We
also report the number of predictions matching
the incorrect label. The primary set of true mis-
takes our model makes are due to some questions
needing further decomposition, eliciting common-
sense knowledge, or because they are not subtrac-
tion questions, i.e. can be classified as MTMSN’s
Negation rather than Diff module.
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NeRd fails on 3 questions that MTMSN and our
approach got correctly because it could not pro-
duce a valid program to be evaluated. It also failed
on 2 of the Negation question that our approach
failed on, not because it was not able to address
those kinds of question, but because the attention
mechanism ignored a condition in the question
“18 or over”. Surprisingly, NeRd failed on both
questions that necessitate nested processing, even
though the architecture allows for compositionality.
The remaining failure cases are due to choosing
incorrect operands for the difference, but it is not
clear why the model made those choices.

Discussion We find that our approach is promis-
ing; it is interpretable and requires little training
data when compared to previous approaches, with-
out compromising performance. Steps to arrive at
an answer are explicit, and we can interpret each
of the retrieved operands by their associated sub-
questions. Figure 1 shows an example of this for
subtraction questions. MTMSN indicates which
module was used, but it does not show what led to
this particular choice of the arithmetic expression.
Likewise, NeRD shows the program necessary to
find the answer, but there is no indication on why
the operands of each function were chosen.

The only training data needed was a small subset
(200 examples) to train the pointer model, and in
the future we need some data to train reasoning
type classifier and other templates’ pointer mod-
els. This comes in contrast to the exhaustive search
needed to find all possible derivations to reach an
answer for all questions in the training set (77.4k
examples). Reasoning Templates retrieve operands
for the subtraction operation by answering sub-
questions that refer to a particular number, mak-
ing it more robust to noise in the annotation. We
started by focusing on the subtraction template,
because it is the most prevalent numerical reason-
ing type (with an estimated proportion of 29% of
all questions (Dua et al., 2019)). However, this
approach can be similarly extended to other reason-
ing types by defining a template for each, such as
date-difference or addition.

We believe that such reasoning templates would
be able to answer compositional questions with its
recursive decomposition component. While this
exploration is left for future research, we believe
it is useful it outline how we expect it to handle
compositionality. Recall from Figure 1 that in-
put questions are passed to a classifier that selects

which template to apply, one of the classes decides
if the question is single-span and should be passed
on to single-hop RC directly. Decomposed ques-
tions should also be passed through this classifier
to determine if they need further decomposition.

How	many	more	people	were	there
than	households	and	families?

How	many	people	were
there?

How	many	households
and	families	were

there?

subtraction template

addition templatesingle-span

How	many
households	
were	there?

How	many
families	
were	there?

single-span single-span

Figure 3: An example of how questions are further de-
composed to facilitate compositionality.

Figure 3 shows an example where the second
subquestion involves another reasoning task. After
further decomposing it to single-span extraction
questions and finding the solution to the addition
operation, that answer would be passed to the previ-
ous task. This recursive processing should ideally
allow for compositionality.

After building the entire pipeline we expect
mistakes like nested operations and mis-classified
Negation types to be rectified, boosting perfor-
mance further. One challenge we wish to overcome
is the engineering bottleneck involved in crafting
each of the templates. Future work would explore
methods that learn to construct these the templates.

5 Conclusion

We propose using Reasoning Templates for tack-
ling reading comprehension tasks that involve rea-
soning over multiple paragraphs. We show that this
approach is competitive with state of the art mod-
els on a subset of DROP’s subtraction questions,
while requiring much less training data and provid-
ing better visibility of the model’s decision making.
In future work, we plan on extending to further
templates and investigate how to learn templates
instead of working from a predefined set.
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A Experimental Settings

A.1 Model Settings

We use the final layer of BERTLARGE (Devlin et al.,
2019) to produce contextualized embeddings used
for span extraction fine-tuned to extract 4 pointers.3

We use Adam optimizer with learning rate of 5e−5
and warm-up over the first 10% steps to train. Loss
function is calculated with cross-entropy. Training
batch size is 20 examples. We train three models
with different random seeds and report average
performance over these.

A.2 SoTA Comparison

We report the accuracy of MTMSN (Hu et al.,
2019) and NeRd (Chen et al., 2020) on the two sub-
traction evaluation sets in Table 4. For MTMSN,
we use the pre-trained MTMSN LARGE model pub-
lished on their github page. Code and model check-
points for NeRd were shared in email communica-
tion with the authors in June, 2020.

B Evaluating on a larger dataset

We started evaluating this work on the smaller,
clean, dataset of 52 questions that has been man-
ually curated. To validate that this sample is rep-
resentative of subtraction questions in the DROP
devset, we worked to heuristically identify rele-
vant questions. We started with the same 2 steps
involved in the manual curation, filter the devset
(9536 questions) for questions that have ‘number’
as answer type (leaves 5850 questions) and contain
comparative adjectives or adverbs. This leaves us
with a subset of 1386 questions. The above condi-
tions cover more questions than we are interested
in, e.g. ‘How many people are 18 or older?’. We
refine the second condition to exclude sentences
where the JJR|RBR tokens are preceded with an
or, this omits 146 more samples. We proceed by

3We build upon the implementation of Min et al. (2019)

passing these through our pipeline. Below is a sum-
mary of failure cases of the different components
of our approach:

a. 1 sample did not produce valid pointers (used
[SEP] token which is BERT-specific).

b. 22 samples did not produce valid decomposi-
tion. This is due to issues in mismatching to-
kenization between the pointer model and the
subquestion generation function. The function
used to map pointers between the two tokenizers
did not generalize to the cases here. Examples
of these are [‘80’, ‘-’, ‘yard’] and [‘80-yard’].

c. 28 samples did not pass through BERTQA suc-
cessfully, as they exceeded the sequence length
(512).

Of the remaining 1189 questions that were pro-
cessed successfully, we get 55.9% correctly. This
still includes questions which are not covered by
our subtraction template. We proceed in two
ways: First, we filter out questions that MTMSN
predicted not to be addition subtraction.
This leaves 1106 questions with 59.3% accuracy.
The alternative is to filter questions based on their
start trigrams, which gives a more relevant set of
questions. Of the 1189 questions, 892 start with
the phrases ‘How many more’, ‘How many fewer’,
and ‘How many less’. Our model answers 64% of
these correctly.
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Abstract

The segmentation of emails into functional
zones (also dubbed email zoning) is a rele-
vant preprocessing step for most NLP tasks
that deal with emails. However, despite the
multilingual character of emails and their ap-
plications, previous literature regarding email
zoning corpora and systems was developed es-
sentially for English.

In this paper, we analyse the existing email
zoning corpora and propose a new multilin-
gual benchmark composed of 625 emails in
Portuguese, Spanish and French. Moreover,
we introduce OKAPI, the first multilingual
email segmentation model based on a lan-
guage agnostic sentence encoder. Besides gen-
eralizing well for unseen languages, our model
is competitive with current English bench-
marks, and reached new state-of-the-art per-
formances for domain adaptation tasks in En-
glish.

1 Introduction

Worldwide, email is a predominant means of so-
cial and business communication. Its importance
has attracted studies in areas of Machine Learning
(ML) and Natural Language Processing (NLP), im-
pacting a wide range of applications, from spam
filtering (Qaroush et al., 2012) to network analysis
(Christidis and Losada, 2019).

The email body is commonly perceived as un-
structured textual data with multiple possible for-
mats. However, it is possible to discern a level
of formal organization in the way most emails are
formed. Different functional parts can be identified
such as greetings, signatures, quoted content, legal
disclaimers, etc. The segmentation of email text
into zones, also known as email zoning (Lampert
et al., 2009), has since become a prevalent prepro-
cessing task for a diversity of downstream applica-
tions, such as author profiling (Estival et al., 2007),

Figure 1: OKAPI is composed of two building blocks:
1) a multilingual sentence encoder (XLM-RoBERTa)
to derive sentence embeddings; and 2) a segmentation
module that uses a BiLSTM with a CRF on top to clas-
sify each sentence into an email zone.

request detection (Lampert et al., 2010), uncover
of technical artifacts (Bettenburg et al., 2011), auto-
mated template induction (Proskurnia et al., 2017),
email classification (Kocayusufoglu et al., 2019)
or automated email response suggestion (Kannan
et al., 2016; Chen et al., 2019).

Since email communication is a worldwide phe-
nomenon, all previous applications are in fact
highly multilingual. Despite this, email zoning
literature remains English-centric and without a
standardize zone taxonomy. To mitigate those prob-
lems, we make the following research contribu-
tions:

1. We discuss the existing zoning taxonomies
and their limitations.

2. We release Cleverly zoning corpus, the first
multilingual corpus for email zoning. This
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corpus consists of 625 emails in 3 languages
rather than English (Portuguese, Spanish and
French), and encompasses 15 email zones as
defined in (Bevendorff et al., 2020)

3. We introduce OKAPI, a multilingual email
segmentation system built on top of XLM-
RoBERTa (Conneau et al., 2020) that can be
easily extended to 100 languages.

To the best of our knowledge, OKAPI is the
first end-to-end multilingual system exploring pre-
trained transformer models (Vaswani et al., 2017)
to perform email zoning. Besides having multilin-
gual capabilities, OKAPI is competitive with exist-
ing approaches for English email zoning, and at-
tained state-of-the-art performance in domain adap-
tation tasks for English email zoning.

The rest of the paper is organized as follows:
Section 2 presents an overview of the related litera-
ture. Section 3 provides a comprehensive review of
existing email zoning corpora, and introduces Clev-
erly zoning corpus, our new multilingual email zon-
ing corpus. Section 4 describes the OKAPI model
architecture. Section 5 reports and discusses the
results achieved. Finally, Section 6 concludes the
paper.

2 Literature Review

Chen et al. (1999) were one of the pioneers in the
topic of email segmentation. Looking at linguist
and geometrical patterns, their work focuses on
the identification of email signature. Similarly,
Carvalho and Cohen (2004) developed JANGADA,
a supervised learning system that classifies each
line using a Conditional Random Field (CRF) (Laf-
ferty et al., 2001) and a sequence-aware perceptron
(Collins, 2002), that identifies signature blocks and
quoted text from previous emails. Tang et al. (2005)
proposed an email data cleansing system based on
a Support Vector Machine (SVM) (Cortes and Vap-
nik, 1995) model that aimed at filtering the non-
textual noisy content from emails independently
of downstream text mining applications, based on
hand-coded features.

Estival et al. (2007) were the first to introduce a
general segmentation schema for email text. Seg-
mentation of emails is a crucial part on their work,
which aims at identifying the author’s basic de-
mographic and psychometric traits. In that work,
the authors compared a range of ML algorithms
together with feature selection to classify email

segments into five functional parts, attaining im-
provements in the end task of auto profiling. Later,
Lampert et al. (2009) formally defined the func-
tional parts as email zones, describing the different
segments inside email messages based on graphic,
orthographic, and lexical features. Lampert et al.
(2009) also proposed ZEBRA, an email zoning
system based on a SVM. In a posterior work to-
wards detecting emails containing requests for ac-
tion, Lampert et al. (2010) used ZEBRA to “zone”
emails, considering only the zones that had relevant
patterns to increase the accuracy of their request
detection task.

As email zoning surpassed its original purpose
of signature identification and text cleansing into
a more general task, Repke and Krestel (2018) ex-
tended its utility to thread reconstruction. Inspired
by ZEBRA (Lampert et al., 2009), the authors pro-
posed QUAGGA (Repke and Krestel, 2018), a neu-
ral system with a Convolutional Neural Network
(CNN) (LeCun et al., 1989) to produce sentence
representations followed by a Recurrent Neural
Network (RNN) (Elman, 1990). QUAGGA was
trained and evaluated on English emails from both
the Enron (Klimt and Yang, 2004) corpus and the
public mail archives of the Apache Software Foun-
dation (ASF)1, outperforming JANGADA and ZE-
BRA.

Until very recently, email zoning resorted to
small samples of mailing lists or newsgroup corpus
and was limited to the English language. Beven-
dorff et al. (2020) were the first to crawl email
at scale, extracting 153 million emails from the
Gmane email-to-newsgroup gateway2 in different
languages such as English, Spanish, French and
Portuguese3. The authors annotated email zones
for a subset of Gmane English emails and, due to
the idiosyncratic characteristics of the corpora, they
developed a more fine-grained zone classification
schema with 15 zones. Moreover, Bevendorff et al.
(2020) introduced an email zoning system, named
CHIPMUNK, that combines a Bidirectional Gated
Recurrent Unit (BiGRU) (Cho et al., 2014) with a
CNN. When compared to other models in the liter-
ature, CHIPMUNK achieved better performance.

1http://mail-archives.apache.org/mod_
mbox/

2https://news.gmane.io/
3https://webis.de/data.html?q=

Webis-Gmane-19
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Authors Source emails zones Language

(Carvalho and Cohen, 2004)4 20 Newsgroup5 617 2 English
(Estival et al., 2007)6 Donated6 9,836 5 English
(Lampert et al., 2009)7 Enron8 400 3/9 English
(Repke and Krestel, 2018)9 Enron8 800 2/5 English

ASF1 500 2/5 English
Bevendorff et al. (2020)10 Gmane3 3,033 15 Multilingual*

Enron8 300 15 English
Ours Gmane3 625 15 Multilingual

Table 1: Summary of existing email zoning corpora. *Note that, although Bevendorff et al. (2020)’s Gmane corpus
is technically multilingual, it only has 38 non-English test emails that are spread over 13 different languages.

3 Email Zoning Corpora

Several corpora and zoning schemes have been
proposed in the literature under different contexts.
This section provides an overview of the existing
corpora, hoping to make it easier to develop and
compare new email zoning methods in the future.

Table 1 compiles the information of existing
email zoning corpus. To the best of our knowl-
edge, Carvalho and Cohen (2004) released the first
email zoning corpus. The corpus consists of 617
emails4 from the 20 Newsgroup corpus5 identified
with two zones: signature and quotation. Despite
the usefulness of identifying those zones for email
cleansing, this level of detail is still insufficient for
a general email segmentation.

Estival et al. (2007) released a corpus of 9,836
recruited respondents donated email messages6 and
introduced a wider annotation schema focusing on
more email parts: author text, signature, adver-
tisement, quoted text, and reply lines. However,
Estival et al. (2007) still did not divide the email
text into some other relevant zones, such as greet-
ings, closings nor identify attachments and code
lines.

Lampert et al. (2009) were arguably the first
to conceptualize the email zoning task and fully
define the characteristics of each identified zone,
as well as dividing the authored text into different
zones. They annotated 400 English emails7 from
the Enron email corpus database dump, identifying
3 email zones: sender, quoted conversation and
boilerplate zones, each containing a different set
of sub-zones, within a total of 9 sub-zones.

4http://www.cs.cmu.edu/˜vitor/
codeAndData.html

5http://qwone.com/˜jason/20Newsgroups/
6available upon contact with the authors.
7http://zebra.thoughtlets.org/

Repke and Krestel (2018) also resorted to the
Enron database8, annotating a total of 800 emails9.
Reconsidering the task as thread reconstruction,
they produced a new annotation schema, consid-
ering a 2-level and a 5-level approach (the latter
being a refinement of the 2-level segmentation).
Repke and Krestel (2018) also annotated 500 ASF
emails7 using both the 2-level and 5-level tax-
onomies. Their 5-level annotation schema consists
of segmenting emails into: body (typically compris-
ing ∼80% of the lines), header, signoff, signature
and greetings.

Bevendorff et al. (2020) introduced the Gmane
corpus for email zoning10. Even though the cor-
pus is composed of 31 languages, the annotated
emails are mostly in English, and their test set
only contains a residual number of non-English
emails (38 emails covering 13 different languages),
which is insufficient for a consistent multilingual
evaluation. Due to the richness of the Gmane con-
versations on technical topics, Bevendorff et al.
(2020) developed a more fine grained classification
schema, considering the segmentation of blocks
of code, log data and technical data. Whilst also
preserving most of the common zones introduced
in previous works, they ended up with a total of
15 zones: closing, inline headers, log data, MUA
signature, paragraph, patch, personal signature,
quotation, quotation marker, raw code, salutation,
section heading, tabular, technical, visual sepa-
rator. Following the same zone taxonomy they
also released a set of 300 English emails from the
Enron database dump. In both Enron and Gmane

8http://www.cs.cmu.edu/˜enron/
9https://github.com/

HPI-Information-Systems/Quagga
10https://github.com/webis-de/

acl20-crawling-mailing-lists
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emails, the majority of the email segments belong
to the paragraph and quotation zones. This being
said, Gmane has much more lines of quotation than
paragraph, while Enron is the other way around.

Overall, email zoning corpora show a great vari-
ability of zone taxonomies and most works have in-
troduced new zones to face the nature of each email
source or downstream task. The Enron database
dump has been the most used source to retrieve
emails to build new corpus. On the other hand, the
recent Gmane raw dump of emails is multilingual
and it contains various functional zones, which
opens the door to new challenges in email zoning
and multilingual methodologies.

3.1 Cleverly Zoning Corpus

pt es fr
# zones 15 14 14
# emails 210 200 215
# lines 12366 9824 6958
# lines / email 58.9 49.1 32.4
# zones /email 8.6 6.5 5.9
# unique zones / email 5.8 5.1 4.9

Table 2: Some statistics of the Cleverly zoning corpus.

This section presents Cleverly zoning corpus,
the first multilingual email zoning corpus. To cre-
ate the corpus, we searched the Gmane raw corpus
(Bevendorff et al., 2020) for Portuguese (pt), Span-
ish (es) and French (fr) emails. Then, following
the classification schema proposed by Bevendorff
et al. (2020), we produced a total of 625 annotated
emails.

Table 2 compiles a brief description of the email
statistics for each of the languages. While French
is the language with more emails, Portuguese and
Spanish emails tend to be longer, resulting in a
greater amount of lines and an overall higher num-
ber of zones per email. The distribution of zones is
similar between the three languages, as detailed in
Table 3.

The annotation was carried out by two annota-
tors. The first annotator was a native Portuguese
speaker and the second annotator a native Span-
ish speaker, both with academical background in
French and fluent in the third language. Each email
was annotated by both annotators using the tagtog11

annotation tool.

11https://www.tagtog.net

Zone pt (%) es (%) fr (%)
Quotation 52.43 59.02 46.20
Paragraph 16.33 17.36 27.61
MUA Sig. 12.04 3.84 9.04
Personal Sig. 3.93 4.47 2.00
Visual Sep. 2.94 2.29 2,60
Quot. Mark. 2.72 1.54 2.10
Closing 2.63 2.00 3.73
Log Data 1.04 3.79 1.82
Raw Code 1.28 2.45 2.07
Inl. Head. 2.96 0,82 1.33
Salutation 0,96 0.81 1,35
Tabular 0.32 0.42 0.27
Technical 0.30 1.00 0.38
Patch 0.02 0.20 0.02
Sec. Head. 0.15 0.04 0.03

Table 3: Distribution, for each language, of the number
of lines per zone in the Cleverly zoning corpus. The
distributions were obtained by averaging statistics from
both annotators.

measure pt es fr
accuracy 0.93 0.92 0.96
F1 A1A2 0.93 0.92 0.96
F1 A2A1 0.94 0.92 0.96
k 0.90 0.87 0.94

Table 4: Inter-annotator agreement for each language
in the Cleverly zoning corpus, using Cohen’s kappa (k),
accuracy and F1 between annotators A1 and A2.

Table 4 shows the inter-annotator agree-
ment scores for each language using the Co-
hen’s kappa coefficient (k) (McHugh, 2012),
accuracy and F1 of one annotator versus the
other. All annotations and required informa-
tion to compile the original emails are freely
available at https://github.com/cleverly-ai/
multilingual-email-zoning.

4 OKAPI Architecture

We propose OKAPI, an email segmentation model
composed of two building blocks: a multilingual
sentence encoder and a segmentation module. Fig-
ure 1 shows the OKAPI architecture.

4.1 Multilingual Sentence Encoder

To address the multilingual nature of emails we de-
veloped a language agnostic sentence encoder that
turns each email line into an embedding. Figure 2
illustrates the encoding process.
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Figure 2: To derive a cross-lingual line embedding
we use XLM-RoBERTa (Conneau et al., 2020) to ex-
tract word-level embeddings, and then we apply aver-
age pooling to the last 4 layers. This leads to a final
3072 features embedding.

Given an email line x = [x0, x1, ..., xn], our
encoder module uses XLM-RoBERTa (base) (Con-
neau et al., 2020) to produce an embedding e

(`)
j

for each token xj and each layer ` ∈ {0, 1, ..., 13}.
Since it has been shown that BERT-like models
capture within the network layers diverse linguistic
information, and, particularly, the last layers pre-
serve most of the semantic information (Tenney
et al., 2019), we keep, for each sentence, only the
word embeddings from the last 4 layers. Lastly, as
in (Reimers and Gurevych, 2019), these word em-
bedding are turned into a 3072 sentence embedding
sk by averaging the concatenation of the 4 word
layer embeddings.

4.2 Segmentation Module

After passing each email line into the previous
sentence encoder we get a cross-lingual line em-
bedding sk. After that, we pass all line embed-
dings of an email into a Bidirectional Long Short-
Term Memory (BiLSTM) (Graves and Schmidhu-
ber, 2005), with 1 layer and 64 hidden units, to
derive compact line representations that encompass
information from the entire structure of the email.
Finally, as in Huang et al. (2015), we use a CRF
output layer to predict the zone of each line in the
document. Preliminary experiments showed that
not using CRF either slightly deteriorates model

performance or does not have an impact on the
results.

4.3 Training setup

During training, XLM-RoBERTa’s weights were
kept frozen and only the BiLSTM and CRF lay-
ers were updated. We experimented BiLSTM with
16, 32, 64, 128, 256 and 512 hidden units and more
layers, but in the end, having a small segmentation
module, with 64 hidden units and 1 layer, gener-
ically yielded the best performances in the vali-
dation splits. We used a dropout layer of value
0.25 between the BiLSTM and the CRF, and the
RMSprop optimizer with a fixed learning rate of
0.001.

5 Results and Discussion

In this section, we analyse both multilingual and
monolingual capabilities of OKAPI, considering
various zoning corpora and annotation schemas.

5.1 Multilingual Email Zoning

zone pt es fr
All 0.91 0.93 0.93
Quotation 0.99 0.99 0.99
Paragraph 0.91 0.96 0.92
MUA Sig. 0.95 0.82 0.91
Personal Sig. 0.81 0.87 0.79
Visual Sep. 0.92 0.90 0.96
Quot. Mark. 0.55 0.97 0.97
Closing 0.59 0.58 0.69
Log Data 0.56 0.53 0.57
Raw Code 0.54 0.74 0.84
Inl. Head. 0.78 0.77 0.58
Salutation 0.65 0.69 0.89
Tabular 0.30 0.00 0.60
Technical 0.67 0.56 0.48
Patch 0.00 0.00 0.00
Sec. Head. 0.34 0.00 0.00

Table 5: Multilingual zero-shot evaluation of OKAPI,
using Cleverly zoning corpus. Global accuracy and re-
call of each zone, computed by averaging the scores
regarding both annotators.

We evaluate the multilingual capabilities of
OKAPI in a zero-shot fashion. For that, we trained
the model with the Gmane English corpus released
by Bevendorff et al. (2020), and tested it with the
Cleverly multilingual corpus that we annotated for
Portuguese, Spanish and French.
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Table 5 presents the performances of OKAPI in
our multilingual corpus for each zone. Compar-
ing with the typical performance of email zoning
and the Gmane corpus (see next Tables), OKAPI

achieves quite reasonable performances, confirm-
ing its multilingual character. As expected, zone
recall seems to be dependent on the total number
of lines per zone.

5.2 English Email Zoning

Model Zones Enron ASF
JANGADA 2 0.88 0.97
ZEBRA 2 0.25 0.18
QUAGGA 2 0.98 0.98
OKAPI 2 0.99 0.99
JANGADA 5 0.85 0.91
ZEBRA 5 0.24 0.20
QUAGGA 5 0.93 0.95
OKAPI 5 0.96 0.95

Table 6: Email zoning accuracy of various models, for
the corpus of Repke and Krestel (2018).

Model Zones Gmane Enron
Tang et al. (2005) 15 0.80 0.73
QUAGGA 15 0.94 0.83
CHIPMUNCK 15 0.96 0.88
OKAPI 15 0.96 0.88

Table 7: Zoning accuracy of various models, under the
15-level zoning schema of Bevendorff et al. (2020).

Resorting to the numbers reported in the litera-
ture for email zoning, we compared OKAPI with
existing monolingual methods using various En-
glish corpora and zoning taxonomies. In partic-
ular, Table 6 compares OKAPI with other zoning
systems on the corpora annotated by Repke and
Krestel (2018) with 2 and 5 types of zones; and
Table 7 shows the results obtained with the most
recent and fine-grained annotation schema with 15
zones proposed by Bevendorff et al. (2020). For all
those combination of corpora and zoning strategies,
OKAPI achieved competitive, and sometimes better
results when compared with state-of-the-art meth-
ods for English email zoning, being simultaneously
able to perform well on different languages.

Finally, we analyse how OKAPI adapts to new
domains. For that, Table 8 shows the performance
of both OKAPI and QUAGGA (Repke and Krestel,
2018), when evaluated in a different corpus then

Corpus Accuracy Accuracy
Model Train/Test 2 zones 5 zones
QUAGGA Enron/ASF 0.94 0.86
OKAPI Enron/ASF 0.98 0.93

QUAGGA ASF/Enron 0.86 0.80
OKAPI ASF/Enron 0.97 0.88

Table 8: Comparison between OKAPI and QUAGGA
for domain adaptation, considering Repke and Krestel
(2018) 2 and 5 zoning schema.

the one they were trained on. In these experiments,
OKAPI clearly outperformed QUAGGA, indicating
a superior ability to generalize to unseen domains.

6 Conclusion

To overcome the English-centric email zoning lit-
erature we propose OKAPI. Besides having mul-
tilingual capabilities, the proposed model is com-
petitive with existing approaches for English email
zoning, and attained state-of-the-art performance in
domain adaptation tasks of English email zoning.
Futhermore, to evaluate our model and to foster
future research into multilingual email zoning, we
release Cleverly zoning corpus – a corpus with
625 emails annotated in Portuguese, Spanish and
French.
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Abstract

We present a deep neural model of spoken
word recognition which is trained to retrieve
the meaning of a word (in the form of a
word embedding) given its spoken form, a task
which resembles that faced by a human lis-
tener. Furthermore, we investigate the influ-
ence of variability in speech signals on the
model’s performance. To this end, we conduct
a set of controlled experiments using word-
aligned read speech data in German. Our ex-
periments show that (1) the model is more sen-
sitive to dialectical variation than gender varia-
tion, and (2) recognition performance of word
cognates from related languages reflect the de-
gree of relatedness between languages in our
study. Our work highlights the feasibility of
modeling human speech perception using deep
neural networks.

1 Introduction

Human speech is highly complex and variable. The
sources underlying this variability include speaker-
related factors such as vocal tract shape, gender,
age, and dialect as well as context-related factors
such as word surprisal and phonological promi-
nence. As a result, two acoustic realizations of
the same word are unlikely to be identical even if
produced by the same speaker. Nevertheless, lis-
teners can reliably recognize spoken words despite
the lack of acoustic-phonetic invariance in speech
(Pisoni and Levi, 2007). The robust human ability
to decode the intended message from a highly vari-
able, noisy speech signal enables speakers of dif-
ferent but related languages to communicate with
each other using their own mother tongue — a
phenomenon that has been referred to as receptive
multilingualism (Gooskens, 2019).

To gain a better understanding of human speech
processing, a vast body of research at the intersec-
tion of speech perception and cognitive modeling

has been dedicated to developing computational
models of spoken word recognition (cf. Weber and
Scharenborg (2012) for an overview). In a nut-
shell, models of spoken word recognition aim to
simulate and explain the process of accessing the
mental lexicon given a representation of an audi-
tory word stimulus (McClelland and Elman, 1986;
Marslen-Wilson, 1987; Norris, 1994; Gaskell and
Marslen-Wilson, 1997). Despite the considerable
differences in the representational specificity of the
proposed models in the literature, there is a con-
sensus among them with respect to the activation
of multiple word candidates which leads to compe-
tition for lexical access (Weber and Scharenborg,
2012). One model of word recognition that we take
inspiration from in this paper is the Distributed Co-
hort Model (DCM) (Gaskell and Marslen-Wilson,
1997), which is a connectionist model that defines
the process of spoken word recognition as a map-
ping of low-level acoustic features onto the stored
semantic and phonological representations, allow-
ing efficient lexical access. A computational model
of spoken word recognition allows researchers to
simulate the conditions of behavioral experiments
on human listeners and investigate whether the pre-
dictions of the model show human-like behavior.

Although deep neural networks (DNNs) have be-
come the dominant paradigm for automatic speech
recognition (ASR) research in the last decade
(Graves et al., 2006; Mohamed et al., 2009; Hinton
et al., 2012), using DNN-based ASR components
to model human speech processing has only been
explored recently with the EARSHOT model (Mag-
nuson et al., 2020). EARSHOT is an incremental
model based a long short-term memory (LSTM)
that captures the temporal structure of speech. The
training data for the EARSHOT model are spo-
ken words produced using a speech synthesizer
and each word is associated into a sparse vector
that represents the word semantics. The authors
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use a unique but arbitrary sparse vector for each
word, thus the semantic relatedness of words is
not encoded in their representations. EARSHOT
is trained to map each acoustic word form onto its
semantic vector.

In this paper, we attempt to bridge between the
connectionist view of word recognition and the re-
cent advances in spoken language learning using
deep neural networks. We also address some of the
modeling limitations in the EARSHOT model. Pre-
cisely, our contribution is two-fold: (1) we propose
a model of spoken word recognition based on a
deep neural network that maps a spoken word form
onto a distributed meaning representation. Our
model is trained on naturalistic data that consists
of actual acoustic realizations of spoken words
extracted from the German portion of the Spo-
ken Wikipedia Corpus. And (2) we investigate
the degree to which the emergent representations
from the model can generalize with respect to two
sources of variability in speech signals — inter-
speaker variability and cross-lingual variability.

2 A neural model of spoken word
recognition

Our proposed model can be described at the high
level as a function that maps the acoustic form of
a word onto its lexical meaning. In the following,
we describe the different representation schemes of
our model.

2.1 Acoustic form representation

Human speech is modeled with various low-level
signal representations. In this paper, we adopt
the conventional approach in automatic speech
recognition (ASR) which converts a time-domain
speech waveform into a time-frequency frame-
based representation using a standard signal pro-
cessing pipeline. In particular, we convert each
acoustic segment of a spoken word into a sequence
of MFCC vectors x1:T = (x1, . . . ,xT ), where
xt ∈ Rk is a spectral feature vector, or a frame,
at timestep t and T is the number of frames.

2.2 Meaning representation

Following previous studies that adopted the dis-
tributional approach to represent lexical meaning
(Pimentel et al., 2019; Williams et al., 2020), we
use pre-trained distributed word representations, or
word embeddings, as a proxy for the stored lexi-
cal representations of word forms. This modeling

Figure 1: A schematic view of our proposed model for
spoken word recognition.

choice can be justified since word embeddings have
been shown to reliably encode lexical features such
as taxonomic information (Rubinstein et al., 2015).

2.3 Proposed model
Architecture. Similar to the architecture pre-
sented in work of Maas et al. (2012), our proposed
spoken word recognition model is based on a multi-
layer convolutional neural network that maps an
acoustic input onto a meaning representation (de-
picted in Figure 1). However, instead of vector re-
gression as the objective function, the training pro-
cedure of our model builds on the ideas of visually-
grounded learning of spoken language (Harwath
et al., 2016; Chrupała et al., 2017a). While in pre-
vious work models have been trained to project an
image and its corresponding spoken caption onto
a shared representation space, we train our model
to project an acoustic segment of a word onto its
word embedding. This process can be formalized
as a mapping function using a deep neural network
as follows:

u = f(x1:T ; θ)

where u is the meaning representation computed
by the model, f(.) is the model presented as a
parametric function, x1:T is the observed acoustic
word segment, and θ are the model’s parameters
learned in a supervised approach.
Training. Given a training dataset of N tu-
ples {(x1

1:T ,v
1), (x2

1:T ,v
2), . . . , (xN1:T ,v

N )}, our
model is trained to take an acoustic word token
x1:T as input, build up a meaning representation u,
and then minimize the distance between the com-
puted representation u and the embedding of the
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word v. This learning objective can be realized by
projecting the acoustic word token into the word
embedding space in such a way that an acoustic
segment and embedding of the same word type
are encouraged to end up closer in space than mis-
matched word embeddings. Concretely, we use a
triplet margin loss function as follows:

L =
N∑

i=1

max
(
0, α+ d(ui,vi)− d(ûi,vi)

)

+ max
(
0, α+ d(ui,vi)− d(ui, v̂i)

)

where d(.) is the cosine distance metric and ui and
vi are the matching computed representation and
embedding of a word, while ûi and v̂i are the un-
matched computed representation and embedding
that are sampled from the mini-batch of N sam-
ples. α is the margin hyperparameter of the loss
function.

3 Experimental setup

3.1 Experimental data
We use the multilingual Spoken Wikipedia Corpus
(SWC), which consists of recordings of Wikipedia
articles read by volunteers in German, Dutch, and
English (Köhn et al., 2016). A large portion of
the dataset has been word-aligned and each arti-
cle is associated with a metadata file that option-
ally includes (self-identified) information about the
speaker’s gender and dialect. Therefore, this re-
source is highly suitable for our experimental aims
concerning speech variability.

3.2 Model hyperparameters
Low-level speech features. We use 39-
dimensional MFCC feature vectors as well as
frame-level averaged energy as low-level speech
features. Frames are extracted from speech seg-
ment of 25ms with 10ms overlap between frames.
Each speech sample is then scaled with word-level
zero mean and unit variance.
Speech encoder. We employ three convolutional
layers over the temporal dimension with 128, 128,
and 256 channels respectively and strides of 1 step
for each layer. Batch normalization and ReLU non-
linearity are applied after each convolutional oper-
ation. The speech representation is down-sampled
by applying a single max pooling operation at the
end of the convolution block. Then, the resulting
vector from the convolutional layers is fed into two
fully-connected layers with dropout (p = 0.5) and

dim R@1 R@5 R@10

GloVe 300 0.159 0.451 0.608
FastText (FT) 300 0.176 0.461 0.610
Flair 4096 0.216 0.530 0.665
FT + Flair 4396 0.227 0.557 0.696

Table 1: Comparison of the model’s retrieval perfor-
mance using different word embeddings.

ReLU non-linearity, followed by a linear projection
that outputs a representation in the same dimension-
ality as the word embedding.

Training details. The triplet margin loss is used
with α = 0.2 for all presented experiments. We
use the Adam optimizer with a learning rate of
1× 10−3 and train our models with a batch size of
32 samples for 60 epochs.

4 Experiments

We present and discuss the results of our experi-
ments in this section. We first investigate the effect
of different pre-trained word embeddings on the
model performance. In the variability experiments,
we aim to probe the model’s ability to generalize
to unheard speaker types as well as to recognize
spoken word cognates in two languages that are
phylogenetically related to German: Dutch and
English. Following Chrupała et al. (2017b), we
use the R @ N metric to evaluate our models for
N = {1, 5, 10}.

4.1 Choice of word embeddings

In this experiment, we train our model on a sub-
set of the SWC consisting of 1500 word types, 20
tokens per type, with each of the following word
embeddings: GloVe (Pennington et al., 2014), Fast-
Text (Bojanowski et al., 2017), bidirectional Flair
(Akbik et al., 2018), and stacked Flair and FastText.

The retrieval scores of the model with different
word embeddings are reported in Table 1. Although
the difference is not dramatic, the best-performing
model is the one that uses stacked FastText and
Flair embeddings. It seems that stacking the embed-
dings provides richer semantic representations that
benefit the model during training. Therefore, we
proceed to the variability experiments with stacked
Flair and FastText word embeddings as meaning
representations.
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R@1 R@5 R@10 med. R

heard 0.473 0.850 0.970 2
speaker 0.348 0.688 0.812 3
gender 0.297 0.615 0.756 3
dialect 0.240 0.515 0.643 5

Table 2: Retrieval performance across speaker types.

4.2 Speaker variability

In this experiment, we aim to probe the model’s ro-
bustness against speaker variability by comparing
its performance on various speaker groups: un-
heard utterances by heard speakers, unheard speak-
ers, unheard gender (female speakers), and un-
heard dialect (speakers who self-identified as native
speakers of the Swiss German variety). To this end,
we train a separate model on a subset of the German
portion of the SWC consisting of 2500 word types,
10-100 tokens per type, which were produced by
native male speakers of standard German. This
training set size is chosen as a trade-off between
having a representative training set that includes a
variety of words with different lexical properties
and practical considerations such as training time
and scalability of the model. The test sets we use
for evaluation are matched at the token level, the
only difference being the speaker characteristics.

Retrieval scores, including median rank of the
correct embeddings, are reported in Table 2, and
average cosine similarity of the computed mean-
ing representation from the input signal to the cor-
responding embedding is displayed in Figure 2.
Overall, one can observe that signal variability due
to speaker-related factors that are unobserved dur-
ing training degrades the model’s performance. A
one-way ANOVA test on the cosine similarities
revealed significant differences between speaker
types (χ2(3) = 230.2, p <0.001).1 Post-hoc Tukey
HSD revealed significant differences between all
groups except unheard speaker and unheard gen-
der (p >0.5).

The model performs best at recognizing words
when they are spoken by a speaker heard during
training, suggesting that the representations learned
by the model are not entirely speaker invariant. In-
terestingly, the model is quite good at generalizing
to unheard gender, performing on a par with un-
heard speakers of the same gender. We hypothesize

1We used cosine similarities for statistical testing because
ranks are not normally distributed; most words have low rank.
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Figure 2: Average cosine similarity of utterance-
embedding pairs by speaker type.

that the model learns to abstract from pitch vari-
ations because there was pitch variability present
in the training data. Finally, spoken words from
an unheard dialect (i.e., Swiss German) are more
challenging for the model to correctly recognize,
which suggests that the representations induced
by the model are more sensitive to fine-grained
acoustic-phonetic variations in the signal than pitch
variations.

4.3 Cross-lingual variability

Speakers of related languages are often able to de-
code some information from each other’s speech
without ever having had to explicitly learn the corre-
spondences because related languages exhibit pre-
lexical as well as lexical similarities. Gooskens
et al. (2018) have shown that the comprehension
ability of speakers of related languages correlates
very strongly with the degree of language related-
ness from a phylogenetic point of view. In this
experiment, we explore whether and to what ex-
tent the model which has only been exposed to
German will be able to recognize cognates in two
related languages, English and Dutch. We also ask
the question: does the cross-lingual performance
reflect the degree of language relatedness? Since
German and Dutch are a part of the continental
West Germanic dialect continuum, while English is
not, we hypothesize that the model should be better
at recognizing spoken Dutch words than spoken
English words.

To this end, we use the same model as for
the speaker variability experiment. The test sets
contain cognates in German, English and Dutch,
aligned at the token level. Words in the German
and Dutch test sets are produced by unheard male
speakers of the standard language variety, while
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R@1 R@5 R@10 med. R

German 0.388 0.715 0.819 2
Dutch 0.041 0.138 0.203 133.5
English 0.011 0.064 0.111 177.5

chance ≈ 0.0004 ≈ 0.002 ≈ 0.04 —

Table 3: Retrieval performance on cognates.

words in the English test set are produced by male
native speakers of American English.2 Spoken
word representations for Dutch and English are
obtained via a forward pass through the speech en-
coder, the same way as for German, and the model
receives no explicit information that the cognates
are in a different language.

Retrieval scores @1, 5 and 10, as well as me-
dian rank, for all three languages are reported in
Table 3. Average cosine similarities of matching
utterance-embedding pairs for the three languages
are reported in Figure 3. The standard error is rela-
tively high for the two related languages, especially
for Dutch, because the model’s guess for some
cognates was quite poor. One-way repeated mea-
sures ANOVA reveals unsurprising significant dif-
ferences between groups (χ2(2)=362.3, p<0.0001):
the model is much better at recognizing German
since this is the language that the model was trained
on. If we compare the retrieval scores for Dutch
and English to chance performance,3 we observe
that the model is relatively good at recognizing
cognates in the two related languages, with 20%
and 11% of words in Dutch and English respec-
tively within the top 10 retrieved word embeddings.
The difference in performance on the two related
languages is shown to be significant in post-hoc
Tukey HSD (p=0.004), supporting our hypothesis
that cross-lingual word recognition performance
reflects language relatedness.

We look more closely at the model’s recogni-
tion performance on cognates (a selection is re-
ported in Figure 4). Cognates which are well-
recognized are mostly identical word forms, ex-
cept for vowel length or slightly different conso-

2We would have favoured to include British English in the
study as well but that was not feasible since not enough data
of that kind is available in the SWC.

3We approximate chance performance by assuming that the
probability of a word ending up at each of the 2500 positions
is equally high. This approximation is not perfect since it does
not take into account the fact that more frequent words are
relatively more likely to end up in the top positions. However,
this is very computationally expensive to calculate.
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Figure 3: Average cosine similarity of utterance-
embedding pairs by language.

nant quality (e.g., the Dutch jaar (/ja:r/) and the
German Jahr (/ja:5„/). However, other interesting
correspondences are apparent. For example, we
observe that for the word ship (/SIp/), the model
is better at recognizing the English word, which
is different from the German Schiff (/SIf/) only in
the final consonant, than the Dutch schip (/sxIp/),
where the word onset is different. This finding
suggests that the model might have learned to pay
closer attention to the beginnings of words. Future
work could explore systematically which sound cor-
respondences make it easy or difficult to recognize
cognates.

bier/beer/bier

feuer/fire/vuur

frei/free/vrij

fuchs/fox/vos

gelb/yellow/geel

hoch/high/hoog

jahr/year/jaar

keller/cellar/kelder
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rot/red/rood

scharf/sharp/scherp

schiff/ship/schip
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wasser/water/water

zunge/tongue/tong
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Figure 4: Average cosine similarity between match-
ing utterance-pair embeddings for cognates in the three
languages (words depicted as German/English/Dutch).
Higher cosine similarity corresponds to a more accu-
rate acoustic representation and, in turn, better recogni-
tion. For example, the word cellar is recognized better
in English than in Dutch (reflected in a relatively higher
cosine similarity). Lighter shades of blue correspond to
higher cosine similarity for German utterances.
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5 Discussion and future work

We observe that the representations produced by
the model seem to be largely gender-invariant since
the model’s performance on unheard female speak-
ers is on a par with its performance on unheard
male speakers. On the other hand, dialect vari-
ability seems to have a stronger impact than gen-
der which suggests that the model is sensitive to
low-level acoustic-phonetic variance in the speech
signal. We would expect a human listener to ex-
hibit similar patterns in case of little exposure to
dialectical variability.

Our model operates by creating a general rep-
resentation of a word, which it uses to generalize
to unheard speakers. However, there is evidence
in psycholinguistics which suggests that we adapt
to individuals’ pronunciation and create speaker-
specific representations (Kleinschmidt and Jaeger,
2015). This could be simulated by fine-tuning the
trained model on more data by a particular speaker.

When tested on cognates in related languages
in a zero-shot fashion, the model shows reason-
ably good cognate recognition performance. There
is also a significant difference in the model’s per-
formance on Dutch and on English, reflecting the
closer phylogenetic relationship between German
and Dutch. One could imagine using the proposed
model to test mutual intelligibility: if trained on
Dutch, would such a model be better at recogniz-
ing German cognates than the other way around?
This would be a test of intelligibility that eliminates
extra-linguistic factors that cannot be isolated in
behavioral experiments (van Heuven et al., 2012).

Since this is a word-level model of word recogni-
tion, there is no facilitatory effect of context, which
human listeners are known to rely on to a large
extent when there is uncertainty as to which word
was uttered. In the cross-lingual experiment, too,
we would expect that a model which is able to
benefit from context would show much better per-
formance. Such sentence-level models of related
language comprehension are an exciting avenue to
pursue in future work.
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ubović, Anja Schüppert, Femke Swarte, and Ste-
fanie Voigt. 2018. Mutual intelligibility between
closely related languages in europe. International
Journal of Multilingualism, 15(2):169–193.

Alex Graves, Santiago Fernández, Faustino Gomez,
and Jürgen Schmidhuber. 2006. Connectionist
temporal classification: labelling unsegmented se-
quence data with recurrent neural networks. In Pro-
ceedings of the 23rd international conference on Ma-
chine learning, pages 369–376.

David Harwath, Antonio Torralba, and James Glass.
2016. Unsupervised learning of spoken language
with visual context. In Advances in Neural Infor-
mation Processing Systems, pages 1858–1866.

Vincent J van Heuven, Charlotte Gooskens, and Renée
van Bezooijen. 2012. Mutual intelligibility of dutch
and german cognates.

Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl,
Abdel-rahman Mohamed, Navdeep Jaitly, Andrew
Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N
Sainath, et al. 2012. Deep neural networks for
acoustic modeling in speech recognition: The shared
views of four research groups. IEEE Signal process-
ing magazine, 29(6):82–97.

101



Dave F Kleinschmidt and Florian T Jaeger. 2015. Ro-
bust speech perception: recognize the familiar, gen-
eralize to the similar, and adapt to the novel. Psycho-
logical review, 122(2):148.
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Abstract

Sentiment tasks such as hate speech detection
and sentiment analysis, especially when per-
formed on languages other than English, are
often low-resource. In this study, we exploit
the emotional information encoded in emojis
to enhance the performance on a variety of
sentiment tasks. This is done using a trans-
fer learning approach, where the parameters
learned by an emoji-based source task are
transferred to a sentiment target task. We anal-
yse the efficacy of the transfer under three con-
ditions, i.e. i) the emoji content and ii) label
distribution of the target task as well as iii) the
difference between monolingually and multi-
lingually learned source tasks. We find i.a. that
the transfer is most beneficial if the target task
is balanced with high emoji content. Monolin-
gually learned source tasks have the benefit of
taking into account the culturally specific use
of emojis and gain up to F1 +0.280 over the
baseline.

1 Introduction

Many natural language processing (NLP) tasks suf-
fer from a lack of available data. This is especially
true for sentiment tasks, such as hate speech (HS)
detection, which depend on the availability of man-
ually annotated data. When moving to languages
other than English, many sentiment tasks quickly
become very low-resourced.

On the other hand, noisy social media content is
available in abundance and many sentiment tasks
are based on user comments on such platforms.
Emojis can be a valuable source for the distant
supervision of sentiment tasks, as they correlate
with the underlying emotion of a comment. In this
study, we aim to exploit the emotional information
encoded in emojis to improve the performance on
various sentiment tasks using a transfer learning
approach from an emoji-based source task (ST)

to a sentiment target task (TT). Previous work
has focused on the transfer from predicting single
emojis (Felbo et al., 2017) or strictly pre-defined
emoji-clusters (Deriu et al., 2016). However, pre-
defined emoji clusters do not take into account the
culturally diverse usage of emojis (Park et al., 2012;
Kaneko et al., 2019). We therefore introduce data-
driven supervised and unsupervised emoji clusters
and compare these with single emoji prediction
tasks. Specifically, we analyze the efficacy of
the transfer from a single emoji or (un)supervised
emoji cluster prediction ST to a sentiment TT un-
der three conditions, i.e. i) low vs. high amount of
emoji content present in TT, ii) balanced vs. unbal-
anced label distribution in TT and iii) monolin-
gually or multilingually learned ST. The first two
conditions are based on typical qualities of senti-
ment corpora, which tend to be unbalanced in their
label distribution with varying degrees of emoji
content depending on the source of the data. The
third condition is relevant for languages for which
a TT is low-resource and which might benefit from
a multilingually learned ST.

In Section 2 we give an outline of related work,
followed by the introduction of our method (Sec-
tion 3). The experimental setup in Section 4
details the data and models used as well as the
(un)supervised clusters generated. In Section 5 we
describe our results and conclude in Section 6.

2 Related Work

Emojis have been used as a type of distant super-
vision using pre-defined emotion classes based on
psychological models (Suttles and Ide, 2013), bi-
nary (positive/negative) classes (Deriu et al., 2016)
or a set of single emojis (Felbo et al., 2017). How-
ever, such pre-defined emoji classes often do not ac-
count for the culturally diverse use of emojis (Park
et al., 2012; Kaneko et al., 2019). In contrast, our
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work does not pre-define the emotion classes found
in emojis and instead learns these classes, or clus-
ters, from the data itself. While our and the above
approaches focus on exploiting emojis as additional
labelled data, e.g. in a transfer setting, emoji em-
beddings (Eisner et al., 2016) have been used as
additional features in downstream tasks such as
sarcasm detection (Subramanian et al., 2019).

Transfer learning has recently been driven by
transformer-based (Vaswani et al., 2017) language
models (LM) such as BERT (Devlin et al., 2019)
or XLM-R (Conneau et al., 2020). When learning
a source task on these models, the representations
in the encoder change to become informative to
the task at hand. In a parameter transfer setting,
a new but related target task then profits from the
learned representations in the encoder. Transfer
learning has been applied to sentiment analysis
(SA) using parameter transfer methods such as pre-
trained sentiment embeddings (Dong and de Melo,
2018) or machine translation-based context vectors
(McCann et al., 2017). Our approach forms part of
the parameter transfer approach, as we use encoder
representations learned using emoji-based source
tasks and transfer these to sentiment target tasks.

Hate speech classification and sentiment anal-
ysis have in recent years been the object of many
shared tasks (Rosenthal et al., 2017; Wiegand,
2018; Basile et al., 2019; Mandl et al., 2019; Ogrod-
niczuk and Łukasz Kobyliński, 2019). Classifica-
tion models for these tasks often rely on feature
engineering and statistical methods such as naive-
bayes (Saleem et al., 2016), logistic regression over
subwords (Waseem and Hovy, 2016) or neural ap-
proaches including convolutional neural networks
(Park and Fung, 2017) or, as in our case, the repre-
sentations of large LMs (Yang et al., 2019).

3 Method: Emoji-Prediction

For our parameter transfer, we rely on a single
transformer-based LM which is shared among dif-
ferent tasks. A sequence x ∈ X is featurized by
reading it into the encoder of the LM and retrieving
its last hidden state. A linear layer is then used
as a predictive function f : X → Y to predict
labels y ∈ Y . A task T = {Y, f(x)} is then a set
of labels Y and the predictive function f over the
instances in X .

We follow a transfer learning approach, where
source task TS is an emoji-based classification task,
i.e. given a sequence, predict the emoji (class) that

it originally contained. Target task TT is a down-
stream task such as SA or HS (Section 4.1). Each
task has its own set of instances X , labels Y and
predictive function f , while the feature-generating
LM stays the same. The error of predictor f is
back-propagated to the LM, which allows us to
transfer learned parameters from TS to TT .

3.1 Source Tasks (ST)
We focus on 5 different emoji-based STs, that can
be divided into two types, emoji prediction (EP)
and emoji cluster prediction. To sample emojis for
EP or create clusters, we rely on a large collection
of user generated comments. EP is a multi-class
prediction task over the 64 most common emo-
jis identified in the collection of comments. Con-
cretely, given a tweet with all emojis removed, the
classifier has to predict which of the 64 emojis was
originally contained within it.

The emoji cluster prediction tasks can be su-
pervised (PMI-{Target,Swear}) or unsupervised
(KMeans-{2,3}). In this case the task is simplified:
Given a tweet with all emojis removed, predict the
cluster to which the emoji originally contained in
the tweet belonged.

Unsupervised Clusters In order to account for
the cultural differences in the use of emojis, we
learn emoji clusters directly from the user gen-
erated data. We generate 50-dimensional vector
representations over the tokens in the collection of
user comments using the continuous bag of words
(Mikolov et al., 2013) approach. We then perform
k-means clustering with 6 target clusters on the
representations of emojis that occurred ≥ 1000
times. These clusters are manually merged into 2
(positive/negative) and 3 (positive/negative/neutral)
clusters to create the binary KMeans-2 and ternary
KMeans-3 emoji cluster prediction STs respec-
tively. Below a comment to be classified as pos-
itive according to the KMeans-{2,3} tasks, as it
originally contained an emoji that belonged to the
positive cluster:

So beautiful and great advice →positive

Supervised Clusters As an alternative to the
completely unsupervised clusters, we exploit the
mutual information between emojis and swear
words as a type of distant supervision for HS tasks.
We calculate the pointwise mutual information
(PMI) between comments in our collection of user
content (not) containing slurs and the emojis that
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appear. An emoji is in the slur cluster if its PMI is
larger to comments containing swearwords, other-
wise it is in the neutral cluster. PMI-Swear is then
a binary classification task based on the resulting
slur/neutral emoji clusters.

While the unsupervised emoji cluster predic-
tion STs and PMI-Swear are source-oriented, i.e.
learned on user generated content, we also explore
target-oriented clusters that rely on the shared infor-
mation between emojis and the labels in each of the
TTs. Concretely, we calculate the PMI between the
label of an instance in the respective TT training
data and the emojis it contains. The emoji is placed
into the cluster of the label to which its PMI value
is largest. PMI-Target is the ST based on these
target-oriented emoji clusters.

3.2 Target Tasks (TT)
Once the classifier has been fully trained on the ST,
and thus has adapted the underlying LMs represen-
tations to fit the ST at hand, we discard it and train a
new classifier on top of the enriched LM to predict
the TT. We evaluate this transfer from the various
STs on two main categories of TTs, namely Hate
Speech Detection and Sentiment Analysis. Given a
user generated comment, Hate Speech Detection
is the task of classifying the comment as either hate
or none. Note, however, that concrete label names
(e.g. offense, hate, harmful) may differ across spe-
cific HS tasks.

While HS in our case is a binary classification
task, Sentiment Analysis is a ternary classifica-
tion task which takes as input a user generated
comment and classifies it as either positive, neu-
tral or negative. In the following an example from
the Sentiment Analysis in Twitter (Rosenthal et al.,
2017) task:

Finally starting the 5th season of Dexter.
See ya later, weekend! →positive

Both HS and SA are sentiment-based tasks, e.g.
hate towards a group of people or positive senti-
ment towards a product etc. We therefore take these
two types of tasks to have the potential to benefit
from the emotion information encoded in emojis.
In the following sections we explore the conditions
under which the transfer from an emoji-based ST
to a sentiment-based TT is beneficial for the TT.

4 Experimental Setup

We describe the data used for the STs and TTs
respectively (Section 4.1), followed by the specifi-

Corpus # Tweets # Emojis
Train Test

Target Tasks (TT)
HS-DE 1158/2439 970/2061 853 (7.2%)
SA-DE 1346/900/3676 83/49/197 166 (2%)
HS-ES 1857/2643 660/940 957 (14.5%)
SA-EN 18481/7551/21542 2375/3972/5937 1211 (1.9%)
SA-AR 653/1022/1336 1514/2222/2364 2126 (22.5%)
HS-PL 812/8726 134/866 1733 (13.7%)

Source Tasks (ST)
TW-DE 16M – 3M (10%)
TW-EN 323M – 82M (17%)
TW-ES 320M – 43M (9%)
TW-PL 7M – 1M (12%)
TW-AR 183M – 56M (20%)

Table 1: Number of train, test (for TT) and collected
(for ST) tweets as well as number of (non-unique)
emojis contained in each corpus. Percentage of train-
ing tweets containing emojis in brackets. TTs with
label distribution for HS (hate/none) and SA (posi-
tive/negative/neutral) tasks.

cations of the encoding LM (Section 4.2) and the
emoji cluster creation (Section 4.3).

4.1 Data
Source Tasks We use a collection1 of tweets
that has been collected from the Twitter stream
between 2011 and 2019 as our corpus needed to
sample emojis and create emoji clusters for the
STs. We perform language identification using
the polyglot2 library over the tweets to create a
corpus for German, English, Spanish, Polish and
Arabic (TW-{DE,EN,ES,PL,AR}) respectively.

To automatically identify swear words for PMI-
Swear, we use a German and a multilingual
swear word collection, namely WoltLab3 and
Hatebase4. In total, we collected 785 slurs for
German, and 1531, 140, 306, 79 for English, Span-
ish, Polish and Arabic respectively.

Target Tasks We work with 6 target tasks in to-
tal, 3 HS and 3 SA tasks, taking into account their
emoji content, class (im)balance and language.

For German, we use GermEval 2018 (Wiegand,
2018) Task 1 (offense/other) (HS-DE) and SB10k
(Cieliebak et al., 2017) (positive/negative/neutral)
(SA-DE). For English, we use Sentiment Anal-
ysis in Twitter (Rosenthal et al., 2017) (posi-
tive/negative/neutral) (SA-EN). Sentiment Anal-

1www.archive.org/details/twitterstream
2www.github.com/aboSamoor/polyglot
3www.woltlab.com/attachment/

3615-schimpfwortliste-txt/
4www.hatebase.org/
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ysis in Twitter is also used for Arabic (SA-AR).
For Spanish we use HatEval (Basile et al., 2019)
(hate/none) (HS-ES) and for Polish, we use PolEval
(Ogrodniczuk and Łukasz Kobyliński, 2019) Task
6 (harmful/none) (HS-PL). For all of the above, we
use the original train/test splits. While the HA tasks
have different label names, we normalize these to
be hate/none across all tasks. For all SA, the labels
to be predicted are positive/negative/neutral.

In Table 1, we report the label distribution,
hate/none for HS and positive/negative/neutral for
SA, across all TT training and test sets, as well
as ST Twitter corpora sizes. For both ST and TT
corpora, we also report the percentage as well as
total number of tweets containing emojis.

Preprocessing All data sets undergo the
same preprocessing. Tweets are tokenized
using the NLTK (Bird and Loper, 2004)
TweetTokenizer and user mentions, retweets
and punctuation are removed. Repeated characters
are shortened. We use token frequencies to
determine the standard orthography of a word (e.g.
coooool → cool instead of col).

4.2 Model Specifications

For the monolingual (German) experiments,
we use the German BERT5 (BERT-DE)
and for multilingual experiments we use
Bert-Base-Multilingual-Cased (BERT-
M) as the LM to encode the tweets. We base
our code6 on the simpletransformers7

sequence classification implementations of the
above models. Each classification task is trained
for a maximum of 10 epochs using early stopping
over the validation accuracy with δ = 0.01 and
patience 3. Training was performed on a single
Titan-X GPU, which took between 1 and 6 hours
depending on the data size. We evaluate the
resulting classifiers using the Macro F1 measure.

4.3 Clusters

We describe the creation of the emoji clusters used
for the emoji cluster STs.

Unsupervised The unsupervised clusters (Sec-
tion 3) were trained on TW-DE and the concate-
nation of TW-{DE,EN,ES,PL,AR} for the mono-

5www.deepset.ai/german-bert
6https://github.com/uds-lsv/

emoji-transfer
7www.github.com/ThilinaRajapakse/

simpletransformers

Figure 1: Happy (left) and unhappy (right) emoji clus-
ters obtained by KMeans on TW-DE.

and multilingual experiments respectively. In both
cases, this yielded clusters that can be manually
categorized as happy, love, fun, nature, unhappy,
other (Figure 1). For KMeans-3, {happy, fun, love}
were merged to positive, {other, nature} to neutral
and {unhappy} was used as the negative class. For
KMeans-2, the neutral class is ignored.

Supervised The PMI-Target clusters are trained
on the respective TT training data. The slur lists
are used to identify the slurs in the twitter cor-
pora. PMI-Swear is then trained on TW-DE and the
concatenation of TW-{DE,EN,ES,PL,AR} for the
mono- and multilingual experiments respectively.

5 Results

We train each model over 10 seeded runs and report
the averaged Macro F1 with standard error (Figure
2). For each TT, we train a baseline, which is
the same pre-trained BERT-{DE,M} model that
is now fine-tuned directly on the TT classification
task at hand, without prior training on the ST. We
compare these baselines with those models that
have undergone a transfer from ST to TT. We use
the term equivalent to signify that two models lie
within each others error bounds.

5.1 Condition 1: Emoji Content

We evaluate the effect that STs have on TTs with
different amounts of emoji content. We focus on
the TTs with the lowest and highest amount of
emoji content, namely SA-EN (1.9% emoji con-
tent) and SA-AR (22.5%). This is the multilingual
case. For the monolingual case, we evaluate the
effect on SA-DE (2%) and HS-DE (7.2%). All of
these TTs are unbalanced, i.e. the minority class
makes up 15.2–32.2% of the training data.

The monolingual, low emoji content SA-DE
task does not profit from the transfer. Rather, the
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Figure 2: Macro F1 of the HS and SA target tasks transferred from monolingual (left) and multilingual (right) STs.

training on most STs leads to a slight drop in F1-
Macro compared to the baseline (F1 0.600). On
the other hand, high emoji content HS-DE greatly
benefits from the transfer, with PMI-Swear (F1
0.730) being especially beneficial for the perfor-
mance on the TT, yielding a gain of F1 +0.280 over
the baseline. This shows that the shared informa-
tion in emojis and slurs is relevant to the HS task
at hand. Also beneficial are EP (F1 0.705), and the
unsupervised KMeans-3 (F1 0.690) and KMeans-2
(F1 0.629) cluster prediction tasks. Only the su-
pervised PMI-Target (F1 0.405) does no seem to
be beneficial for the performance on the TT, lead-
ing to a drop in performance, which is due to the
unbalanced nature of the TT (Section 5.2).

The multilingual case shows a slightly mixed
trend. Low emoji content SA-EN does not benefit
from the transfer, but unlike in the monolingual
setting, it is not harmed by it either. All STs lead to
a TT performance that is equivalent to the baseline
(F1 0.578). High emoji content SA-AR only barely
profits from the transfer, with EP (F1 0.509) leading
to a small gain of F1 (+0.034) over the baseline (F1
0.475), while all other STs lead to an equivalent
performance to the baseline. The overall trend is
similar to the monolingual case but the positive and
negative effects are dimmed down, which may be
due to the multilingual aspect (Section 5.3).

The general trend shows that a decent amount
of emoji content in the TT training data is crucial
for the transfer to be beneficial.

5.2 Condition 2: Label Distribution

To analyze the effect that the STs have on differ-
ently (un)balanced TTs, we focus on HS-PL (the
minority class makes up 8.5% of training data)
and HS-ES (41.3%), as they are the two most

(un)balanced TTs, while being comparable in terms
of emoji content (13.7% and 14.5% respectively).

For unbalanced HS-PL, EP (F1 0.617) and un-
supervised KMeans-2 (F1 0.522) lead to an im-
provement of F1 +0.134 and F1 +0.039 over the
baseline, respectively. All other STs are equivalent
to the baseline. Balanced HS-ES benefits from all
TTs, with EP (F1 0.708) leading to a gain of F1
+0.261 over the baseline (F1 0.447), followed by
PMI-Swear (F1 0.690) and PMI-Target (F1 0.643).
The unsupervised clusters are beneficial but less
effective, with F1 0.602 and F1 0.475 for KMeans-
3 and KMeans-2 respectively, which likely stems
from the multilingual aspect (Section 5.3).

PMI-Target performs poorly on unbalanced HS-
PL (and HS-DE etc.) due to its use of mutual in-
formation between emojis and the TT labels. This
leads to it reproducing the class imbalance, making
it less effective on unbalanced TTs.

The difference in impact of PMI-Swear on HS-
PL (none) and HS-ES (and HS-DE) (gain) can be
explained by the composition of the ST dataset.
TW-PL is the smallest corpus in the multilingual
collection of user comments, and this sparsity is
further driven by the morphological complexity of
Polish, such that the 306 slurs from the Polish slur
list only resulted in 65k Polish training samples
in PMI-Swear, as opposed to 1.8M and 3M for
German and Spanish respectively.

Overall, if the label distribution in TT is bal-
anced, the TT easily benefits from the transfer. Oth-
erwise other conditions such as the multilinguality
or emoji content become more relevant.

5.3 Condition 3: Multilinguality

We analyze the effectiveness of the transfer in a
monolingual and multilingual setting. For this, we
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focus on the effect that the monolingually and mul-
tilingually learned STs have on HS-DE and SA-DE.
Both TTs are unbalanced, while HS-DE has a high
emoji content and SA-DE has a low emoji content.

The different effects of the emoji-content in
HS-DE and SA-DE has been discussed in Section
5.1, showing that in the monolingual setting, high
emoji content HS-DE benefits from the transfer,
while low emoji content SA-DE does not. In the
multilingual case, we see a similar, but dimmed,
trend. SA-DE does not benefit from the transfer,
with all TTs leading to an equivalent performance
as the baseline (F1 0.566), except KMeans-2 (F1
0.439) which is below the baseline. The STs have
a similar performance on HS-DE, being equivalent
or below the baseline (F1 0.663). Only PMI-Swear
(F1 0.678) is beneficial for the TT performance.

The effect of ST-oriented clusters KMeans-{2,3}
was beneficial in the monolingual case (HS-DE),
but this benefit is lost in the multilingual set-
ting. This underlines our original idea that ST-
oriented unsupervised emoji clusters learned on
large amounts of user generated text have the ad-
vantage of accounting for cultural differences in
the usage of emojis. When learned multilingually,
this advantage is lost. An example of the culturally
diverse use of emojis is , which is rather infre-
quent in Europe and might be used to point towards
the importance of recycling. In TW-AR, this emoji
is among the top 5 most frequent emojis, and is
used to motivate other users to share their content.

The overall trend thus shows that monolin-
gually learned STs are more beneficial than multi-
lingual STs. However, if the training data of a TT
is balanced, this effect is less pronounced.

5.4 Comparison to Benchmark Results

To put the results into a broader perspective, we
compare to state-of-the-art (SOTA) models for each
of the shared-tasks/datasets that our TTs are based
on (Table 2). For two of the Hate Speech bench-
marks, the performance of our transfer approach
is close to the SOTA, namely with a difference of
F1 −0.038 (HS-DE) and F1 −0.03 (HS-ES). For
HS-PL, we were able to achieve a gain of +0.031
over the SOTA. Across all three Sentiment Analy-
sis benchmarks, our models are below the SOTA.
This indicates that SA, in general, is a more diffi-
cult task to our transfer approach than HS, possibly
due to its ternary, rather than binary, classification
objective. This is another factor causing the trans-

TT Method F1 SOTA

HS-DE PMI-Swear (monolingual) 0.730 0.768
HS-ES EP 0.708 0.730
HS-PL EP 0.617 0.586

SA-DE Baseline (monolingual) 0.600 0.651
SA-AR EP 0.509 0.610
SA-EN KMeans-3 0.611 0.677

Table 2: Macro F1 comparison of top-scoring trans-
fer method (F1) with SOTA results on the different
TT test sets. Best scores in bold. See (Montani and
Schüller, 2018) (HS-DE), (Basile et al., 2019) (HS-ES),
(Ogrodniczuk and Łukasz Kobyliński, 2019) (HS-PL),
(Cieliebak et al., 2017) (SA-DE) and (Rosenthal et al.,
2017) (HS-{AR,EN}) for SOTA method descriptions.

fer to be overall more beneficial for HS rather than
SA, next to the unbalanced (SA-{EN,AR}) and
low-emoji content (SA-DE) nature of the SA tasks.

6 Summary

We have evaluated and identified conditions under
which the transfer from an emoji-based ST is ben-
eficial for a sentiment TT. In the experiments in
Section 5 we observed three major trends, namely
i) TTs with high amounts of emoji content benefit
more from the transfer, ii) PMI-Target tends to be
detrimental to unbalanced TTs and iii) monolin-
gually learned STs tend to perform better than their
multilingual counterparts, due to their improved
representation of culturally unique emoji usages.
The latter underlines the importance of taking into
account cultural differences when exploiting the
information encoded in emojis.

From these results, we can draw conclusions
about the conditions under which a given emoji-
based ST is beneficial. Due to the shared infor-
mation between emojis and slurs, PMI-Swear is
beneficial to HS tasks when the data that can be
generated from the swear word list is decently large.
PMI-Target is beneficial when the TT is balanced,
otherwise it replicates the already existing class
imbalance. Unsupervised KMeans-{2,3} should
be learned monolingually to be beneficial and EP
is a safe choice for TTs with high emoji content.
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Abstract

Neural dependency parsing has achieved re-
markable performance for many domains and
languages. The bottleneck of massive la-
beled data limits the effectiveness of these
approaches for low resource languages. In
this work, we focus on dependency parsing
for morphological rich languages (MRLs) in
a low-resource setting. Although morphologi-
cal information is essential for the dependency
parsing task, the morphological disambigua-
tion and lack of powerful analyzers pose chal-
lenges to get this information for MRLs. To ad-
dress these challenges, we propose simple aux-
iliary tasks for pretraining. We perform experi-
ments on 10 MRLs in low-resource settings to
measure the efficacy of our proposed pretrain-
ing method and observe an average absolute
gain of 2 points (UAS) and 3.6 points (LAS).1

1 Introduction

Dependency parsing has greatly benefited from
neural network-based approaches. While these ap-
proaches simplify the parsing architecture and elim-
inate the need for hand-crafted feature engineering
(Chen and Manning, 2014; Dyer et al., 2015; Kiper-
wasser and Goldberg, 2016; Dozat and Manning,
2017; Kulmizev et al., 2019), their performance
has been less exciting for several morphologically
rich languages (MRLs) and low-resource languages
(More et al., 2019; Seeker and Çetinoğlu, 2015). In
fact, the need for large labeled treebanks for such
systems has adversely affected the development of
parsing solutions for low-resource languages (Va-
nia et al., 2019). Zeman et al. (2018) observe that
data-driven parsing on 9 low resource treebanks
resulted not only in low scores but those outputs
“are hardly useful for downstream applications”.

1Code and data available at: https://github.com/
jivnesh/LCM

Several approaches have been suggested for im-
proving the parsing performance of low-resource
languages. This includes data augmentation strate-
gies, cross-lingual transfer (Vania et al., 2019) and
using unlabelled data with semi-supervised learn-
ing (Clark et al., 2018) and self-training (Rotman
and Reichart, 2019). Further, incorporating mor-
phological knowledge substantially improves the
parsing performance for MRLs, including low-
resource languages (Vania et al., 2018; Dehouck
and Denis, 2018). This aligns well with the linguis-
tic intuition of the role of morphological markers,
especially that of case markers, in deciding the syn-
tactic roles for the words involved (Wunderlich and
Lakämper, 2001; Sigursson, 2003; Kittilä et al.,
2011). However, obtaining the morphological tags
for input sentences during run time is a challenge
in itself for MRLs (More et al., 2019) and use of
predicted tags from taggers, if available, often ham-
pers the performance of these parsers. In this work,
we primarily focus on one such morphologically-
rich low-resource language, Sanskrit.

We propose a simple pretraining approach,
where we incorporate encoders from simple auxil-
iary tasks by means of a gating mechanism (Sato
et al., 2017). This approach outperforms multi-
task training and transfer learning methods under
the same low-resource data conditions (∼500 sen-
tences). The proposed approach when applied to
Dozat et al. (2017), a neural parser, not only obvi-
ates the need for providing morphological tags as
input at runtime, but also outperforms its original
configuration that uses gold morphological tags as
input. Further, our method performs close to DCST
(Rotman and Reichart, 2019), a self-training based
extension of Dozat et al. (2017), which uses gold
morphological tags as input for training.

To measure the efficacy of the proposed method,
we further perform a series of experiments on 10
MRLs in low-resource settings and show 2 points
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Figure 1: Illustration of proposed architecture for a Sanskrit sequence. English translation: “Demigods and demons
had tried with equal effort for these planets”. (a) Pretraining step: For an input word sequence, tagger predicts
labels as per three proposed auxiliary tasks, namely, Morphological Tag (green), Case Tag (red) and Label Tag
(black). (b) Parser with gating: E(P ) is encoder of a neural parser like Dozat and Manning (2017) and E(1)−(3)

are the encoders pre-trained with proposed auxiliary tasks. Gating mechanism combines representations of all the
encoders which, for each word pair, is passed to two MLPs to predict the probability of arc score (S) and label (L).

and 3.6 points average absolute gain (§ 3.1) in
terms of UAS and LAS, respectively. Our proposed
method also outperforms multilingual BERT (De-
vlin et al., 2019, mBERT) based multi-task learning
model (Kondratyuk and Straka, 2019, Udify) for
the languages which are not covered in mBERT
(§ 3.4).

2 Pretraining approach

Our proposed pretraining approach essentially at-
tempts to combine word representations from en-
coders trained on multiple sequence level super-
vised tasks, as auxiliary tasks, with that of the
default encoder of the neural dependency parser.
While our approach is generic and can be used with
any neural parser, we use BiAFFINE parser (Dozat
and Manning, 2017), hence forth referred to as Bi-
AFF, in our experiments.This is a graph-based neu-
ral parser that makes use of biaffine attention and
a biaffine classifier.2 Figure 1 illustrates the pro-
posed approach using an example sequence from
Sanskrit. Our pipeline-based approach consists of
two steps: (1) Pretraining step (2) Integration step.
Figure 1a describes the pretraining step with three
auxiliary tasks to pretrain the corresponding en-
coders E(1)−(3). Finally, in the integration step,
these pretrained encoders along with the encoder
for the BiAFF model E(P ) are then combined us-

2More details can be found in supplemental (§ A.1).

ing a gating mechanism (1b) as employed in Sato
et al. (2017). 3

All the auxiliary tasks are trained independently
as separate models, but using the same architec-
ture and hyperparameter settings which differ only
in terms of the output label they use. The mod-
els for the pretraining components are trained us-
ing BiLSTM encoders, similar to the encoders in
Dozat and Manning (2017) and then decoded using
two fully connected layers, followed by a softmax
layer (Huang et al., 2015). These sequential tasks
involve prediction of the morphological tag (MT),
dependency label (relation) that each word holds
with its head (LT) and further we also consider
task where the case information of each nominal
forms the output label (CT). Other grammatical
categories did not show significant improvements
over the case (§ 3.2). This aligns well with the lin-
guistic paradigm that the case information plays an
important role in deciding the syntactic role that a
nominal can be assigned in the sentence. For words
with no case-information, we predict their coarse
POS tags. Here, the morphological information is
automatically leveraged using the pre-trained en-
coders, and thus during runtime the morphological
tags need not be provided as inputs. It also helps in
reducing the gap between UAS and LAS (§ 3.1).

3Our proposed approach is inspired from Rotman and Re-
ichart (2019).
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3 Experiments

Data and Metric: We use 500, 1,000 and 1,000
sentences from the Sanskrit Treebank Corpus
(Kulkarni et al., 2010, STBC) as the training, dev
and test data respectively for all the models. For
the proposed auxiliary tasks, all the sequence tag-
gers are trained with additional previously unused
1,000 sentences from STBC along with the train-
ing sentences used for the dependency parsing task.
For the Label Tag (LT) prediction auxiliary task,
we do not use gold dependency information; rather
we use predicted tags from BiAFF parser. For the
remaining auxiliary tasks, we use gold standard
morphological information.

For all the models, input representation consists
of FastText (Grave et al., 2018)4 embedding of
300-dimension and convolutional neural network
(CNN) based 100-dimensional character embed-
ding (Zhang et al., 2015). For character level CNN
architecture, we use following setting: 100 number
of filters with kernel size equal to 3. We use stan-
dard Unlabelled and Labelled Attachment Scores
(UAS, LAS) to measure the parsing performance
and use t-test for statistical significance (Dror et al.,
2018).

For STBC treebank, the original data does not
have morphological tag entry, so the Sanskrit Her-
itage reader (Huet and Goyal, 2013; Goyal and
Huet, 2016) is used to obtain all the possible
morphological analysis and only those sentences
are chosen which do not have any word showing
homonymy or syncretism (Krishna et al., 2020).
For other MRLs, we restrict to the same training
setup as Sanskrit and use 500 annotated sentences
as labeled data for training. Additionally, we use
1000 sentences with morphological information as
unlabelled data for pretraining sequence taggers.5

We use all the sentences present in original devel-
opment and test split data for development and test
data. For languages where multiple treebanks are
available, we chose only one available treebank to
avoid domain shift. Note that STBC adopts a tag-
ging scheme based on the grammatical tradition of
Sanskrit, specifically based on Kāraka (Kulkarni
and Sharma, 2019; Kulkarni et al., 2010), while the
other MRLs including Sanskrit-Vedic use UD.

4https://fasttext.cc/docs/en/
crawl-vectors.html

5The predicted relations on unlabelled data by the model
trained with 500 samples are used for Label Tagging task.

Hyper-parameters: We utilize the BiAFFINE
parser (BiAFF) implemented by Ma et al. (2018).
We employ the following hyper-parameter setting
for pretraining sequence taggers and base parser
BiAFF: the batch size of 16, number of epochs as
100, and a dropout rate of 0.33 with a learning rate
equal to 0.002. The hidden representation gener-
ated from n-Stacked-LSTM layers of size 1,024
is passed through two fully connected layers of
size 128 and 64. Note that LCM and MTL models
use 2-Stacked LSTMs. We keep all the remaining
parameters the same as that of Ma et al. (2018).

For all TranSeq variants, one BiLSTM layer is
added on top of three augmented pretrained layers
from an off-the-shelf morphological tagger (Gupta
et al., 2020) to learn task-specific features. In
TranSeq-FEA, the dimension of the non-linearity
layer of the adaptor module is 256, and in TranSeq-
UF, after every 20 epochs, one layer is unfrozen
from top to down fashion. In TranSeq-DL, the
learning rate is decreased from top to down by a
factor of 1.2. We have used default parameters to
train Hierarchical Tagger 6 and baseline models.

Models: All our experiments are performed as
augmentations on two off the shelf neural parsers,
BiAFF (Dozat and Manning, 2017) and Deep Con-
textualized Self-training (DCST), which integrates
self-training with BiAFF (Rotman and Reichart,
2019).7 Hence their default configurations become
the baseline models (Base). We also use a system
that simultaneously trains the BiAFF (and DCST)
model for dependency parsing along with the se-
quence level case prediction task in a multi task
setting (MTL). For MTL model, we also experi-
ment with morphological tagging, as an auxiliary
task. However, we do not find significant improve-
ment in performance compared to case tagging.
Hence, we consider case tagging as an auxiliary
task to avoid sparsity issue due to the monolithic
tag scheme for morphological tagging. As a trans-
fer learning variant (TranSeq), we extract first
three layers from a hierarchical multi-task mor-
phological tagger (Gupta et al., 2020), trained on
50k examples from DCS (Hellwig, 2010). Here
each layer corresponds to different grammatical
categories, namely, number, gender and case. Note
that number of randomly initialised encoder layers
in BiAFF (and DCST) are now reduced from 3 to

6https://github.com/ashim95/
sanskrit-morphological-taggers

7We describe the baseline models in supplemental (§ A).
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1. We fine-tune these layers with default learning
rate and experiment with four different fine-tuning
schedules.8 Finally, our proposed configuration (in
§2) is referred to as the LCM model.9 We also train
a version each of the base models which expects
morphological tags as input and is trained with gold
morphological tags. During runtime, we report two
different settings, one which uses predicted tags as
input (Predicted MI) and other that uses gold tag
as input (Oracle MI). We obtain the morphological
tags from a Neural CRF tagger (Yang and Zhang,
2018) trained on our training data. Oracle MI will
act as an upper-bound on the reported results.

3.1 Results

Table 6 presents results for dependency parsing on
Sanskrit. We observe that BiAFF + LCM outper-
forms all corresponding BiAFF models including
Oracle MI. This is indeed a serendipitous outcome
as one would expect Oracle MI to be an upper
bound owing to its use of gold morphological tags
at runtime. The DCST variant of our pretraining
approach is also the best among its peers, although
the performance of Oracle MI model in this case is
indeed the upper bound.

BiAFF DCST

Model UAS LAS UAS LAS

Base 70.67 56.85 73.23 58.64
Predicted MI 69.02 53.11 71.15 51.75

MTL 70.85 57.93 73.04 59.12
TranSeq 71.46 60.58 74.58 62.70

LCM 75.91 64.87 75.75 64.28

Oracle MI 74.08 62.48 76.66 66.35

Table 1: Results on Sanskrit dependency parsing. Ora-
cle MI is an upper bound and is not comparable.

On the other hand, using predicted morphologi-
cal tags instead of gold tags at run time degrades
results drastically, especially for LAS, possibly due
to the cascading effect of incorrect morphological
information (Nguyen and Verspoor, 2018). This
shows that morphological information is essential
in filling the UAS-LAS gap and substantiates the
need for pretraining to incorporate such knowledge
even when it is not available at run time. Inter-
estingly, both MTL, and TranSeq, show improve-
ments as compared to the base models, though do

8Refer supplemental (§ B) for variations of TranSeq.
9LCM denotes Label, Case and Morph tagging schemes.

Training BiAFF DCST BiAFF+LCM
Size UAS/LAS UAS/LAS UAS/LAS
100 58.0/42.3 64.0/44.0 70.4/59.9
500 70.7/56.9 73.2/58.6 75.9/64.9
750 74.0/61.8 75.2/62.3 77.3/66.8

1000 74.4/62.9 76.0/64.1 77.9/67.3
1250 75.6/64.7 76.7/65.2 78.5/68.3

Table 2: Performance as a function of training set size.

not match with that of our pretraining approach.
In our experiments, the pretraining approach, even
with a little training data, clearly outperforms the
other approaches.

Ablation: We perform further analysis on San-
skrit to study the effect of training set size as well as
the impact of various tagging schemes as auxiliary
tasks. First, we evaluate the impact on performance
as a function of the training size (Table 2). Notice-
ably, for training size 100, we observe a 12 (UAS)
and 17 (LAS) points increase for BiAFF+LCM
over BiAFF, demonstrating the effectiveness of our
approach in a very low-resource setting. This im-
provement is consistent for larger training sizes,
though the gain reduces.

Figure 2: Comparison of proposed tagging schemes
(MT, CT, LT) with those in DCST (RD, NC, LM, RP).

In Figure 2, we compare our tagging schemes
with those used in self-training of DCST, namely,
Relative Distance from root (RD), Number of Chil-
dren for each word (NC), Language Modeling (LM)
objective where task is to predict next word in sen-
tence, and Relative POS (RP) of modifier from root
word. Here, we integrate each pretrained model
(corresponding to each tagging scheme) individu-
ally on top of the BiAFF baseline using the gating
mechanism and report the absolute gain over the
BiAFF in terms of UAS and LAS metric. Inter-
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eu el sv pl ru avg

Model UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

BiAFF 63.18 54.52 79.64 75.01 71.73 64.83 78.33 70.83 73.98 67.42 73.37 66.52
DCST 69.60 60.65 83.48 78.61 77.03 69.62 81.40 73.09 78.61 72.07 78.02 70.81

DCST+MTL 70.38 61.52 83.74 79.31 76.70 69.88 81.25 73.34 78.46 72.08 78.11 71.23
DCST+TranSeq 70.70 62.96 84.69 80.37 77.30 70.85 82.84 75.02 78.95 73.18 78.90 72.48
BiAFF+LCM 72.40 65.50 86.56 83.18 77.95 72.20 84.08 77.65 79.97 74.47 80.20 74.60
DCST+LCM 72.01 65.33 85.94 82.22 78.72 73.04 83.83 77.63 80.62 75.26 80.22 74.70

BiAFF+Oracle MI 72.16 66.08 83.05 79.81 76.50 71.17 83.27 77.83 77.83 73.13 78.56 73.60
DCST+Oracle MI 77.47 71.55 85.99 82.72 80.33 75.00 86.03 80.46 82.21 77.54 82.41 77.45

ar hu fi de cs avg

Model UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

BiAFF 76.24 68.07 70.00 62.81 60.93 50.68 67.77 59.94 65.75 57.43 70.30 62.62
DCST 79.05 71.18 74.62 67.00 66.04 54.76 73.22 65.18 74.15 65.52 75.61 67.70

DCST+Predicted MI 77.17 66.63 61.55 36.18 56.48 39.67 65.31 47.12 72.03 58.37 68.72 52.61

DCST+MTL 79.35 71.37 74.49 66.70 66.30 55.29 73.98 66.05 74.66 65.95 75.84 67.99
DCST+TranSeq-FT 79.66 72.17 75.22 68.25 67.04 56.57 74.66 67.27 75.15 67.02 76.40 69.11

BiAFF+LCM 79.68 72.55 76.15 69.53 69.05 59.41 75.85 68.80 74.94 67.58 76.91 70.13
DCST+LCM 79.60 72.38 75.71 68.93 69.15 60.06 76.12 69.20 74.81 67.54 76.99 70.22

BiAFF+Oracle MI 77.52 71.46 75.89 70.63 70.80 64.64 72.63 66.53 72.39 66.22 74.99 69.20
DCST+Oracle MI 80.43 74.79 78.43 73.19 75.30 68.90 77.70 71.66 78.54 72.38 79.09 73.40

Table 3: Evaluation on 10 MRLs. Results of BiAFF+LCM and DCST+LCM are statistically significant compared
to strong baseline DCST as per t-test (p < 0.01). Last two columns denote the average performance. Models using
Oracle MI are not comparable.

estingly, our proposed tagging schemes, with an
improvement of 3-4 points (UAS) and 5-6 points
(LAS), outperform those of DCST and help bridge
the gap between UAS-LAS.

3.2 Additional auxiliary tasks
With our proposed pretraining approach, we ex-
periment with using the prediction of different
grammatical categories as auxiliary tasks, namely,
Number Tagging (NT), Person Tagging (PT), and
Gender Tagging (GT). As the results in table ??
demonstrate, the improvements observed in these
cases are much smaller than those for our proposed
auxiliary tasks. Similar results are observed when
considering other auxiliary tasks (see table ??). We
find that combining these auxiliary tasks with our
proposed ones did not provide any notable improve-
ments. One possible reason for under performance
of these tagging schemes compared to the proposed
ones could be that either when the training set
is small, sequence taggers are not able to learn
discriminative features only from surface form of
words (F-score is less than 40 in all such cases in
table ??) or the learned features are not helpful for
the dependency parsing task.

3.3 Experiments on other MRLs

We choose 10 additional MRLs from Universal De-
pendencies (UD) dataset (McDonald et al., 2013;
Nivre et al., 2016), namely, Arabic (ar), Czech
(cs), German (de), Basque (eu), Greek (el), Finnish
(fi), Hungarian (hu), Polish (pl), Russian (ru)
and Swedish (sv).10 Then we train them in low-
resource setting (500 examples) to investigate the
applicability of our approach for these MRLs.

For all MRLs, the trend is similar to what is
observed for Sanskrit. While all four models im-
prove over both the baselines, BiAFF+LCM and
DCST+LCM consistently turn out to be the best
configurations. Note that these models are not di-
rectly comparable to Oracle MI models since Or-
acle MI models use gold morphological tags in-
stead of the predicted ones. The performance of
BiAFF+LCM and DCST+LCM is also comparable.
Across all 11 MRLs, BiAFF+LCM shows the aver-
age absolute gain of 2 points (UAS) and 3.6 points
(LAS) compared to the strong baseline DCST.

10We choose MRLs that have the explicit morphological in-
formation with following grammatical categories: case, num-
ber, gender, and tense.
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Auxiliary Task F-score Gain

Relative Distance (RD) 58.71 1.9/1.3
No of children (NC) 52.82 2.2/1.3
Relative POS (RP) 46.52 2.9/2.3
Lang Model (LM) 41.54 2.6/1.4

Coarse POS (CP) 13.02 1.6/0.8
Head Word (HW) 40.12 1.5/0.4

POS Head Word (PHW) 38.98 2.0/1.2
Number Tagging (NT) 13.33 1.9/0.9
Person Tagging (PT) 12.27 1.6/0.7
Gender Tagging (GT) 0.28 1.3/0.2

Morph Tagging (MT) 62.84 3.5/5.1
Case Tagging (CT) 73.51 4.0/5.6
Label Tagging (LT) 71.51 4.2/6.0

Table 4: Comparison of different auxiliary tasks. F-
score: Task performance, Gain: Absolute gain (when
integrated with BiAFF) in terms of UAS/LAS score
compared to BiAFF scores.

3.4 Comparison with mBERT Pretraining
We compare the proposed method with multilin-
gual BERT (Devlin et al., 2019, mBERT) based
multi-task learning model (Kondratyuk and Straka,
2019, Udify). This single model trained on 124
UD treebanks covers 75 different languages and
produces state of the art results for many of them.
Multilingual BERT leverages large scale pretrain-
ing on wikipedia for 104 languages.

Lang BiAFF BiAFF+LCM Udify
Basque 63.2/54.5 72.4/65.5 76.6/69.0
German 67.7/60.0 75.8/68.8 83.7/77.5

Hungarian 70.0/62.8 76.2/69.5 84.4/76.7
Greek 69.6/75.0 86.6/83.2 90.6/87.0
Polish 78.3.70.8 84.1/77.7 90.7/85.0

Sanskrit 70.7/56.8 75.9/64.9 69.4/53.2
Sanskrit-Vedic 56.0/42.3 61.6/48.0 47.4/28.3

Wolof 75.3/67.8 78.4/71.3 70.9/60.6
Gothic 61.7/53.3 69.6/61.4 63.4/52.2
Coptic 84.3/80.2 86.2/82.7 32.7/14.3

Table 5: The proposed method outperforms Udify for
the languages (down) not covered in mBERT and under
performs for the languages (top) which are covered in
mBERT.

In our experiments, we find that Udify outper-
forms the proposed method for languages covered
during mBERT’s pretraining. Notably, not only the
proposed method but also a simple BiAFF parser

with randomly initialized embedding outperforms
Udify (Table 5) for languages which not available
in mBERT. Out of 7,000 languages, only a handful
of languages can take advantage of mBERT pre-
training (Joshi et al., 2020) which substantiates the
need of our proposed pretraining scheme.

4 Conclusion

In this work, we focused on dependency parsing
for low-resource MRLs, where getting morpho-
logical information itself is a challenge. To ad-
dress low-resource nature and lack of morphologi-
cal information, we proposed a simple pretraining
method based on sequence labeling that does not
require complex architectures or massive labelled
or unlabelled data. We show that little supervised
pretraining goes a long way compared to transfer
learning, multi-task learning, and mBERT pretrain-
ing approaches (for the languages not covered in
mBERT). One primary benefit of our approach is
that it does not rely on morphological information
at run time; instead this information is leveraged
using the pretrained encoders. Our experiments
across 10 MRLs showed that proposed pretrain-
ing provides a significant boost with an average 2
points (UAS) and 3.6 points (LAS) absolute gain
compared to DCST.
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Supplemental Material

A Baselines

A.1 BiAFFINE Parser (BiAFF)

BiAFF (Dozat and Manning, 2017) is a graph-
based dependency parsing approach similar to
Kiperwasser and Goldberg (2016). It uses biaffine
attention instead of using a traditional MLP-based
attention mechanism. For input vector ~h, the affine
classifier is expressed asW~h+b, while the biaffine
classifier is expressed as W ′(W~h + b) + b′. The
choice of biaffine classifier facilitates the key ben-
efit of representing the prior probability of word
j to be head and the likelihood of word i getting
word j as the head. In this system, during training,
each modifier in the predicted tree has the highest-
scoring word as the head. This predicted tree need
not be valid. However, at test time, to generate a
valid tree MST algorithm (Edmonds, 1967) is used
on the arc scores.

A.2 Deep Contextualized Self-training
(DCST)

Rotman and Reichart (2019) proposed a self-
training method called Deep Contextualized Self-
training (DCST).11 In this system, the base parser
BiAFF (Dozat and Manning, 2017) is trained on
the labelled dataset. Then this trained base parser
is applied to the unlabelled data to generate auto-
matically labelled dependency trees. In the next
step, these automatically-generated trees are trans-
formed into one or more sequence tagging schemes.
Finally, the ensembled parser is trained on manu-
ally labelled data by integrating base parser with
learned representation models. The gating mecha-
nism proposed by Sato et al. (2017) is used to inte-
grate different tagging schemes into the ensembled
parser. This approach is in line with the represen-
tation models based on language modeling related
tasks (Peters et al., 2018; Devlin et al., 2019). In
summary, DCST demonstrates a novel approach
to transfer information learned on labelled data to
unlabelled data using sequence tagging schemes
such that it can be integrated into final ensembled
parser via word embedding layers.

B Experiments on TranSeq Variants

In TranSeq variations, instead of pretraining with
three auxiliary tasks, we use a hierarchical multi-
task morphological tagger (Gupta et al., 2020)
trained on 50k training data from DCS (Hell-
wig, 2010). In TranSeq setting, we extract the
first three layers from this tagger and augment
them in baseline models and experiment with five
model sub-variants. To avoid catastrophic forget-

BiAFF DCST

Model UAS LAS UAS LAS

Base 70.67 56.85 73.23 58.64
Base? 69.35 52.79 72.31 54.82

TranSeq-FE 66.54 55.46 71.65 60.10
TranSeq-FEA 69.50 58.48 73.48 61.52
TranSeq-UF 70.60 59.74 73.55 62.39
TranSeq-DL 71.40 60.58 74.52 62.73
TranSeq-FT 71.46 60.58 74.58 62.70

Oracle MI 74.08 62.48 76.66 66.35

Table 6: Ablation analysis for TranSeq variations. Ora-
cle MI is not comparable. It can be considered as upper
bound for TranSeq.

11https://github.com/rotmanguy/DCST
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ting (McCloskey and Cohen, 1989; French, 1999),
we gradually increase the capacity of adaptations
for each variant. TranSeq-FE: Freeze the pre-
trained layers and use them as Feature Extrac-
tors (FE). TranSeq-FEA: In the feature extrac-
tor setting, we additionally integrate adaptor mod-
ules (Houlsby et al., 2019; Stickland and Murray,
2019) in between two consecutive pre-trained lay-
ers. TranSeq-UF: Gradually Unfreeze (UF) these
three pre-trained layers in the top to down fash-
ion (Felbo et al., 2017; Howard and Ruder, 2018).
TranSeq-DL: In this setting, we use discrimina-
tive learning (DL) rate (Howard and Ruder, 2018)
for pre-trained layers, i.e., decreasing the learn-
ing rate as we move from top-to-bottom layers.
TranSeq-FT: We fine-tune (FT), pre-trained lay-
ers with default learning rate used by Dozat and
Manning (2017).

In the TranSeq setting, as we move down across
its sub-variants in Table 6, performance improves
gradually, and TranSeq-FT configuration shows the
best performance with 1-2 points improvement over
Base. The Base? has one additional LSTM layer
compared to Base such that the number of parame-
ters are same as that of TranSeq-FT variation. The
performance of Base? decreases compared to Base
but TranSeq-FT outperforms Base. This shows
that transfer learning definitely helps to boost the
performance.

120



Proceedings of the 16th Conference of the European Chapter of the Associationfor Computational Linguistics: Student Research Workshop, pages 121–128
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

Development of Conversational AI for Sleep Coaching Programme

Heereen Shim
KU Leuven, Campus Group T, eMedia Research Lab, Leuven, Belgium

KU Leuven, Department of Electrical Engineering (ESAT), STADIUS, Leuven, Belgium
heereen.shim@kuleuven.be

Abstract

Almost 30% of the adult population in the
world is experiencing or has experience in-
somnia. Cognitive Behaviour Therapy for in-
somnia (CBT-I) is one of the most effective
treatment, but it has limitations on accessi-
bility and availability. Utilising technology
is one of the possible solutions, but existing
methods neglect conversational aspects, which
plays a critical role in sleep therapy. To ad-
dress this issue, we propose a PhD project
exploring potentials of developing conversa-
tional artificial intelligence (AI) for a sleep
coaching programme, which is motivated by
CBT-I treatment. This PhD project aims to
develop natural language processing (NLP) al-
gorithms to allow the system to interact nat-
urally with a user and provide automated an-
alytic system to support human experts. In
this paper, we introduce research questions ly-
ing under three phases of the sleep coaching
programme: triaging, monitoring the progress,
and providing coaching. We expect this re-
search project’s outcomes could contribute to
the research domains of NLP and AI but also
the healthcare field by providing a more acces-
sible and affordable sleep treatment solution
and an automated analytic system to lessen the
burden of human experts.

1 Introduction

Insomnia is one of the most common sleep disor-
ders with a high prevalence. Approximately one-
third of adults experience one or more of the symp-
toms of insomnia (Roth, 2007). The consequences
of insomnia include not only individual problems
but also societal issues, such as daytime fatigue,
low energy level, which can cause depression, and
even increased risk of accidents(Leger et al., 2014).
The cost associated with insomnia, including direct
and indirect costs, in the US is around 92.5 to 107.5
billion USD per year (Stoller, 1994).

Figure 1: Overview of the proposed PhD research
project: Three research questions (RQs) and the over-
lapped research topics.

Cognitive behaviour therapy for insomnia (CBT-
I) is one of the most effective solutions to treat
insomnia. During CBT-I process, a person who
is suffering from symptoms of insomnia (patient)
will consult with a CBT-I provider (therapist) who
provides support to identify behaviours, thoughts,
and feelings that are related to the symptoms. Since
its goal is to change the potential causes, both be-
havioural and cognitive factors, it produces long-
lasting improvement in the condition of insomnia,
compared to the medication treatment (Morin et al.,
2006).

Despite its effectiveness, CBT-I treatment has a
limitation. From a patient’s perspective, the treat-
ment cost is high and, from clinician’s perspec-
tives, the number of patients that potentially can be
treated is significantly large (Edinger and Means,
2005). Consequently, many researchers and engi-
neers have been working on developing more acces-
sible and affordable therapy solutions that can also
lessen the burden of clinicians, such as internet- or
mobile-based computerised therapy tools (Ström
et al., 2004; Ritterband et al., 2009; Vincent and
Lewycky, 2009; Lancee et al., 2012). These studies
explored opportunities for applying technologies to
automate treatment process. However, the conver-
sational aspect, which is the core of the in-person
treatment, has been neglected.

121



In this study, we will explore the possibilities
of developing conversational AI (artificial intelli-
gence) to make a computerised sleep therapy tool
to be more close to in-person therapy. Since this
research field is still in its infancy, we consider a
sleep coaching programme targeting healthy people
who would like to optimise their sleep, rather than
a sleep therapy for patients with the chronic sleep
disorder. Also, the goal of this study is to provide
a user-friendly interface for users and to support
human experts, rather than to replace or eliminate
human-in-the-loop. Therefore, we mainly focus
on two things: 1) adding a conversational feature
that allows users to provide inputs to enable a nat-
ural conversation between human and the system;
and 2) adding an analytic feature that automates
processing user inputs to support decision mak-
ing. The main research questions of this project
lie under three processes of the sleep coaching pro-
gramme: triage, monitor the progress, and provide
coaching. Overview of research questions and over-
lapped components are illustrated in Figure 1.

We start our research by analysing in-person
sleep treatment and existing automated tools and
identifying missing gaps to decide research ques-
tions (Section 2). Then we revisit the research
questions and explain the methodology to address
each question (Section 3). As the first step, we
introduce a pilot study and present a preliminary
result to discuss and provide next steps (Section 4).
Finally, we conclude this paper by summarising
research questions and research plan of this PhD
project (Section 5).

2 Related Work

In this section, we will first provide a brief overview
of sleep treatment of CBT-I made by a human ex-
pert. Secondly, we will review the existing methods
of automated sleep treatment tools. Lastly, we will
identify missing gaps and introduce research ques-
tions.

2.1 In-person treatment

CBT-I is a sleep treatment that focuses on investi-
gating the relationship between how we behave,
how we think, and how we sleep. To achieve
this, the treatment consists of multiple components:
stimulus control, sleep restriction, sleep hygiene
education, relaxation training, and cognitive re-
structuring (Perlis et al., 2006; Morin and Espie,
2007; Belanger et al., 2006). Stimulus control aims

to change associations between the bedroom with
habits that make sleeping more difficult (Bootzin
and Perlis, 2011). Sleep restriction treatment re-
quires patients to limit time spent in bed in order
to resolve the mismatch between the time in bed
and sleep time (Spielman et al., 2011). Sleep hy-
giene focuses on educating the patient to avoid
behaviours that influence sleep (Kleitman, 1987;
Hauri, 1991). Relaxation training is given to help
reduce the racing thoughts (Ong et al., 2014). Cog-
nitive restructuring targets to break the vicious cir-
cle between inaccurate thoughts about sleep and
behaviours that contribute to insomnia. Standard
CBT-I treatment includes three or more of these
components.

Conversation between patient and therapist plays
a critical role in in-person sleep treatment. In the
first session of treatment, the patient will provide
complaints of their sleep and the therapist will de-
termine whether the patient is appropriate for CBT-
I treatment. To identify this, the therapist should
assess the patient based on the clinical interview
and the completed questionnaires. Once it is de-
termined that the patient is appropriated for the
treatment, the therapist will select the treatment
components and structure plan tailored to the pa-
tient. The remaining sessions will be followed
depending on the stage of treatment and the degree
of patient compliance. Therefore, it is important
that the therapist monitors the progress, identifies
the patient’s difficulties, provides personalised sup-
port, and encourages the patient to complete the
treatment.

2.2 Computerised treatment

One of the earliest approaches is a research work by
Ström et al. (2004) investigating the feasibility of
an internet-based CBT-I. They proposed a self-help
program that patients provide their information and
progress by completing questions and question-
naires via the internet. However, their method does
not provide automated analytic features to support
monitoring process done by human experts.

Later on, Ritterband et al. (2009) proposed a
fully automated sleep treatment tool. They pro-
posed an automated algorithm that can produce a
personalised recommendation for sleep restriction.
It also automatically sends emails of reminders. All
intervention was delivered without human support
and the outcome was comparable to in-person treat-
ment. Nevertheless, it still misses the interactive
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conversational feature that participants could report
their specific concerns or difficulties of complying
the treatment.

Later studies also did not explore the opportunity
to get feedback or support. For example, both Vin-
cent and Lewycky (2009) and Lancee et al. (2012)
developed online treatment methods for insomnia,
but neither of them offered automated support fea-
ture where the participants could contact when fac-
ing issues or difficulties to follow the sessions. Un-
til recently, conversational aspects have been ne-
glected (Kuhn et al., 2016; Werner-Seidler et al.,
2017; Horsch et al., 2017).

2.3 Missing gaps and research questions

So far, conversational aspects, which plays a criti-
cal role in in-person sleep treatment, are less stud-
ied. Our main hypothesis is that conversational
AI will enable natural interaction between users
and a system, throughout the treatment process, to
make a computerised treatment be more close to
in-person treatment. To this end, we will focus on
the following research questions:

RQ1. How to triage via conversation together
with the completed questionnaires?

RQ2. How to monitor the progress during the
sleep coaching programme?

RQ3. How to understand a user-specific situa-
tion for personalised coaching programme?

3 Research Plan

RQ1: How to triage via conversation together
with the completed questionnaires?

Answer to this research question entails three sub-
tasks: The first sub-task is to assess users’ com-
plaints and identify sleep-related issues and its im-
pacts to identify potential causes. The second sub-
task is to ask follow-up questions to clarify ambigu-
ous statements and differentiate causes that have
similar impacts. The third sub-task is to explain
the assessment result.

Complaints assessment

Assessing the users’ complaints can be reformu-
lated as a classification task. One of the most
similar approaches is a recent study conducted by
Shim et al. (2020). They used neural networks-
based multi-label classifier to detect pre-defined
sleep issues from free-text. What makes our study
more challenging is that 1) we aim to assess not

only sleep issues but also impacts to identify un-
derlying causes. And 2) we aim to incorporate the
completed questionnaire results, which is different
modality from free-text. For the first challenge, a
naive approach is to build three separate classifiers
for sleep issues, impact, and causes. It is limited,
however, because these three entities are connected,
such as there are causal links between sleep issues
to impacts. Therefore, as the first step, we will
build a directed graph, such as a Bayesian Network
(BN) that each node represents the observed results
of each entity. Since each node can be either free-
text classification results or questionnaire results,
we can address the second challenge, too. We will
also explain other benefits of implementing the BN
in the following paragraphs.

Follow-up question
In this project, we will explore the potential of
conversational environment that the system can in-
teract with patients. One of the benefits is that the
system can actively search for additional informa-
tion when it is needed. For example, the free-text
inputs from users can be ambiguous. Also, multi-
ple sleep issues could result in similar impacts so
that it requires further assessment that differentiates
between two or more conditions. We hypothesise
that asking follow-up questions will solve these
challenges by clarifying and refining it. Then the
real challenge becomes how to decide ‘when to
ask?’ and ‘what to ask?’. A study by Middleton
et al. (2016) addressed these challenges by framing
a triage as a sequence of questions and answers. To
achieve this, they encoded expert knowledge into a
graph structure; each possible questions is linked
to the possible answers, each of which is linked to
a follow-up question. Since this approach requires
human resource, we foresee to work with experts
in sleep domain to encode the domain knowledge
into structured form, such as a graph. Also, we
will investigate whether the BN can select the most
appropriate follow-up question. We will describe a
preliminary experimental result of this approach in
Section 4.

Triage result
The end task of the first research question is to sup-
port triage via text-based conversation and by ex-
plaining the assessment result: what was the main
complaint from the user and which habits were
associated with the detected complaints. We plan
to take a similar approach with Chen et al. (2020)
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who implemented BN on top of neural networks
to provide interpretability. However, compared to
their task, our task is more challenging because
not all information is given from the beginning.
Therefore, we will model uncertainty to deal with
unknown information to triage. For evaluation, we
will follow a recent study by Razzaki et al. (2018)
and evaluate our triage system both quantitatively
and qualitatively: Quantitatively, we will calculate
precision and recall of detecting sleep issues and
underlying causes. Qualitatively, we will rate triage
flows with the help of an expert in sleep domain.

RQ2: How to monitor the progress during the
sleep coaching programme?
One of the fundamentals of sleep treatment is to
monitor the progress of a participant. To monitor
the progress and analyse sleep patterns, we will use
a sleep diary that is a widely used method to access
people’s quality of sleep (Monk et al., 1994; Carney
et al., 2012). The traditional sleep diary consists of
a log of sleep-related activities, including bedtime,
wake up time, and sleep time and heavily relies on
objective values, such as total time in bed (TIB),
total sleep time (TST), and sleep efficiency (SE).
However, to monitor the progress and understand
the user-specific condition, subjective values and
context should be also considered. To achieve this,
we will use a narrative sleep diary written in free-
text that contains not only the time information of
sleep-related events but also the rich information of
context. For example, a user can describe her/his
sleep in free-text to explain not only how long they
slept and how many times they woke up during
the night but also the quality of sleep or feeling
after sleep and what disturbed their sleep. Recent
work by Rick et al. (2019) takes a similar approach
to obtain qualifiable insights about the subjective
experience of sleep by incorporating free-text user
inputs. During this project, we will investigate com-
bine different modalities, objective and subjective
values, extracted from the narrative sleep diary to
assess the progress.

RQ3: How to understand a user-specific
situation for personalised coaching
programme?
During the sleep coaching programme that helps
user change their behaviour to improve their sleep,
it is critical to provide personalised coaching pro-
gramme tailored to a user. To achieve this, under-
standing the experience of a user and identifying

the user-specific issues and difficulties is essential.
In this study, we will use free-text input from users
that describe their experiences, thoughts, and feel-
ings during the coaching programme. Specifically,
we will consider a behaviour change programme
and aim to build a model that performs aspect-
based sentiment analysis on review comments from
a user. Sentiment analysis (SA) is a widely used
natural language processing (NLP) technique used
to assess user experiences (Liu, 2012). Aspect-
based sentiment analysis (ABSA) is a type of SA
that aims to detect sentimental values expressed
toward fine-grained aspects (Pontiki et al., 2014),
rather than performing classification at the sentence
level. Even though ABSA is widely studied, the
majority of works are limited to the review of con-
sumer products (Do et al., 2019). Recently, Bara-
hona et al. (2018) conducted research on detecting
mental health concepts for cognitive behaviour ther-
apy from user inputs by reformulating it as senti-
ment analysis detecting negative sentiment. Similar
to this, we will investigate using ABSA technique
to detect concepts related to sleep health for pro-
viding personalised support and behaviour change
programme by analysing user inputs during the
sleep coaching programme.

4 Pilot study

We ran a pilot experiment to examine our assump-
tions for RQ1. The main goal of this pilot study
as follows: 1) To build a model that classifies free-
text user inputs. 2) To implement BN to select
a follow-up question. Following subsections de-
scribes details of the experiments and results.

4.1 Dataset

Motivated by Shim et al. (2020), we collected free-
text data via crowdsourcing platform. We also
adapted their approach that asks participants to
imagine they are sitting at the doctor’s office and
being ask to describe three different topics: sleep
issues, the impact of their issues, and factors that
might contribute to the issues. We cleaned the data
by dropping invalid input texts and annotated to
create three datasets named issues, causes, and im-
pact, respectively. Table 1 summarises statistics of
each dataset. More information about dataset can
be found in Appendix A.
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Dataset #.class Train Test
Causes 19 10,430 1,155
Issues 11 12,928 1,437
Impact 11 10,733 1,142

Table 1: Statistics of datasets. #.class refers the num-
ber of class categories. The numbers in Train and Test
columns refer the number of data points.

4.2 Experimental settings

For classification, we used the pre-trained language
model (Devlin et al., 2019) initialised with pre-
trained weights and fine-tuned on our datasets.
Implementation details are given in Appendix B.
To evaluate the classifiers, we calculated macro-
averaged precision, recall, and F1-score for issues,
impacts, and causes, separately.

For selecting a follow-up question, we created
a simple BN with three layers, which are sleep
causes, issues, and impact. Details of the model
are described in Appendix C. Since this is a pilot
study, we only considered a few entities and created
conditional probability tables (CPT) based on our
limited knowledge. Note that the structure and
CPT of BN are not clinically proved; The goal of
this pilot study is to demonstrate the concept. At
each iteration of question and answering, the BN
updates its probability distribution at each node
given information and selects the entity node with
the highest probability of the entity is true. We
qualitatively evaluated this approach.

4.3 Preliminary result and next steps

Table 2 summarises the classification result. The re-
sult shows that the model performs better on causes
dataset than both on issues and impact datasets,
even though there are more class categories in
causes dataset. We conducted error analysis and
observed that the trained models tend to misclassify
similar classes. It implies that further assessment
is needed to differentiate semantically close texts.

Dataset P (%) R(%) F-1 (%)
Causes 94.9 91.7 93.2
Issues 87.4 79.9 82.7
Impact 79.9 72.3 75.2

Table 2: Classification results. All measures are macro-
averaged per each class.

Figure 2 shows demonstrations of triage flow
with BN. Each sub-figure shows a sequence of

follow-up questions and answers given condition:
normal BMI1 (2a) and high BMI (2b). It is worth
noting that each flow selected different follow-up
question after the classification model predicted the
same results. It shows the possibility of using BN
to select the most appropriate follow-up question
given information.

Currently, we did not evaluate the system based
on the final triage result and the appropriateness
of follow-up question because our dataset contains
only free-text describing sleep issues, causes, and
impacts, seperately. In our future study, we plan to
follow a similar data collection protocol of Razzaki
et al. (2018). They asked doctors to play patients
based on given vignettes containing simple demo-
graphics, complaint, and other information that can
be obtained by either open-ended or closed-ended
questions.

5 Conclusion

In this paper, we propose a PhD project explor-
ing potentials of developing conversational AI for
a sleep coaching programme, which is motivated
by CBT-I treatment, targeting healthy people who
would like to optimise their sleep. The main goal
of this PhD project is to develop NLP algorithms
for conversational AI to allow the system to inter-
act naturally with a user and provide automated
analytic. To this end, we identified three research
questions lying under three phases of the sleep
coaching programme: triage, monitor, and support.
We expect this research project’s outcomes could
contribute to the research domains of NLP and AI
but also the healthcare field by providing a more ac-
cessible and affordable sleep treatment solution and
an automated analytic system to lessen the burden
of human experts.

Acknowledgments

This project has received funding from the Eu-
ropean Union’s Horizon 2020 research and inno-
vation programme under the Marie Skłodowska-
Curie grant agreement No 766139. This article
reflects only the author’s view and the REA is not
responsible for any use that may be made of the
information it contains.

1Body Mass Index (BMI) is a value derived from the mass
(m) and height of a person (h), defined as m/h2.

125



(a) When condition of ‘high BMI’ is given as false. (b) When condition of ‘high BMI’ is given as true.

Figure 2: Examples of triage flow with BN and neural networks-based text-classifier. Green coloured texts show
user-inputs while white coloured texts show system outputs.
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A Dataset for pilot study

We collected three data sets for experiment: sleep
causes, issues, and impact dataset. Class labels
and label descriptions of causes, issues, and impact
dataset are summarised in tables 3 to 5, respectively.
Each data points annotated with either one or more
class labels (max. 3 classes).

B Implementation and training settings

For experiment, PyTorch version (Wolf et al., 2019)
of a Bidirectional embedding representations from
transformers (BERT) model (Devlin et al., 2019)
was used. We initialsed the model with pre-trained
weights (bert-base-uncased) obtained from
language modelling with general copora (e.g., Wi-
kicorpus, etc). For classification task, we added a
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Class Description
exercise Work out/exercise
passivity Physically not active
sleepEnvironment Bad sleep environment
bedTimes Irregular bed times
napping Nap during the day
notTired Not tired at night
breathingIssues Stopped breathing
otherHealthIssues Other health issues
obligationDuties Too many duties
stressMoodAnxiety Experience stress
media Engage in screen-time
caffeine Consume caffeine
pets Sleep disturbance by pets
kids Sleep disturbance by kids
eating Eat heavy meals
drinking Consume drink
alcohol Consume alcohol drinks
nicotine Smoke
noCause No causes

Table 3: Class categories for causes dataset

Figure 3: A simple Bayesian Network modelled con-
nectivity between sleep causes, issues, and impact.

final dense layer with sigmoid activation function
and used binary cross entropy loss to perform multi-
label classification. Details of fine-tuning training
are summarised in Table 6.

C Bayesian Network

A Bayesian Network used in a pilot study (Sec-
tion 4) is illustrated in Figure 3.

Class Description
snoringBothersMe Snoring issue 1
snoringBothersOthers Snoring issue 2
snoringStoppedBreathing Stopped breathing
staysUpLate Stay up late
troubleFallingAsleep Lie in bed awake
troubleStayingAsleep Wake up frequently
wakeUpTooEarly Wake up too early
problemWakingUp Trouble waking up
sleepsInLater Sleep in late
otherIssue Other issue
goodSleep No issue

Table 4: Class categories for issues dataset

Class Description
embarrassedBySnoring Snoring impact
dryMouth Cause dry mouth
energy Feel tired or less energy
performance Affect performance
appearance Look tired
stressMoodAnxiety Bad mood
lessPatience Become less patience
socialImpact Affect social life
otherHealthImmunity Affect health
otherImpact Other impact
noImpact No impact

Table 5: Class categories for impacts dataset

Hyperparameter Assignment
number of epochs 4
batch size 32
learning rate 5e− 5
classificaiton layer feedforward
drop out 0.1
optimaser AdamW

Table 6: Hyperparameters for BERT text classifier
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Abstract

Relation extraction is a key task in knowl-
edge extraction, and is commonly defined as
the task of identifying relations that hold be-
tween entities in text. This thesis proposal ad-
dresses the specific task of identifying meta-
relations, a higher order family of relations nat-
urally construed as holding between other re-
lations which includes temporal, comparative,
and causal relations. More specifically, we aim
to develop theoretical underpinnings and prac-
tical solutions for the challenges of (1) incorpo-
rating meta-relations into conceptualisations
and annotation schemes for (lower-order) re-
lations and named entities, (2) obtaining anno-
tations for them with tolerable cognitive load
on annotators, (3) creating models capable of
reliably extracting meta-relations, and related
to that (4) addressing the limited-data prob-
lem exacerbated by the introduction of meta-
relations into the learning task. We explore
recent works in relation extraction and dis-
cuss our plans to formally conceptualise meta-
relations for the domain of user-generated
health texts, and create a new dataset, annota-
tion scheme and models for meta-relation ex-
traction.

1 Introduction

The vast amounts of information now stored digi-
tally in various forms e.g. social media and online
forum posts, electronic health records, academic
papers, etc., represent large amounts of unstruc-
tured data that contain useful information for a
variety of purposes. Due to the scale of this data,
automatic Knowledge Extraction (KE) holds the
promise of allowing the automatic extraction of ma-
chine interpretable knowledge from these unstruc-
tured sources. Relation Extraction (RE) identifies
relations that hold (typically) between entities in
text; it is often an important and challenging sub-
task in KE - and is the primary focus of our thesis.

Although there has been much work on RE and
KE (Han et al., 2020; Manchanda and Phansalkar,
2019; Ma et al., 2019; Belz et al., 2019) there still
remain considerable problems, including the high
cost of creating high-quality annotated data, ad-
equate conceptualisation of higher-order relation-
ships that link events and/or cross sentence bound-
aries, and extraction from messy user-generated
text.

In this research proposal we explore recent work
in the field of RE, and identify some of the limi-
tations that current research still faces. Next, we
outline the specific problems that our research will
address, before presenting a first outline of our ap-
proach based on meta-relations. We demonstrate
the role of meta-relations with a worked example
and outline how they will allow us to extract more
richly structured data that more adequately cap-
tures the relationships between different types of
information, as well as lowering the cognitive load
on annotators. We then go on to discuss the data
and methods we will use in our research, how these
will progress our research, address our objectives,
and conclude with a summary of the expected con-
tributions of our thesis.

2 Research Context

This thesis will focus on relation extraction from
natural language - with a particular focus on user
generated text such as in online forum and social
media posts. The task of relation extraction is typ-
ically approached by identifying named entities
in the text, then identifying relations that hold be-
tween these entities. RE is often a very important
component of KE systems, where these entities
and relations are then used to populate a knowl-
edge graph. This section will discuss recent RE
approaches in order to establish the context our
research will belong to.
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Relation extraction is a task that has seen much
attention over the years, as Han et al.’s survey
(2020) shows. Previous work has used statisti-
cal approaches, feature based methods, and graph-
based approaches, but more recently neural ma-
chine learning models that use word embeddings
as inputs have become the norm. Looking at shared
tasks in RE, we can see particular language mod-
els and neural architectures that have been widely
adopted and adapted for RE, such as the BERT lan-
guage model (Devlin et al., 2018). A widely used
architecture for RE is the Recurrent Neural Net-
work (RNN), such as the Bi-LSTM (Huang et al.,
2015) - a very popular model that has seen wide
adoption and further developments such as using at-
tention to enhance performance (Geng et al., 2020).
BERT and Bi-LSTM based methods are the top
performing models in various shared tasks, such
as RuREBus (Ivanin et al., 2020), CCKS (Wang
et al., 2019a), FewRel2.0 (Gao et al., 2019), and
BioNLP 2019’s AGAC and BB tasks (Wang et al.,
2019b; Bossy et al., 2019). Han et al. (2020) also
identify various challenges still faced by RE sys-
tems: current RE models often work in a simplified
setting, but struggle with more complex tasks such
as inter-sentence relations, and in few shot learn-
ing and open domain scenarios. Despite recent
works attempting to overcome these challenges
(Christopoulou et al., 2019; Gao et al., 2019; Cui
et al., 2018; Wu et al., 2019) they can still be con-
sidered largely unsolved.

One challenge commonly faced in RE research
is acquiring high quality labelled data to train and
evaluate supervised models on. State-of-the-art
models require a large amount of adequately var-
ied, labelled data in order to be successfully trained,
however RE is usually domain specific and so for
each new task it can be difficult to acquire or create
high quality gold standard training data. This is
one of the main motivations for few-shot and cross-
domain RE (Gao et al., 2019), as they both focus on
learning with small amounts of labelled data. Belz
et al. (2019) discuss the complexities that must
be considered when creating labelled data for RE,
and the difficulties that are encountered. They ex-
plore issues such as the high cognitive load that
annotators can encounter with complex annotation
schemes, and the resource intensive nature of an-
notating data with experts. In addition to few-shot
learning and cross domain adaptation, there have
been other methods attempting to mitigate the lack

of data, such as initially training on coarse-grained
labels (which are much quicker and cheaper to pro-
duce), then adopting a label-as-you-go approach
whereby users create fine-grained labels as the sys-
tem is used (Manchanda and Phansalkar, 2019).

Distant supervision has been used to increase
usable data, and is applied to RE by using the basic
assumption ”If two entities participate in a rela-
tion, any sentence that contains those two entities
might express that relation” (Mintz et al., 2009)
to create weakly labelled data. This understand-
ably leads to noisy data, with false positives and
incomplete labels, however it has still shown to
work reasonably well in practice (Smirnova and
Cudré-Mauroux, 2018). Several approaches have
attempted to address the shortcomings of distant
supervision methods in RE, such as revising the
basic assumption (that all sentences containing two
entities with a known relation express that relation)
to reduce the noise of the data (Riedel et al., 2010),
creating undirected graphical models for distant
supervision (Hoffmann et al., 2011; Surdeanu et al.,
2012), allowing more than one relation to be pre-
dicted for two entities.

These models have since been further developed
to introduce negative examples (of unrelated entity
pairs) with an additional layer that denotes whether
a relation holds for given entities (Min et al., 2013),
leading to an increase in precision by between 1-4%
(Smirnova and Cudré-Mauroux, 2018). Ritter et al.
(2013) add a variable when aligning the text with
the knowledge base, denoting whether a relation
fact is present in the text. The model penalises
disagreement between this variable and the variable
that indicates whether the relation is present in the
knowledge base. This allows us to encode certain
intuitions about how likely certain relations are to
be present or absent from the text, helping to reduce
the issue of missing labels. Despite the continued
development of distantly supervised approaches,
noisy and incomplete data remains a problem that
limits the performance of such systems (Smirnova
and Cudré-Mauroux, 2018).

Current RE methods work best for relations
that can be construed as holding between two
named entities in text, e.g. [Margaret Hamilton,
worked at, NASA]. There has been less progress
on relations that are inherently higher order, such
as temporal relations which hold between events,
e.g. BEFORE[[Margaret Hamilton, worked at,
NASA], [Margaret Hamilton, founded, Hamilton
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Technologies]], or causal relations, which can hold
between events, entities, and relations. Both tem-
poral and causal RE are typically treated as sep-
arate tasks from general RE, which means they
cannot take advantage of the mutually constraining
nature of the general RE. A recent survey of tempo-
ral relation extraction (Alfattni et al., 2020) shows
that extracting and classifying time expressions e.g.
‘last week’ and events e.g. ‘pain has increased’ are
close to solved problems, but there still is much
room for improvement in extracting relations that
involve such time expressions. Causal relation ex-
traction has seen much attention, with a recent fo-
cus on deep neural network approaches, however a
recent survey shows that causal RE is also an open
problem (Yang et al., 2021). Developing RE meth-
ods to better extract higher-order relations such as
temporal and causal relations is still an important
challenge for research to address.

From our review of the relation extraction liter-
ature, of which selected highlights were explored
in this section, we have identified several key ar-
eas to address in our thesis. We will focus on the
task of extracting a higher-order family of relations
- specifically temporal, comparative, and causal -
naturally construed as holding between other rela-
tions. We will develop theoretical underpinnings
of and practical solutions for the challenges of (1)
incorporating meta-relations into RE task conceptu-
alisations, and annotation schemes for lower-order
relations and named entities, (2) obtaining anno-
tations for them with tolerable cognitive load on
annotators, (3) creating models capable of reliably
extracting meta-relations, and related to that (4)
how to overcome the limited-data problem exacer-
bated by the introduction of meta-relations into the
learning task.

3 Meta-Relations

The focus of the proposed thesis is a class of rela-
tions that are inherently meta, because they hold
between (structured) relations, rather than monadic
entities. This class includes temporal relations such
as BEFORE and AFTER, comparative relations
such as LONGER and SHORTER, and causal re-
lations. As a starting point, we propose to incor-
porate meta-relations into the RE processes as fol-
lows, aiming to explore both sequential and joint
modelling of the subtasks:

1. Named entity recognition (NER) is used to
identify relevant entities in the text;

2. Relation extraction is performed, linking pairs
of entities with a relation;

3. Meta-relation extraction is performed on the
lower-level relations extracted in the previous
step, linking pairs of relations with a meta-
relation.

Let us break this down with a worked example
- taken from the dataset presented by Belz et al.
(2019), and using their annotation scheme:

This sentence contains information that the user
took - but subsequently stopped taking1 - Well-
butrin, it made them feel sick, and they were then
given Zoloft to take. As a human reader the tem-
poral order in this information is easy to discern,
however in order to extract this information in a ma-
chine readable format e.g. as relational triples, there
are several steps that must be completed. First,
named entities and other lowest-level units of infor-
mation must be identified; in our case these would
be drugs {Wellbutrin, it, Zoloft}, drug modification
actions {took, was given}, and drug effects {make
me sick}. Next there may be an entity linking step
where the identified entities are linked to nodes in a
knowledge graph. This is followed by the RE step,
where the relations between pairs of entities will
be identified: modification/drug relations will de-
note the user started or stopped taking a drug, and
drug/effect relations will show effects associated
with a drug.

With typical RE, this is where the process would
end and the (unordered) extracted information
would be: Wellbutrin started being taken, Well-
butrin stopped being taken, Wellbutrin caused nau-
sea, and Zoloft started being taken. This informa-
tion is useful but lacks important information such
as the order of events and causality. Each relation
is treated separately, and from this relation infor-
mation we cannot infer the order of events as these
same relations could be present in another order of
events. e.g. if the user was taking Zoloft and Well-
butrin together, then they stopped taking Wellbutrin
after feeling sick. This demonstrates that the tem-
poral order of events is a crucial aspect to properly
understanding the content in a sentence/document.

1We can make this assumption as these are both antidepres-
sant medications, even though this may not be immediately
clear solely from this text span.
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It is crucial in a number of real world tasks such
as automated Yellow Card filling,2 for reporting
unknown adverse side effects from drugs, where
the temporal order of events - which drugs a person
was taking, at what time, and in what order - must
be reported as all of these factors may play a role
in the adverse reaction (Belz et al., 2019).

Figure 1 shows how temporal meta-relations
could be integrated with other extracted relations.
In doing this we extract an unambiguous tempo-
ral order that shows Wellbutrin was taken, then
the user felt sick, then they stopped taking Well-
butrin and started taking Zoloft. Temporal meta-
relations are only one example, there are other
types of meta-relations that could provide addi-
tional key pieces of information such as causal
meta-relations. In our example in figure 1, we can
see two event relations from Blez et al.’s (2019) an-
notation scheme: DRUG MODIF[TYPE=START]
and DRUG EFFECT. Here we could use a causal
meta-relation to show explicitly that starting to take
the labelled drug (in this case Wellbutrin) is what
caused the labelled effect (nausea).

4 Problem Addressed, Data, Methods

4.1 Problem addressed

Firstly, we will create a formal conceptualisation
of the meta-relation extraction task and a new anno-
tation scheme that incorporates meta-relations. We
will use this to create a new large scale annotated
dataset. As demonstrated by Belz et al. (2019),
task conceptualisation is a complex and important
task itself, and a crucial component in creating
an annotation scheme and dataset, and in defining
learning tasks. Therefore, creating a formal con-
ceptualisation for meta-relation extraction will be
an important first step in our research.

Meta-relations allow us to create methods for
higher-order relation extraction, and to create more
complete RE systems that develop a better under-
standing of the text, by extracting more richly struc-
tured information that more adequately captures
the relationships between different types of infor-
mation, as well as lowering the cognitive load on
annotators. To achieve this, it will be important to
address the different types of meta-relations and in-
formation we wish to extract when conceptualising
the meta-relation task in the first instance.

2For information about the Yellow Card Scheme see
https://yellowcard.mhra.gov.uk

So far our objectives will further the creation and
performance of directly supervised methods using
gold standard labelled data, however in order to
make our novel conceptualisation of meta-relation
extraction more generally applicable we will also
develop less supervised methods. Approaches us-
ing distantly supervised and data augmentation
methods allow the extension of existing datasets
with meta-relations, whereas other methods such as
bootstrapping and transfer learning enable the adop-
tion of meta-relation extraction for neighbouring
domains when data is limited. Utilising methods
such as these will allow new meta-relation extrac-
tion models to be created with a reduced need for
the resource intensive process of creating new data
and models from scratch.

4.2 Data

We plan to use two existing data resources which
we will adapt for our purposes. Belz et al. (2019)
have collected 148,575 posts from online drug fo-
rums, and so far have annotated 2,000 posts for
RE with the first phase of their annotation scheme
described in their paper. We plan to adapt this an-
notation scheme, extending it to incorporate typed
relations and meta-relations. The development of
this annotation scheme will be a nontrivial task as
it is important to properly consider how best to an-
notate the data to produce high quality labels whilst
minimising cognitive load on workers during the
annotation process.

Belz et al. describe the difficulty of maintaining
a manageable cognitive strain on annotators. The
goal of annotating the data is to produce labels that
convey a complex level of information for the ma-
chine learning model to learn from, however if the
labelling task is too difficult or convoluted it can
lead to issues with slow turnaround time and low
inter-annotator agreement, as well as annotators
abandoning their work. Because of these potential
issues, it is important that we consider the cogni-
tive load annotators will experience when creating
the annotation pipeline, for example by splitting
annotation up into several simpler phases, and fa-
cilitating workshops to ensure the workers fully
understand the annotation task and are able to use
the required labelling tools.

The second resource we have identified that will
be useful in this work is the MedNorm corpus and
embeddings, created for cross-terminology medi-
cal concept normalisation (Belousov et al., 2019).
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Figure 1: An example sentence taken from the dataset presented by Belz et al. (2019), annotated with meta-
relations. Filled coloured boxes represent entities and lowest-level units of information, solid boxes and arrows
represent lower order relations, dashed boxes with dashed arrows represent meta-relations.

This corpus is made up of five other datasets for
medical concept normalisation, merged and an-
notated with a more uniform approach using two
well known biomedical vocabularies and lexicons -
SNOMED-CT and MedDRA (Stearns et al., 2001;
Brown et al., 1999). This corpus will prove useful
in developing RE systems for the medical domain,
allowing us to leverage biomedical vocabularies
and develop models that extract useful data for
downstream tasks such as knowledge graph popu-
lation.

4.3 Methods

As stated earlier, our research at the start aims to
create a formal conceptualisation of meta-relation
extraction, followed by creating an annotation
scheme and dataset. Working from what we have
already laid out in this paper, we will carefully
consider what information can be represented by
meta-relations. So far we have suggested tempo-
ral, causal, and comparative meta-relations, as they
hold between relations, however more thorough
exploration of the problem space is necessary to
understand how to conceptualise the task of meta-
relation extraction, and how best to create an an-
notation scheme incorporating these higher-order
relations. To accomplish this, we will perform
an in-depth investigation of how relations that we
consider meta-relations have been treated in the
literature and in existing annotation schemes. We
will also consider a type system for lower-level
(traditional) relations - in addition to named en-
tities - in our conceptualisation. A type system
would allow us to constrain the types of named
entities a relation could apply to, and relations that
meta-relations can apply to, meaning that not every
entity/relation will need to be considered for every
type of relation/meta-relation. This would also help

in the development of distantly supervised meth-
ods for meta-relation extraction, similar to Xu et al.
(2013) where they incorporate type constraints into
their automatic labelling process.

We will use the annotation scheme presented by
Belz et al. (2019) as the basis for our annotation
scheme, revising as necessary to incorporate meta-
relations, typed relations, and any additional entity
labels in order to fit our conceptualisation. As men-
tioned earlier, asking workers to fully label the data
in one step would be too cognitively demanding,
so we plan to split the annotation process into sev-
eral smaller phases. The presence of meta-relations
will help when breaking the annotation down into
smaller phases, as entities and lower level relations
can be annotated separately, and should be rela-
tively straightforward to label as they will repre-
sent the simplest units of information. Then, more
complex higher-order information can be labeled
as meta-relations in subsequent phases. Addition-
ally, we will ensure annotators fully understand the
labelling task by running an instructive course be-
fore they begin the labelling process. By splitting
the process up into smaller tasks - paired with the
instructive course - the annotators job will be more
straightforward and less challenging, which should
lead to both faster annotating and fewer mistakes
made by annotators.

Our newly annotated dataset will then allow us
to perform a series of experiments to explore the
task of meta-RE. First, we will create a baseline
approach for meta-RE, this will demonstrate how
successful current state-of-the-art models are at
extracting meta-relations, and show the accuracy
with which different types of mental relations can
be extracted using current methods. As we have
described in Section 3, the task of meta-relation ex-
traction can be framed as a pipelined extension of
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relation extraction, passing through the output of a
traditional RE system (entities with corresponding
relations) to another RE model, with some minor
modification in order to perform relation extrac-
tion over the relations (as opposed to the entities).
In this model we will follow the steps outlined in
section 3: Use an NER model to identify the en-
tities, before passing them into an RE model, and
finally pass the entities and their corresponding
relations through a modified RE model to extract
meta-relations. This will be a very simple baseline
model with little modification from the base RE
model, meaning that we should be able to use most
well performing RE models that take entities as in-
put. We currently plan to use REDN (Li and Tian,
2020) due to its high performance on the popular
shared task SemEval-2010 Task 8 (Hendrickx et al.,
2009). The modifications we intend to make to the
model for the final step in our baseline approach,
are to treat extracted relations as entities. If we
were to only input the relations (and text) in this
step, the model will not be able to predict meta-
relations that hold between relations and entities
- instead only predicting meta-relations that hold
between multiple relations; to avoid this, we will
pass both the relations and entities through together,
treating both as ’entities’.

We will then go on to explore alternative ap-
proaches and models developed specifically for
meta-relations with the aim of achieving better re-
sults both quantitatively in the meta-relation ex-
traction task, but also qualitatively in the quality
of information the model can extract (in the form
of entities, relations, and meta-relations). One al-
ternative approach we will explore will be joint
extraction of entities, relations, and meta-relations.
It has been reported that jointly extracting entities
and relations can lead to better overall performance
as this reduces error propagation and allows more
information to be leveraged from the text for both
entity recognition and relation extraction (Cohen
et al., 2020). In our experiments we will investigate
how well meta-relations could be extracted jointly
with entities and lower order relations; there are
many RE models that jointly extract entities and
relations, and one that we have identified for our
experiments is TPLinker (Wang et al., 2020). The
handshake tagging system used in the TPLinker
model could be modified to also incorporate meta-
relations which would enable the joint extraction
of entities, relations and meta-relations.

5 Conclusion

In this paper we have provided the research context
that our work will contribute to, identified vari-
ous limitations in current work, including data col-
lection/creation, cross domain adaptation, higher-
order relation extraction, and distantly supervised
relation extraction. We then proposed using meta-
relations to extract more knowledge from text and
discussed our plans to conceptualise the task of
meta-relation extraction, and to incorporate meta-
relations in an annotation scheme and dataset we
will create. We also identified challenges we antici-
pate in addition to the data and methods we plan to
use, and how we will utilise these methods in our
work. Focusing on extraction of temporal, compar-
ative, and causal relations in user-generated texts
in the health domain, the expected contributions of
our thesis are as follows:

• Formal conceptualisation of temporal, com-
parative, and causal meta-relation extraction.

• A new annotation scheme incorporating typed
relations and meta-relations as well as lower-
level relations.

• A new dataset for meta-relation extraction cre-
ated with the above annotation scheme.

• A baseline pipelined approach and trained
model for meta-relation extraction for drug ef-
fect and nonadherance information from user
generated text.

• An alternative model for joint entity, relation
and, meta-relation extraction for the above
user generated text.

• Methods to address the dataset-creation prob-
lem capable of resulting in high quality rela-
tion extraction models trained on them, where
access to data is limited.
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Abstract

State-of-the-art (SOTA) neural machine trans-
lation (NMT) systems translate texts at sen-
tence level, ignoring context: intra-textual in-
formation, like the previous sentence, and
extra-textual information, like the gender of
the speaker. Because of that, some senten-
ces are translated incorrectly. Personalised
NMT (PersNMT) and document-level NMT
(DocNMT) incorporate this information into
the translation process. Both fields are rela-
tively new and previous work within them is
limited. Moreover, there are no readily availa-
ble robust evaluation metrics for them, which
makes it difficult to develop better systems,
as well as track global progress and compare
different methods. This thesis proposal fo-
cuses on PersNMT and DocNMT for the do-
main of dialogue extracted from TV subtitles
in five languages: English, Brazilian Portugu-
ese, German, French and Polish. Three main
challenges are addressed: (1) incorporating
extra-textual information directly into NMT
systems; (2) improving the machine transla-
tion of cohesion devices; (3) reliable evalu-
ation for PersNMT and DocNMT.

1 Introduction

Neural machine translation (NMT) represents state-
of-the-art (SOTA) results in many domains (Sutske-
ver et al., 2014; Vaswani et al., 2017; Lample et al.,
2020), with some authors claiming human parity
(Hassan et al., 2018). However, traditional methods
process texts in short units like the utterance or sen-
tence, isolating them from the entire dialogue or
document, as well as ignoring extra-textual infor-
mation (e.g. who is speaking, who they are talking
to). This can result in a translation hypothesis’ me-
aning or function being significantly different from
the reference or make the text incohesive or illo-
gical. For instance, the sentence in Polish “Nie

poszłam.” (“I didn’t go.”1) incorporates gender
information in the word poszłam (wentfem) – as op-
posed to poszedłem (wentmasc) – while the English
verb does not incorporate such information. When
translating “I didn’t go.” into Polish, the machine
translation (MT) model must guess the gender of I,
as this information is not rendered in the English
sentence. Rescigno et al. (2020) show that when
commercial MT engines need to “guess” the gen-
der of a word, they do so by making implications
based on its co-occurrence with other words in the
training data. Since training data is often biased
(Stanovsky et al., 2020), MT models will reproduce
these biases, further propagating and reinforcing
them. Clearly, research on context-aware machine
translation is needed.

Sentence-level NMT (SentNMT) is especially
harmful in the domain of dialogue, where most
utterances rely on previously spoken ones, both
in content and in style. The way in which an in-
terlocutor chooses to express themselves depends
on what they perceive as the easiest for the other
person to understand (Pickering and Garrod, 2004).
Dialogue is naturally cohesive (Halliday and Mat-
thiessen, 2013), i.e. rid of redundancies, confusing
redefinition of terms and unclear references. Part
of what makes a conversation fluent is the links
between its elements, which SOTA NMT models
fail to capture. For instance, the latter utterance
in the following exchange: “They put something
on the roof.” “What?” translates to Polish as “Co
takiego?” (“What something?”). The translation
uses information unavailable in the utterance itself,
i.e. the fact that what refers to the noun something.
A sentence-level translation of What? would just
be Co?, which is more universal, but also more
ambiguous. Simply put, even when SentNMT pro-

1All examples throughout the report have been generated
using Google Translate http://translate.google.
com/, accessed 26 Nov 2020.
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duces a feasible translation, its context agnosticism
may prevent it from producing a far better one.

There are growing appeals for developing NMT
systems capable of incorporating additional infor-
mation into hypothesis production: personalised
NMT for extra-textual information (e.g. Sennrich
et al., 2016; Elaraby et al., 2018; Vanmassenhove
et al., 2018) and document-level NMT for intra-
textual information (e.g. Bawden, 2019; Tiede-
mann and Scherrer, 2017; Zhang et al., 2018; Lopes
et al., 2020). Evaluation methods predominant wi-
thin both areas vary vastly from paper to paper,
suggesting that for these applications a robust eva-
luation metric is not readily available. This view is
further strengthened by the fact that Hassan et al.
(2018), when assessing their MT for human pa-
rity, ignored document-level evaluation completely.
Läubli et al. (2018) later disputed this choice, sho-
wing that professional annotators still overwhel-
mingly prefer human translation at the level of the
document, and therefore human parity has not yet
been achieved. This case study shows how much a
robust and widely accepted document-level metric
is needed.

Currently, researchers working on PersNMT and
DocNMT conduct evaluation primarily by repor-
ting the BLEU score for their systems. But they
also commonly assert that the metric cannot re-
liably judge fine-grained translation improvements
coming from context inclusion. As a way out, some
of them report accuracy on specialised test suites
(e.g. Kuang et al., 2018; Bawden, 2019; Voita et al.,
2020) or manual evaluation. Although both have
limited potential for generalisation, their attention
to detail makes them superior tactics of evaluation
for applications such as PersNMT and DocNMT.

In this work we utilise TV subtitles, a context-
rich domain, in order to investigate whether MT
of dialogue can be improved: directly, by enhan-
cing document coherence and cohesion through
incorporation of intra- and extra-textual informa-
tion into translation, and indirectly, by designing
suitable evaluation methods for PersNMT and
DocNMT. Dialogue extracted from TV content is
an attractive domain for two reasons: (1) there is an
abundance of parallel dialogue corpora extracted
purely from subtitles, and (2) the data is rich in or
could potentially be annotated for a range of meta
information such as the gender of the speaker.

In Section 2, we discuss relevant contextual phe-
nomena. We then present the research on PersNMT

and DocNMT, and the applicability of MT evalu-
ation metrics to both. In Section 3 we delineate the
research questions, the work conducted so far and
our plans. Section 4 concludes the paper.

2 Background

2.1 Contextual phenomena

Two types of contextual phenomena relevant for
MT of dialogue are explored: cohesion phenomena
(related to information that can be found in the text)
and coherence phenomena (related to the context
of situation, which we consider to be external to the
text). We emphasise that the phenomena explored
below represent a subset of cohesion and coherence
constituents, and that our interest in them arises
from the difficulties they pose for MT of dialogue.

Cohesion phenomena Humans introduce cohe-
sion into speech or written text in three ways: by
choosing words related to those that were used
before (lexical cohesion), by omitting parts of or
whole phrases which can be unambiguously reco-
vered by the addressee (ellipsis and substitution)
and by referring to elements with pronouns or sy-
nonyms that the speaker judges recoverable from
somewhere else in text (reference) (Halliday and
Matthiessen, 2013). Cohesion phenomena effec-
tively constitute links in text, whether within one
utterance or across several. Figure 1 shows exam-
ples of how they can be violated by MT.

Cohesion-related tasks such as coreference or
ellipsis resolution have attracted great interest in
the recent years (e.g. Rønning et al., 2018; Jwala-
puram et al., 2020). Previous research on cohesion
within DocNMT has revealed that verb phrase el-
lipsis, coreference and reiteration (a type of lexical
cohesion) may be particularly erroneous in MT
(e.g. Tiedemann and Scherrer, 2017; Bawden et al.,
2018; Voita et al., 2020).

Coherence phenomena Coherence is consi-
stency of text with the context of situation (Hal-
liday and Hasan, 1976). MT of dialogue may be
erroneous due to models not having access to extra-
textual information2, e.g.: (a) speaker gender and
number, (b) interlocutor gender and number, (c)
social addressing, and (d) discourse situation. Dif-
ferent languages may render such phenomena dif-
ferently, e.g. formality in German is expressed

2Note: the focus here is on sentence-level translation utili-
sing extra-textual context.
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EN “It’s just a social call.” “A social call?”
PLMT “To tylko spotkanie towarzyskie.” “Połą-

czenie towarzyskie?”
(“It’s just a social gathering.” “A social
call?”)

PLref “To tylko spotkanie towarzyskie.” “Spo-
tkanie towarzyskie?”
(“It’s just a social gathering.” “A social
gathering?”)

EN I love it. We all do [=love it].
PLMT Kocham to. Wszyscy to robimy. (“We

all do it.”)
PLref Kocham to. Wszyscy to kochamy. (“We

all love it.”)

Figure 1: Mistranslations of cohesion phenomena in
translations. In the top example, social call is reite-
rated in source and reference, while MT opts for two
different phrases, thereby decreasing lexical cohesion.
The bottom example is verb phrase ellipsis, which does
not exist in Polish and hence requires that the antece-
dent verb is repeated.

through the formal pronoun Sie (e.g. “Are you hun-
gry?” becomes “Bist du hungrig?” when informal
and “Sind Sie hunrgig?” when formal), while in
Polish inflections of the pronoun Pan/Pani/Państwo
(“Mr/Mrs/Mr and Mrs”), the formal equivalent of
ty/wy (“you”) are used. Then, as observed by Kra-
nich (2014), some languages (such as English) pre-
fer to express formality through politeness via word
choices (e.g. pleased is a more formal happy)3.

2.2 Personalised Neural Machine Translation

In PersNMT, the aim is to develop a system F
capable of executing the following operation:

F (xSL, e, TL) = xTL,e

where x is the source sentence, p is the extra-textual
information (e.g. speaker gender) and SL, TL are
source and target language, respectively; xTL,e is
then a contextual translation of xSL.

This formulation is inspired by previous work
within the area. Sennrich et al. (2016) control the
formality of a sentence translated from English to
German by using a side constraint. The model is
trained on pairs of sentences (xi, yi), where yi is
either formal or informal, and a corresponding tag
is prepended to the source sentence. At test time,
the model relies on the tag to guide the formality

3More examples can be found in the Appendix

of the translation hypothesis. A similar method
has been used in Vanmassenhove et al. (2018) and
in Elaraby et al. (2018) to address the problem of
speaker gender morphological agreement. Mory-
ossef et al. (2019) address the issue by modifying
the source sentence during inference. They pre-
pend the source with a minimal phrase implicitly
containing all the relevant information; for exam-
ple, for a female speaker and a plural audience,
the augmented source yields “She said to them:
<src. sent.>”. Their method improves on multiple
phenomena simultaneously (speaker gender and
number, interlocutor gender and number) and requ-
ires little annotated data, but its performance relies
entirely on the MT system’s ability to utilise the
added information. Furthermore, there are some
side effects, e.g. the authors find the model’s pre-
dictions to be often unintentionally influenced by
the token said.

A similar method of tag-managed tuning has
been used to train multilingual NMT systems (John-
son et al., 2017) and approximately control sequ-
ence length in NMT (Lakew et al., 2019). Outside
MT, this method has been the driving force behind
large pretrained controllable language models (De-
vlin et al., 2019; Keskar et al., 2019; Dathathri et al.,
2019; Krause et al., 2020; Mai et al., 2020).

2.3 Document-level Neural Machine
Translation (DocNMT)

Traditionally, NMT is a sentence-level (Sent2Sent)
task, where models process each sentence of a docu-
ment independently. Another way to do it would be
to process the entire document at once (Doc2Doc),
but it is much harder to train a reliable NMT mo-
del on document-long sequences. A compromise
between the two is a Doc2Sent approach which
produces the translation sentence by sentence but
considers the document-level information as con-
text when doing so (Sun et al., 2020).

Doc2Doc Tiedemann and Scherrer (2017) con-
duct the first Doc2Doc pilot study: they translate
documents two sentences at once, each time discar-
ding the first translated sentence and keeping the
latter. They find that there is some benefit from do-
ing so, albeit such benefit is difficult to measure. A
larger setting was explored in (Junczys-Dowmunt,
2019): a 12-layer Transformer-Big (Vaswani et al.,
2017) was trained to translate documents of up to
1000 subword units, with performance optimised
by noisy back-translation, fine tuning and second-
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pass post editing described in (Junczys-Dowmunt
and Grundkiewicz, 2018). Finally, Sun et al. (2020)
propose a fully Doc2Doc approach applicable to
documents of arbitrary length. They split each do-
cument into k ∈ 1, 2, 4, 8... parts and treat them as
input data to the model, in what they call a multi-
relational training, as opposed to single relational
where only the whole document would be fed as
input. Despite good results, the last two methods re-
quire enormous computational resources, and this
limits their commercial application.

Doc2Sent When translating a sentence si a
Doc2Sent model is granted access to document-
level information S ⊆ {s0...si−1, si+1...sn}
and/or T ⊆ {t0...ti−1} where n is the length of
the document. The context information is either
concatenated with the source sentence yielding
a uni-encoder model (Tiedemann and Scherrer,
2017; Ma et al., 2020), or is supplied in an extra
encoder yielding a dual-encoder4 model (Zhang
et al., 2018; Voita et al., 2020). In most appro-
aches, the performance is optimised when shorter
context (1-3 sentences) is used, though Kim et al.
(2019) find that applying a simple rule-based con-
text filter can stabilise performance for longer con-
texts. Ma et al. (2020) offer an improvement to
uni-decoder which limits the sequence length in
the top blocks of the Transformer encoder in the
uni-encoder architecture, and Kang et al. (2020)
introduce a reinforcement-learning-based context
scorer which dynamically selects the context best
suited for translating the critical sentence.

Jauregi Unanue et al. (2020) challenge the idea
that DocNMT can implicitly learn document-level
features, and instead propose that the models be
rewarded when it preserves them. They focus on
lexical cohesion and coherence and use respective
metrics (Wong and Kit, 2012; Gong et al., 2015)
to measure rewards. This method may be success-
ful provided that suitable specialised evaluation
metrics are proposed in the future. Nevertheless,
more interest has been expressed in literature in
achieving high performance w.r.t. such features as
a by-product of an efficient architecture, as is the
case with SOTA Sent2Sent architectures.

Other architectures DocRepair (Voita et al.,
2019) is a monolingual post-editing model trained
to repair cohesion in a document translated with
SentNMT. Kuang et al. (2018) use two cache struc-

4Notation adopted from Ma et al. (2020).

tures to influence the model’s token predictions: a
dynamic cache cd of past token hypotheses with
stopword removal and a topic cache ct of most
probable topic-related words. Finally, Lopes et al.
(2020) compress the entire document into a vector
and supply it as context during translation.

2.4 Evaluation of Machine Translation

Many machine translation evaluation (MTE) me-
trics have been proposed over the years, much
owing to the yearly WMT Metrics task (Mathur
et al., 2020). They typically measure similarity
between reference r, hypothesis h and source s,
expressed in e.g. n-gram overlap (e.g. Papineni
et al., 2002), cosine distance of embeddings (e.g.
Zhang et al., 2020), translation edit rate (Snover
et al., 2006) or trained on human judgements (Shi-
manaka et al., 2018), with the SOTA represented
by COMET which combines the ideas of Zhang
et al. and Shimanaka et al.: several distances be-
tween h, r and s are computed based on contextual
embeddings from BERT.

Practically all of these metrics are developed
to optimise performance at sentence level, an is-
sue which until recently was not brought up often
enough within the community. In the latest edi-
tion of the Metrics task at WMT (Mathur et al.,
2020), a track for document-level evaluation was
introduced. However, the organisers approached
document-level evaluation as the average of human
judgements on sentences in documents. This is not
a reliable assessment, since the quality of a text
is more than the sum or average of the quality of
its sentences. This approach risks “averaging out”
the severity of potential inter-sentential errors. Cur-
rently, DocNMT models are typically evaluated in
terms of BLEU, showing modest improvements
over a baseline (e.g. Voita et al., 2018, report 0.7
BLEU improvement). Several authors have argued
that BLEU is not well suited to evaluating perfor-
mance with respect to preserving cross-sentential
discourse phenomena (Voita et al., 2020; Lopes
et al., 2020). When applied to methods which im-
prove only a certain aspect of translation, BLEU
can indicate very little about the accuracy of these
improvements. Furthermore, Kim et al. (2019) and
Li et al. (2020) argue that even the reported BLEU
gains in DocNMT models may not come from
document-level quality improvements. Li et al.
(2020) show that feeding the incorrect context can
improve the metric by a similar amount.
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To decide whether DocNMT yield any improve-
ments, a more sophisticated evaluation method is
needed. Following the observation that DocNMT
improves on individual aspects of translation w.r.t.
SentNMT, test suites grew in popularity among re-
searchers (Bawden, 2019; Voita et al., 2020; Lopes
et al., 2020). In particular, contrastive test suites
(Müller et al., 2018) measure whether a model can
repeatedly identify and correctly translate a cer-
tain phenomenon. They can be seen as robust col-
lections of fine-grained multiple choice questions,
yielding for each phenomenon an accuracy score
indicative of performance. Producing these suites
is time consuming and often requires expertise, but
they are of extreme benefit to NMT. A sufficien-
tly rich bed of test suites can evaluate the general
robustness of a model, expressed as the average
accuracy on these suites.

3 Addressing Research Questions

Within this PhD, we seek to answer three research
questions (RQs):

RQ1 Can machine translation of dialogue be per-
sonalised by supplying it with extra-textual
information?

RQ2 Is ellipsis problematic for MT, and can MT
make use of marking of ellipsis and other co-
hesion devices to increase cohesion in transla-
tion of dialogue?

RQ3 How can automatic evaluation methods of MT
be developed which confidently and reliably
reward successful translations of contextual
phenomena and, likewise, punish incorrect
translations of the same phenomena?

3.1 Modelling Extra-Textual Information in
Machine Translation

We hypothesise that supplying the MT model with
extra-textual information might help it make bet-
ter dialogue translation choices. Our hypothesis is
motivated by two facts: (1) that human translators
base their choices of individual utterances on the
understanding of the discourse situation and ensure
that each utterance preserves its original function
and meaning, and (2) that many instances of ut-
terances and phrases are impossible to interpret
unambiguously in isolation from their context.

Tuning MT output with external information
Previous works on supplying context via constra-
ints or tags have been narrow in scope, predominan-
tly employing tag controlling (see subsection 2.2).

Following their success we plan to experiment with
alternative neural model architectures which allow
the incorporation of extra data into sequence-to-
sequence transduction and assess whether they are
fit for translation. If successful, we see many poten-
tial applications of such models in NMT, ranging
from those explored in this thesis to limiting the
length of the translation, fine-grained personalisa-
tion (e.g. on speaker characteristics) and more.

Per scene domain adaptation Neural machine
translation models can be fine-tuned to a particular
domain (e.g. medical transcripts) via domain ad-
aptation (Cuong and Sima’an, 2017). Effective as
it is, domain adaptation requires domain-specific
data and that the model is trained on it (a time-
consuming process). This technique is then inappli-
cable in scenarios where domains are fine-grained
and the adaptation needs to be instantaneous. Per
scene adaptation appears to be a promising solu-
tion to the problem of wrong lexical choices made
by MT models when translating dialogue. The
environment or scene in which dialogue occurs is
often crucial to interpreting its meaning; a scene-
unaware model may misinterpret the function of an
utterance and produce an incorrect translation.

Within TV dialogue we define a scene as conti-
nuous action which sets boundaries for exchanges.
Its characteristics can be expressed in natural lan-
guage (e.g. extracts from plot synopsis), as tags
(e.g. school, student, sunny, exam) or as indivi-
dual categories (e.g. battle). Since scene context is
document-level, this task can also be seen as a use
case for combining PersNMT and DocNMT, and
will be explored in this PhD.

3.2 Improving Cohesion for Machine
Translation of Dialogue

Work within MT so far has only limitedly explored
whether ellipsis poses a significant problem for
translation (see Voita et al., 2020). We hypothesise
that this is indeed the case: for some language pairs,
the quality of machine-translated texts depend on
the system’s understanding of the ellipsis, when
it is present in the source text. Since in dialogue
ellipsis typically spans more than one utterance, it
is poorly understood by SentNMT and the resulting
MT quality is low (Figure 2).

To test our hypothesis, we will analyse ellipsis
occurrences in dialogue data. We will use automa-
tic methods to identify 1,000 occurrences of ellipsis
in source text and mark spans of their occurrence
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EN “I’m sorry, Dad, but you wouldn’t understand.” “Oh, sure, I would [understand], princess.”
PLMT “Przepraszam tato, ale nie zrozumiałbyś.” “Och, oczywiście, księżniczko.”
PLref “Przykro mi, tato, ale nie zrozumiałbyś.” “Pewnie, że zrozumiałbym, księżniczko.”

Figure 2: A wrongly translated exchange with ellipsis. In the source, the word would is a negation to wouldn’t in
the previous utterance. The MT system ignores I would: the backtranslation of PLMT reads “Oh, sure, princess.”

in the corresponding machine and reference trans-
lations. All cases will then be manually analysed
from the following angles: (i) Is the ellipsis cor-
rectly translated? (ii) Is the resulting translation of
ellipsis natural/unnatural? (iii) Does the reference
translation make use of the elided content? (iv) If
the model generates an acceptable translation, co-
uld the elided content nevertheless have been used
to disambiguate it or make it more cohesive?

Next, we aim to build a DocNMT system which
utilises marking of cohesion phenomena to make
more cohesive translation choices5 (Figure 3). We
apply the insights from previous research, namely
that the Transformer model may track cohesion
phenomena when given enough context (Voita
et al., 2018), that context preprocessing stabilises
performance of contextual MT models (Kim et al.,
2019), solutions to the problem of long inputs in
DocNMT (e.g. Ma et al., 2020; Sun et al., 2020),
and finally our own analysis of the problem.

Figure 3: A draft of our DocNMT pipeline architecture.
We preprocess the document to mark cohesion features.
Then we use the output as the data for our model.

3.3 Applying Evaluation Metrics to Cohesion
and Speaker Phenomena

Addressing RQ3 will involve testing the hypothesis
that current common and SOTA automatic evalu-
ation metrics fail to successfully reward transla-
tions which preserve contextual phenomena and,
similarly, fail to punish those which do not.

We will develop a document-level test set of dia-
logue utterances in five languages, annotated for
contextual phenomena. For each phenomenon, we
will modify the reference translations to prepare se-

5Including elliptical structures in this step will depend on
the result of the first experiment.

veral variations: one where all marked phenomena
are translated correctly, another one where only
90% is translated correctly, then 80% etc. up to 0%.
We will prepare a set of common and SOTA MT
evaluation metrics and use them to produce scores
for all variants, for all phenomena. If there exists a
metric which gives a consistently lower score the
more a phenomenon is violated, for all phenomena,
then our hypothesis is incorrect and we will use that
metric for evaluation in experiments. Otherwise,
we will develop our own metric.

The aforementioned test set will also be conver-
ted to a contrastive test suite (Müller et al., 2018)
and submitted as an evaluation method to WMT
News Translation task. The data to be used here is
a combination of the Serial Speakers dataset (Bost
et al., 2020) and exports from OpenSubtitles (Lison
and Tiedemann, 2016), yielding 5.6k utterances to-
tal, split into scenes and parallel in five languages.

We hope that this work will substantiate the flaws
of sentence-level evaluation and prompt the com-
munity to work on context-inclusive methods.

4 Conclusions

This work is the proposal of a PhD addressing Per-
sNMT and DocNMT in the dialogue domain. We
have presented evidence that sentence-level MT
models make cohesion- and coherence-related er-
rors and offered several approaches via which we
aim to tackle this problem. We plan to conduct
extensive experiments to analyse the problem of
ellipsis translation and of the use of sentence-level
evaluation metrics to evaluate contextual pheno-
mena. The outcome of this work will also inc-
lude publicly available test suites, a document-level
translation model, a personalised translation model
and a context-aware evaluation metric.
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A Other examples

In this section we present an extended set of exam-
ples supporting our hypotheses stated in the main
proposal. All examples in Figure 4, Figure 5 and
Figure 6 show examples of mistranslated sentences
where the error was related to a specific phenome-
non: ellipsis in Figure 4, lexical cohesion in Fi-
gure 5 and reference in Figure 6. Figure 7, instead
of highlighting translation errors, shows how a sen-
tence in English can have several different trans-
lation candidates depending on the extra-textual
context embedded in the situation (the correspon-
ding translations are reference translations rather
than MT-generated ones).
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Context What would they use it for?
Antecedent [They would use it for]
EN Grabbing the balls of a spy.
PLMT Łapie szpiega za jaja. (‘He/she/they grab(s) the balls of a spy’)
PLref Żeby łapać szpiega za jaja. (‘For grabbing the balls of a spy’)
Context A big, dumb, balding, North American ape with no chin.
Antecedent [with]
EN And a short temper.
PLMT I krótki temperamentnominative. (‘And a short temper.’)
PLref I z krótkim temperamenteminstrumental. (‘And with a short temper.’)
Context (...) with a record of zero wins and 48 defeats...
Antecedent [a record of zero wins and 48]
EN Oh, correction. Humiliating defeats, all of them by knockout–
PLMT Oh, korekta. Upokarzające porażki, wszystkienominative przez nokautowanie...

(‘Oh, correction. Humiliating defeats, all of them by knockout...’)
PLref Oh, korekta. Upokarzających porażek, wszystkichgenitive przez nokautowanie...

(‘Oh, correction. Humiliating defeats, all of them by knockout...’)
Context “I’ve only got two cupcakes for the three of you.”
Antecedent [two cupcakes]
EN “Just take mine [=my cupcake].”
DEMT “Nimm einfach meine [=minefem].”
DEref “Nimm einfach meinen [=minemasc].”

Figure 4: Examples of translations where resolving ellipsis is crucial to generating a correct translation hypothesis.
Context is the utterance containing the antecedent, and Antecedent is the content which is elided in the current
utterance. In the first two examples from the top, the Polish translation requires including part of the antecedent
in order to maintain cohesion. In the third example from the top, the antecedent decides the inflection of all the
words relating to the word defeats which is repeated in the current utterance. Finally, the bottom example contains
nominal ellipsis, and the model uses an incorrect inflection of mein since it fails to make the connection with the
antecedent.

EN “Sorry, Dad. I know you mean well.” “Thanks for knowing I mean well.”
PLMT “Przepraszam tato. Wiem, że chcesz dobrze.” “Dzięki, że wiedziałeś, że chcę dobrze.”
PLref “Przepraszam tato. Wiem, że chcesz dobrze.” “Dzięki, że wiesz, że chcę dobrze.”

EN “You’re a dimwit.”
“Maybe so, but from now on... this dimwit is on easy street.”

PLMT
“Jesteś głupcem.” (‘You’re a fool.’)
“Może i tak, ale od teraz ... ten głupek (dimwit) jest na łatwej ulicy.”

PLref
“Jesteś głupkiem.”(‘You’re a dimwit.’)
“Może i tak, ale od teraz ... ten głupek (dimwit) jest na łatwej ulicy.”

Figure 5: Examples of mistranslated lexical cohesion. In the top example, although the MT model managed to
translate most of the repeated phrase in the same way, it failed to maintain the verb know in the present tense. In
the bottom example a different translation of dimwit is used in the two utterances. Note that it is okay for a model
to give a different hypothesis to a word than the human translator would, as long as it agrees with the source and
is cohesive with the rest of the text (i.e. all occurrences of the word are translated in the same way).
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EN The grabber. What would they use it for?
DEMT Der Grabbermasc. Wofür würden sie esneut verwenden?
DEref Der Grabbermasc. Wofür würden sie ihnmasc verwenden?
EN Leave ideology to the armchair generals. It does me no good.
PLMT Ideologięfem zostawcie generałom foteli. Nic mi toneut nie da.
PLref Ideologięfem zostawcie generałom foteli. Nic mi onafem nie da.

Figure 6: Examples of mistranslated multi-sentence dialogue where reference is the violated phenomenon. In both
examples, the gender of the referent is different in source and target languages, therefore the pronoun which refers
to it is mistranslated.

EN I never expected to be involved in every policy or decision, but I have been
completely cut out of everything.

PL (fem) Nigdy nie oczekiwałam wglądu w każdą decyzję, ale zostałam odcięta od
wszystkiego.

PL (masc) Nigdy nie oczekiwałem wglądu w każdą decyzję, ale zostałem odcięty od
wszystkiego.

EN And who have you called, by the way ?
PL (to masc) Do kogo już dzwoniłeś?
PL (to fem) Do kogo już dzwoniłaś?
PL (to Plural) Do kogo już dzwoniliście?
PL (to Pluralfem) Do kogo już dzwoniłyście?
EN He was shot previous to your arrival?
PL (formal) Został postrzelony przed pana przyjazdem?
PL (informal) Został postrzelony przed Twoim przyjazdem?

Figure 7: Examples of situation phenomena that can occur in text: speaker gender agreement (top), addressee
gender agreement (middle), formality (bottom).
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Abstract

Most works in food computing focus on gen-
erating new recipes from scratch. However,
there is a large number of new online recipes
generated daily with a large number of users
reviews, with recommendations to improve the
recipe flavor and ideas to modify them. This
fact encourages the use of these data for obtain-
ing improved and customized versions. In this
thesis, we propose an adaptation engine based
on fine-tuning a word embedding model. We
will capture, in an unsupervised way, the se-
mantic meaning of the recipe ingredients. We
will use their word embedding representations
to align them to external databases, thus en-
riching their data. The adaptation engine will
use this food data to modify a recipe into an-
other fitting specific user preferences (e.g., de-
crease caloric intake or make a recipe). We
plan to explore different types of recipe adap-
tations while preserving recipe essential fea-
tures such as cuisine style and essence simul-
taneously. We will also modify the rest of the
recipe to the new changes to be reproducible.

1 Introduction

Our dietary habits have a huge impact on health
and, thus, in quality of life. In the last decades,
the amount of nutritional data available has notably
increased. This fact, together with the ubiquity of
smartphones, has encouraged the use of machine
learning techniques for automatizing some tedious
and repetitive tasks as diet generation. In this con-
text, the food computing concept refers to the use
of food data to improve the quality of life as well as
understanding human behavior (Min et al., 2019).

Recipes and their composition have been largely
studied in food computing, especially in the food
recommendation systems field (Teng et al., 2012).
These systems mainly perform recipe-based nu-
trition assessment, looking for suitable combina-
tions to user preferences. The use of predictive

algorithms to understand relations between recipes
has emerged in the last years (Sajadmanesh et al.,
2017). Recently, authors have taken advantage of
these tools to generate synthetic food data. Recipe
generation is a current area of research, and the
latest works in the area have put their interest in the
creation of synthetic recipes. However, these works
have focused on automatized text generation from
scratch instead of taking direct advantage of the
already existing recipes to generate new versions.

In this thesis, we will address the problem of
partially-generation of recipes. Particularly, we
will put our effort into recipe adaptation and recipe
completion tasks. Online cooking communities
and social media generate daily a huge amount of
food data, mostly cooking recipes that users want
to share with the world. In these communities,
many users review the shared recipes, often giv-
ing feedback, customization, and suggestions for
tasty versions of a given recipe. We plan to use
this information to generate new recipe versions.
Particularly, we will modify recipes to fulfill the
user’s requests. There are many reasons to modify
a recipe, e.g., a diet restriction such as vegan or
vegetarian diets, a lack of ingredients at home, to
make the recipe tastier or cooking a kid-friendly
version.

Also, many users follow restricted diets linked to
nutritionist personalized assessment. A user would
require a light version of a given recipe or includ-
ing high-protein ingredients, among others. We
propose to automatize the process of ingredient
modification in a recipe and extend this idea with
a recipe completion task. In both cases, we can
consider several criteria simultaneously, such as
those mentioned before. Thus, we tackle twofold
challenges here; we have to preserve the seman-
tic of the recipe and its essence while combining
heterogeneous sources to incorporate nutrition and
user knowledge during the adaptation.
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Here, a specific-domain language model can able
us to tackle both purposes. We propose to use a
fine-tuned word embedding model as the base of
our contribution. We will use it to model the recipe
ingredients to incorporate useful information from
external sources (i.e., complete the ingredient data
with nutrition information, user tips, and cuisine
styles). Then, we will use the merged data in an
adaptation function to find the most suitable foods
to adapt a recipe to given restrictions. The semantic
information combined with the external data will
be the base of the adaptation engine. But adapting
recipes do not only consist of dealing with ingre-
dients. Likewise, we will use this model for a
synthetic adaptation of title, recipe steps, and extra
recipe data affected in the process.

2 Related work

Cooking recipes have been largely explored in food
computing (Min et al., 2019). Last recipe-based
works in food computing have surrounding agreed
with the advantages of data mining techniques to
understand how people cook. Regarding the use
of natural language processing approaches to re-
solve food computing tasks, they have been mainly
focused on the analysis of cuisines and ingredient
relations (Min et al., 2019). From a wide perspec-
tive, these relations have been addressed by using
the textual description of foods and flavor networks.
The latter has been widely studied with statistical
natural language processing methods (Takahashi
et al., 2012; Chen, 2017; Chang et al., 2018). Our
proposal is particularly related to the following top-
ics.

Recipe generation and completion Creative
cooking is the food computing area focused on
the automatic generation of new recipes. Here,
there is a distinction based on the approach. Syn-
thetic recipes are created in two main ways. One
is recipe completion, able to generate synthetic
partial recipes from already existing ones. Com-
pleting recipes has also been studied in the frame
of food recommendation systems. In (Cueto et al.,
2019), the authors tackle the problem of complet-
ing partial recipes by using context-based recom-
mendation. Recipe generation tasks have also
considered the cuisine style for adapting recipes
to other cultures (Kazama et al., 2018). In this
case, they propose a neural network method to
change ingredients for their equivalents in other
cuisines. Regarding recipe generation, cooking

recipes have been generated with natural text gen-
eration tasks (Aljbawi, 2020). Due to the repetitive
results that are usually obtained with this approach,
the authors in (Bosselut et al., 2018) proposed a
synthetic recipe generation model that considered
a reward to get more coherent and less repetitive
texts.

Word embedding in food computing Word em-
bedding models in food computing have been
mainly focused on ingredient analysis. One of
the more relevant works in this area is food2vec,
where the author used a word embedding model
trained with lists of ingredients to understand re-
lations between ingredients and cuisines of the
world (Altossar, 2015). Recipe2vec is another
model trained in food data, in this case, for recipe
retrieval purposes (BuzzFeed and Tasty, 2017). It
has been mentioned the many advantages of em-
bedding models referring to fusion heterogeneous
food data for multiple purposes, where nutritional
and social media textual data are integrated (Sal-
vador et al., 2017) more specialized in resolving
image recognition tasks rather than language pro-
cessing. In (Chen et al., 2019), the authors used a
word embedding model to detect ingredient rela-
tions to create pseudo-recipes. They used a model
trained on a list of recipes to detect which ingre-
dients appear together in recipes. They created a
pseudo-recipe object based on this idea.

Transfer learning The state-of-the-art in NLP
tasks is based in transfer learning models. It is very
useful for specific-domains where data are limited
since general-purpose models will perform poorly.
This approach allows to train models with a big-
ger capacity but capturing the subtle essence of the
problem addressed. The most well-known models
using fine-tuning for specific tasks are BERT (De-
vlin et al., 2019) and GPT-2 (Budzianowski and
Vulić, 2019) with excellent results. Transfer learn-
ing has been used in different specific areas, e.g., in
biomedicine (Lee et al., 2019). To the best of our
knowledge, transfer learning has not been proposed
to extract semantic information from food item de-
scriptions to combine heterogeneous sources.

Conditional text generation Controllable text
generation is the area where sentences’ attributes
can be controlled by factors such as age, gender,
or style (Prabhumoye et al., 2020). In this prob-
lem, we have a sequence output that is conditioned
by the sequence input. Text generation language
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models have to assess the need for controlling spe-
cific parts of the task for resolving a specific prob-
lem (Keskar et al., 2019). In this line, recent ap-
proaches have put interest in style transfer tech-
niques. Text style transfer has allowed adapting
a synthetic text to different situations such as au-
diences, complexity, and other contextual circum-
stances (Li et al., 2020). Recent style transfer algo-
rithms employ parallel data in supervised learning
approaches and non-parallel data in seq2seq archi-
tectures for unsupervised approaches. Also, Vari-
ational Auto-Encoders have been applied for this
aim by separating content and style in the latent
space for better adjustment of the style (Fu et al.,
2018).

3 Proposed methodology

We have divided our approach into two tasks ex-
plained in the following subsections.

3.1 Heterogeneous data-handling
The first problem that appears when modifying a
recipe is obtaining enough food knowledge to be
able to generate recipes that fulfill user preferences.
One of the main challenges to address in food
computing is the inherent difficulty in using food
features from many different nutritional sources.
Consequently, food items need previous process-
ing to handle them jointly. According to this idea,
we can use the item textual description to identify
equivalent items between databases, allowing the
joint use of these databases as a unique data col-
lection (Morales-Garzón et al., 2020). Notice that
ontology-based methods could perform well in this
problem. But these models have problems when
applied to ingredient-based tasks. They do not
represent high detailed ingredients, and also have
difficulty generalizing to online recipes. Further-
more, knowledge extraction has to be hand-crafted.
To overcome this, we propose to model ingredient
descriptions with a word embedding model. This
unsupervised model can deal with arbitrary-sized
text and capture the semantic of cooking.

Models Since the food domain is very-specific,
general-purpose word embedding models will per-
form poorly. This issue can be solved by using
pre-trained models and perform transfer learning.
Deep models will be trained in large unlabeled
text databases and, then, fine-tuned to the cooking
domain. This approach will be able to capture auto-
matically the semantic of cooking without human

supervision. First, we will do a transfer learning
task with a BERT language model (Devlin et al.,
2019). Using BERT will able us to deal with one
of the more compound facts when cooking: a same
ingredient can be used in different forms and meals
(e.g., a user could use flour for a cake, but also
frying fish). In a sentence-based model, we will
be able to represent the current context in which
an ingredient is used. This fact will able us to find
better food alternatives for each ingredient.

We plan to test the performance of our model
replicating the process with GPT-2 (Budzianowski
and Vulić, 2019). The main difference between
BERT and GPT-2 is while BERT looks at the con-
text of the word, GPT-2 only looks backward. In
this thesis, we will explore both and discern the
advantages of each one for the cooking domain.

Distance metrics We understand ingredient map-
ping as the search for an equivalent food in an ex-
ternal source. This similarity can be obtained by
calculating the distance between ingredient descrip-
tions. We consider an ingredient description as a
short description text (e.g. “almonds toasted”). We
plan to use food representations obtained with the
embedding vectors to find food equivalences within
databases. We plan to test the model performances
with different metrics including word mover’s dis-
tance as a baseline metric. We also plan to use a
distance metric proposed in (Morales-Garzón et al.,
2020), which has demonstrated to work remarkably
well with food data descriptions.

Dataset We plan to use a pre-trained word em-
bedding model trained on Wikipedia and Book
Corpus datasets1. We will re-train the model in
a food-based textual corpus. To do this, we will use
a large recipe dataset available in archive.org2. The
dataset contains more than 200,000 recipes with
their preparation step texts. These texts contain
meaningful information about the science of cook-
ing such as ingredient combinations and cooking
processes.

3.2 Adaptation engine
Deciding the most profitable version for a recipe
is a very subjective process. Consequently, follow-
ing human adaptation rules is difficult and very
tedious. Our approach consists in using word em-
bedding vectors to represent an existing cooking

1https://huggingface.co/models
2https://archive.org/details/

recipes-en-201706
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Figure 1: An overview of the procedure

recipe. For that, we will extract the ingredients
from a recipe, and we will obtain their embedded
representations with the transfer learning model.
Once we have a representation of the ingredients,
we proceed with adapting them to fit the user re-
quirements. We will take advantage of the captured
information in the model to adapt the ingredients
(e.g., similarity relations between foods), with the
aim of preserving the recipe essence. In this way,
semantic relations between ingredients can influ-
ence the decision when changing an ingredient for
other that fits in the recipe. Besides, not only chang-
ing the ingredients will result in a finished recipe.
We will also generate automatic text from the in-
gredient list to make coherent cooking instructions.
Thus, the process consists of three steps: (1) ob-
tain a semantic representation of the ingredients,
(2) adapt the recipe by changing the ingredients
to other foods that fit, (3) modify the rest of the
recipe accordingly, i.e., recipe preparation steps,
nutrition information, and title if need. Since title
and nutrition data can be easily obtained from the
final ingredients, the challenge resides in altering
the preparation text. Conditional generation and
style transfer techniques will be used in this last
step. At the end of this process, the user will have
the full recipe with the list of ingredients and the
cooking procedure, being able to reproduce it at
home. See Figure 1 for a better understanding of
this process.

Recipe modeling First, we will model a recipe
with the transfer learning model. The ingredient in-

formation contained in an online recipe is short
and may not be sufficient for making a quality
adaptation. As introduced, we plan to combine
the ingredients with food features such as cuisine
style, nutrition information, packaging information,
cooking tips, and potential ingredient relations. Un-
fortunately, this information has to be obtained
from external heterogeneous sources. We will join
this information in one object, merging the ingredi-
ent data with food knowledge from these external
databases. Subsection 3.1 describes this procedure.

Ingredient adaptation One part of the recipe is
properly adapting the ingredients. There are two
main ways of adapting a recipe. In the first case,
some ingredients of a recipe are replaced following
a criterion, e.g., converting a given recipe into a ve-
gan version, and, in the second case, it consists of
suggestions to add new ingredients. In both cases,
we can consider several criteria simultaneously. For
example, the users would like to do a recipe but
with fewer calories or more proteins.Here, we will
design the proper adaptation function according to
a multiobjective optimization problem with restric-
tions, e.g., maximizing the use of sweet ingredients
while minimizing the calories. This has to be sub-
jected to maintaining the coherence of the recipe.

Notice that only similarity-based functions will
be suitable for maintaining the coherence of the
recipe but they do not take into account other fac-
tors like calories. Thus, the ingredient adaptation
task will consider the joint ingredient data obtained
from the combination of the ingredient with exter-
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nal sources. Thus, we will be able to add adaptation
knowledge to this step.

Feeding the adaptation procedure We can
make use of user interactions with recipes to ob-
tain information about how users react to some
recipes. We will use online user interaction data
with recipes to be considered in the adaptation func-
tion. We can exploit this data to measure which
ingredient combinations are more appealing for the
users. We will analyze this data to extract knowl-
edge to feed the adaptation function.

Adaptation of the rest of the recipe Adapting
a recipe does not just consist of changing the ingre-
dients for another suitable option. We also need to
adapt the preparation step to fit with the new ingre-
dients. This part is compound because it needs to
remain the coherence of the original recipe when
possible. We plan to explore the use of word em-
bedding approaches to partially-generate synthetic
text using keywords. We will part from the original
recipe, detecting those steps that must be modi-
fied. Notice that some recipe objects also contain
nutrition tags for a serving. In this case, we will
adapt this information using the ingredient data if
allowed.

Dataset We plan to study recipes in specific
cuisines. For that, we will use recipes extracted
from Yummly. One of the tags stored in Yummly
recipe data is the geographical origin of the recipe.
There are several Yummly datasets online that we
can use, with ingredients, preparation texts, and
cuisine type3. Additionally, the Yummly website
provide users’ reviews, with their suggestions for
altering the recipe, and recommendations of ingre-
dients substitutions (and additions) to improve the
taste of the dish.

Regarding nutritional food data, there are open-
source nutrition dataset available for obtaining food
data from the most common foods and dishes.
One example is the USDA database, maintained
by the Department of Agriculture in the United
States (Gebhardt et al., 2008). There are also mar-
ket product sources for access to typical food in
specific zones of the world. Open Food Facts4 is
an open-source project with the aim of make world-
wide food products accessible.

3http://123.57.42.89/FoodComputing_
_Dataset.html

4https://es.openfoodfacts.org

There are available resources about how users
interact with recipes. The Food.com dataset5 avail-
able in Kaggle provide this info for more than
200,000 recipes from the popular cooking site
Food.com6.

4 Evaluation

Validating recipe adaptations is a subjective proce-
dure. Depending on the cultural factor, the type
of meal, the flavors, and other intrinsic combina-
tions, what could be an excellent recipe for a user,
could result to be untasted for another different one.
This variability makes it difficult to measure the
adequacy of an adapted recipe. To tackle this vari-
ability, we plan to evaluate the proposed method
with an online survey on both regular and expert
users. For this, we will generate adapted recipes
for different circumstances. Each recipe will re-
ceive a score, where the lowest value represents
that the adapted recipe is disgusting and the highest
is a very succulent recipe. Also, we plan to obtain
adaptation suggestions in this step to use them as
feedback for future improvement.

5 Strengths

With the arising of technology and, consequently,
the large amount of recipes shared on the internet,
food computing has played an undeniable role in
recipe retrieval systems. These systems allow ac-
cess to online recipes to speed up the recipe search-
ing whenever a user wants to prepare a dish. We
believe that the integration of our approach in the
cited software could meet user needs when looking
for cooking inspiration. Additionally, it is worth
noting that a recipe-based word embedding model
could be able to participate in multiple problems
of food computing. One of its applications is us-
ing them for detecting recipe similarity to ensure
variety in nutrition assessment systems.

We believe that food computing is not the only
application of our approach. Personalized beauty
treatment is another area in which our proposal
could be useful. Commonly, there can be found
on the internet many natural beauty care recipes
consisting of a list of ingredients and instructions
to create beauty remedies for different purposes.
Among other many factors, this kind of treatment
handles user expectations, allergies, and the cos-

5https://www.kaggle.com/shuyangli94/
food-com-recipes-and-user-interactions

6https://www.food.com
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metic composition of the treatment. A transfer
learning model in this area could be applied to
adapt these kinds of treatments to the user’s needs.

6 Summary

Our proposal consists of using a transfer learning
model in the food domain to adapt recipes to fulfill
user needs. The challenge remains in using the
model for two different tasks. First, we plan to
use the model to complete ingredients information
with data from external sources, such as nutritional
data or cuisine traditions. Thus, we will employ
this joined data for adapting a recipe to fulfill a
need. Then, we will use the language model to
adequate the rest of the recipe to be consistent with
the adapted ingredients.
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Abstract

We propose the Tough Mentions Recall (TMR)
metrics to supplement traditional named en-
tity recognition (NER) evaluation by examin-
ing recall on specific subsets of “tough” men-
tions: unseen mentions, those whose tokens
or token/type combination were not observed
in training, and type-confusable mentions, to-
ken sequences with multiple entity types in the
test data. We demonstrate the usefulness of
these metrics by evaluating corpora of English,
Spanish, and Dutch using five recent neural
architectures. We identify subtle differences
between the performance of BERT and Flair
on two English NER corpora and identify a
weak spot in the performance of current mod-
els in Spanish. We conclude that the TMR met-
rics enable differentiation between otherwise
similar-scoring systems and identification of
patterns in performance that would go unno-
ticed from overall precision, recall, and F1.

1 Introduction

For decades, the standard measures of performance
for named entity recognition (NER) systems have
been precision, recall, and F1 computed over en-
tity mentions.1 NER systems are primarily evalu-
ated using exact match2 F1 score, micro-averaged
across mentions of all entity types. While per-
entity-type scores available from the conlleval
scorer (Tjong Kim Sang, 2002) are often reported,
there are no widely-used diagnostic metrics that
further analyze the performance of NER systems
and allow for separation of systems close in F1.

1We use the term mention to refer to a specific annotated
reference to a named entity—a span of tokens (token sequence)
and an entity type. We reserve the term entity for the referent,
e.g. the person being named. The traditional NER F1 measure
is computed over mentions (“phrase” F1).

2While partial match metrics have been used (e.g. Chinchor
and Sundheim, 1993; Chinchor, 1998; Doddington et al., 2004;
Segura-Bedmar et al., 2013), exact matching is still most
commonly used, and the only approach we explore.

This work proposes Tough Mentions Recall
(TMR), a set of metrics that provide a fine-grained
analysis of the mentions that are likely to be most
challenging for a system: unseen mentions, ones
that are present in the test data but not the train-
ing data, and type-confusable mentions, ones that
appear with multiple types in the test set. We eval-
uate the performance of five recent popular neural
systems on English, Spanish and Dutch data us-
ing these fine-grained metrics. We demonstrate
that TMR metrics enable differentiation between
otherwise similar-scoring systems, and the model
that performs best overall might not be the best on
the tough mentions. Our NER evaluation tool is
publicly available via a GitHub repository.3

2 Related Work

Previous work in NER and sequence labeling
has examined performance on out-of-vocabulary
(OOV) tokens and rare or unseen entities. Ma and
Hovy (2016) and Yang et al. (2018) evaluate sys-
tem performance on mentions containing tokens
not present in the pretrained embeddings or training
data. Such analysis can be used broadly—Ma and
Hovy perform similar analyses for part of speech
tagging and NER—and can guide system design
around the handling of those tokens.

Augenstein et al. (2017) present a thorough anal-
ysis of the generalization abilities of NER sys-
tems, quantifying the performance gap between
seen and unseen mentions, among many other fac-
tors. Their work predates current neural NER mod-
els; the newest model they use in their evaluation is
SENNA (Collobert et al., 2011). While prior work
has considered evaluation on unseen mentions, it
has focused on experimenting on English data, and
the definition of “unseen” has focused on the tokens
themselves being unseen (UNSEEN-TOKENS in our

3https://github.com/jxtu/EvalNER
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TRAINING SET Newcastle[LOC] is a city in the UK[LOC].

TEST SET John Brown[PER], the Newcastle[ORG]
star from the UK[LOC], has. . .

Newcastle John UK[LOC]

[ORG] Brown[PER]

SEEN 4

UNSEEN-TYPE 4

UNSEEN-TOKENS 4

UNSEEN-ANY 4 4

Table 1: Example data and how mentions would be
classified into unseen and type-confusable mention sets

work). We use the umbrella of “tough mentions”
to cover a number of possible distinctions that can
be made with regards to how unseen test set data
is, and we experiment on multiple languages.

Mesbah et al. (2018) propose an iterative ap-
proach for long-tail entity extraction, focusing on
entities of two specific types in the scientific do-
main. Derczynski et al. (2017) propose evaluation
on a set of unique mentions, which emphasizes the
ability of a system to recognize rarer entities. As
entities and their types change quickly (Derczynski
et al., 2015), recall on emerging entities is becom-
ing a more critical measure in evaluating progress.
Ribeiro et al. (2020) propose CHECKLIST, which
can be applied to NER by using invariance tests;
for example, replacing a mention with another one
of the same entity type should not affect the output
of the model. Fu et al. (2020) evaluate the gener-
alization of NER models through breakdown tests,
annotation errors and dataset bias. They examine
the performance on subsets of entities based on
the entity coverage rate between train and test set.
They also release ReCoNLL, a revised version of
CoNLL-2003 English with fewer annotation errors
which we use in this work.

3 Unseen and Type-confusable Mentions

3.1 Unseen Mentions

Given annotated NER data divided into a fixed
train/development/test split, we are interested in
the relationship between the mentions of the train-
ing and test sets. We classify mentions into three
mutually-exclusive sets described in Table 1: SEEN,
UNSEEN-TYPE, and UNSEEN-TOKENS, and a su-
perset UNSEEN-ANY that is the union of UNSEEN-
TYPE and UNSEEN-TOKENS. UK[LOC] appears in
both the training and test set, so it is a SEEN men-
tion. As there is no mention consisting of the token

sequence John Brown annotated as any type in the
test set, John Brown[PER] is an UNSEEN-TOKENS

mention.4 While there is no mention with the to-
kens and type Newcastle[ORG] in the training data,
the token sequence Newcastle appears as a mention,
albeit with a different type (LOC). Newcastle[ORG]
is an UNSEEN-TYPE mention as the same token
sequence has appeared as a mention, but not with
the type ORG.

3.2 Type-confusable Mentions
Token sequences that appear as mentions with mul-
tiple types in the test set form another natural set of
challenging mentions. If Boston[LOC], the city, and
Boston[ORG], referring to a sports team5 are both
in the test set, we consider all mentions of exactly
the token sequence Boston to be type-confusable
mentions (TCMs), members of TCM-ALL. We can
further divide this set based on whether each men-
tion is unseen. TCM-UNSEEN is the intersection
of TCM-ALL and UNSEEN-TOKEN; TCM-SEEN

is the rest of TCM-ALL.
Unlike Fu et al. (2020), who explore token se-

quences that occur with different types in the train-
ing data, we base our criteria for TCMs around
type variation in the test data. Doing so places the
focus on whether the model can correctly produce
multiple types in the output, as opposed to how it
reacted to multiple types in the input. Also, if type
confusability were based on the training data, it
would be impossible to have TCM-UNSEEN men-
tions, as the fact that they are type confusable in
the training data means they have been seen at least
twice in training and thus cannot be considered
unseen. As our metrics compute subsets over the
gold standard entities, it is natural to only measure
recall and not precision on those subsets, as it is
not clear exactly which false positives should be
considered in computing precision.

3.3 Data Composition
We evaluate using the ReCoNLL English (Fu et al.,
2020), OntoNotes 5.0 English (Weischedel et al.,
2013, using data splits from Pradhan et al. 2013),
CoNLL-2002 Dutch, and CoNLL-2002 Spanish
(Tjong Kim Sang, 2002) datasets. We use Re-
CoNLL (Fu et al., 2020) in our analysis instead

4The matching criterion for the token sequence is case sen-
sitive, requires an exact—not partial—match, and only consid-
ers mentions. John Henry Brown[PER], john brown[PER], or
unannotated John Brown appearing in the training set would
not make John Brown[PER] a seen mention.

5For example: Boston[ORG] won the World Series in 2018.
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Set LOC ORG PER MISC ALL

UNSEEN-ANY 17.9 45.9 85.3 35.5 47.6
UNSEEN-TOK. 17.5 41.6 85.1 35.1 46.1
UNSEEN-TYPE 0.4 4.3 0.2 0.4 1.5

TCM-ALL 7.1 13.7 0.4 1.0 6.3
TCM-SEEN 5.4 9.5 0.4 1.0 4.6
TCM-UNSEEN 1.7 4.2 0.0 0.0 1.7

All (Count) 1,668 1,661 1,617 702 5,648

Table 2: Percentage of all mentions in each subset, with
total mentions in the final row (ReCoNLL English)

Set LOC ORG PER MISC ALL

UNSEEN-ANY 24.4 30.8 68.9 60.9 39.6
UNSEEN-TOK. 22.4 29.2 67.1 58.8 37.8
UNSEEN-TYPE 2.0 1.6 1.8 2.1 1.8

TCM-ALL 23.3 7.5 1.1 4.7 10.7
TCM-SEEN 22.6 6.8 0.8 4.1 10.1
TCM-UNSEEN 0.7 0.7 0.3 0.6 0.6

All (Count) 1,084 1,400 735 340 3,559

Table 3: Percentage of all mentions in each subset, with
total mentions in the final row (CoNLL-2002 Spanish)

of the CoNLL-2003 English data (Tjong Kim Sang
and De Meulder, 2003) to improve accuracy as it
contains a number of corrections.

Tables 2, 3, and 4 give the total mentions of
each entity type and the percentage that fall un-
der the proposed unseen and TCM subsets for the
three CoNLL datasets.6 Across the three languages,
39.6%–54.6% of mentions are unseen, with the
highest rate coming from PER mentions. UNSEEN-
TYPE contains under 2% of mentions in English
and Spanish and almost no mentions in Dutch; it is
rare for a token sequence to only appear in training
with types that do not appear with it in the test data.

Similarly, TCMs appear in the English (10.7%)
6Tables for OntoNotes 5.0 English are provided in the

appendix (Tables 16-17).

Set LOC ORG PER MISC ALL

UNSEEN-ANY 36.8 52.2 72.6 51.2 54.6
UNSEEN-TOK. 36.8 52.1 72.5 50.9 54.4
UNSEEN-TYPE 0.0 0.1 0.1 0.3 0.2

TCM-ALL 0.1 0.0 0.2 0.3 0.2
TCM-SEEN 0.1 0.0 0.1 0.0 0.1
TCM-UNSEEN 0.0 0.0 0.1 0.3 0.1

All (Count) 774 882 1,098 1,187 3,941

Table 4: Percentage of all mentions in each subset, with
total mentions in the final row (CoNLL-2002 Dutch)

and Spanish (6.3%) data, but almost never in Dutch
(0.2%). The differences across languages with re-
gards to TCMs may reflect morphology or other
patterns that prevent the same token sequence from
appearing with multiple types, but they could also
be caused by the topics included in the data. In En-
glish, the primary source of TCMs is the use of city
names as sports organizations, creating LOC-ORG
confusion.

4 Results

4.1 Models and Evaluation

We tested five recent mainstream NER neural ar-
chitectures that either achieved the state-of-the-art
performance previously or are widely used among
the research community.7 The models are CHAR-
CNN+WORDLSTM+CRF8(CHARCNN),
CHARLSTM+WORDLSTM+CRF8

(CHARLSTM), CASED BERT-BASE9 (De-
vlin et al., 2019), BERT-CRF10 (Souza et al.,
2019), and FLAIR (Akbik et al., 2018).11

We trained all the models using the training
set of each dataset. We fine-tuned English Cased
BERT-Base, Dutch (Vries et al., 2019) and Spanish
(Cañete et al., 2020) BERT models and used the
model from epoch 4 after comparing development
set performance for epochs 3, 4, and 5. We also
fine-tuned BERT-CRF models using the training
data, and used the model from the epoch where
development set performance was the best within
the maximum of 16 epochs.

All models were trained five times each on a sin-
gle NVIDIA TITAN RTX GPU. The mean and stan-
dard deviation of scores over five training runs are
reported for each model. It took approximately 2
hours to train each of FLAIR and NCRF++ on each
of the CoNLL-2002/3 datasets, 12 hours to train
FLAIR, and 4 hours to train NCRF++ on OntoNotes
5.0 English. It took less than an hour to fine-tune
BERT or BERT-CRF models on each dataset. Hy-
perparameters for Spanish and Dutch models im-
plemented using NCRF++ were taken from Lample
et al. (2016). FLAIR does not provide hyperparam-
eters for training CoNLL-02 Spanish, so we used

7We could not include a recent system by Baevski et al.
(2019) because it was not made publicly available.

8Using the NCRF++ (Yang and Zhang, 2018) implementa-
tions: https://github.com/jiesutd/NCRFpp.

9NER implementation from https://github.com/
kamalkraj/BERT-NER.

10A Cased BERT-Base Model with an additional CRF layer.
11https://github.com/flairNLP/flair
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Model Precision Recall F1

CHARLSTM 91.92 (±0.29) 91.90 (±0.31) 91.91 (±0.28)
CHARCNN 92.13 (±0.18) 91.93 (±0.18) 92.03 (±0.17)
FLAIR 93.00 (±0.15) 93.66 (±0.08) 93.33 (±0.12)
BERT 91.04 (±0.11) 92.36 (±0.13) 91.70 (±0.14)
BERT-CRF 91.13 (±0.15) 92.29 (±0.04) 91.70 (±0.08)

Table 5: Standard P/R/F1 (ReCoNLL-2003 English)

Model Precision Recall F1

CHARLSTM 87.12 (±0.42) 86.38 (±0.36) 86.90 (±0.40)
CHARCNN 86.94 (±0.27) 86.28 (±0.33) 86.61 (±0.25)
FLAIR 88.56 (±0.12) 89.42 (±0.09) 88.99 (±0.10)
BERT 87.52 (±0.09) 89.84 (±0.12) 88.67 (±0.10)
BERT-CRF 87.29 (±0.33) 89.32 (±0.19) 88.29 (±0.26)

Table 6: Standard P/R/F1 (OntoNotes 5.0 English)

those for CoNLL-02 Dutch. We did not perform
any other hyperparameter tuning.

4.2 Baseline Results

We first examine the performance of these systems
under standard evaluation measures. Tables 5 and 6
give performance on ReCoNLL and OntoNotes 5.0
English datasets using standard P/R/F1. In English,
Flair attains the best F1 in both datasets, although
BERT attains higher recall for OntoNotes.12

BERT attains the highest F1 in Dutch (91.26)
and Spanish (87.36); due to space limitations, ta-
bles are provided in the appendix (Tables 14-15).
BERT-CRF performs similar or slightly worse than
BERT in all languages, but generally attains lower
standard deviation in multiple training runs, which
suggests greater stability from using a CRF for
structured predictions. The same observation also
holds for Flair which also uses a CRF layer. We
are not aware of prior work showing results from
using BERT-CRF on English, Spanish, and Dutch.
Souza et al. (2019) shows that the combination of
Portuguese BERT Base and CRF does not show
better performance than bare BERT Base, which
agrees with our observations. F1 rankings are oth-
erwise similar across languages. The performance
of CharLSTM and CharCNN cannot be differenti-
ated in English, but CharLSTM substantially out-
performs CharCNN in Spanish (+2.53) and Dutch
(+2.15).

12We are not aware of any open-source implementation
capable of matching the F1 of 92.4 reported by Devlin et al.
(2019). The gap between published and reproduced perfor-
mance likely stems from the usage of the “maximal document
context,” while reimplementations process sentences indepen-
dently, as is typical in NER. Performance of Flair is slightly
worse than that reported in the original paper because we did
not use the development set as additional training data.

ALL TCM- TCM- TCM-
Model ALL SEEN UNSEEN

CHARLSTM 91.90 85.52 (±1.09) 87.36 (±0.70) 80.61 (±3.00)
CHARCNN 91.93 85.58 (±1.08) 87.55 (±1.11) 80.36 (±3.37)
FLAIR 93.66 88.47 (±0.51) 89.75 (±0.73) 87.76 (±1.86)
BERT 92.36 88.28 (±0.74) 89.69 (±0.89) 85.46 (±1.74)
BERT-CRF 92.29 87.02 (±0.71) 89.43 (±0.76) 79.59 (±1.25)

Table 7: Recall over all mentions and each type-
confusable mention subset (ReCoNLL-2003 English)

Model ALL U-ANY U-TOK. U-TYPE

CHARLSTM 91.90 86.94 (±0.58) 87.32 (±0.63) 75.29 (±2.54)
CHARCNN 91.93 87.06 (±0.21) 87.48 (±0.18) 74.41 (±1.48)
FLAIR 93.66 89.93 (±0.25) 90.31 (±0.19) 78.53 (±2.94)
BERT 92.36 87.94 (±0.29) 88.02 (±0.31) 85.29 (±2.04)
BERT-CRF 92.29 87.55 (±0.14) 87.73 (±0.12) 82.12 (±1.53)

Table 8: Recall over all mentions and each unseen (U-)
mention subset (ReCoNLL-2003 English)

4.3 TMR for English
We explore English first and in greatest depth be-
cause its test sets are much larger than those of the
other languages we evaluate, and we have multi-
ple well-studied test sets for it. Additionally, the
CoNLL-2003 English test data is from a later time
than the training set, reducing train/test similarity.

Revised CoNLL English. One of the advantages
of evaluating using TMR metrics is that systems
can be differentiated more easily. Table 7 gives
recall for type-confusable mentions (TCMs) on Re-
CoNLL English. As expected, recall for TCMs
is lower than overall recall, but more importantly,
recall is less tightly-grouped over the TCM sub-
sets (range of 8.17) than all mentions (1.76). This
spread allows for better differentiation, even though
there is a higher standard deviation for each score.
For example, BERT-CRF generally performs very
similarly to BERT, but scores 5.87 points lower
for TCM-UNSEEN, possibly due to how the CRF
handles lower-confidence predictions differently
(Lignos and Kamyab, 2020). Flair has the high-
est all-mentions recall and the highest recall for
TCMs, suggesting that when type-confusable men-
tions have been seen in the training data, it is able
to effectively disambiguate types based on context.

Table 8 gives recall for unseen mentions. Al-
though Flair attains higher overall recall, BERT
attains higher recall on UNSEEN-TYPE, the set on
which all models perform their worst. While there
are few (85) mentions in this set, making assess-
ment of statistical reliability challenging, this set
allows us to identify an advantage for BERT in this
specific subset: a BERT-based NER model is better
able to produce a novel type for a token sequence
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Model ALL TCM-ALL TCM-SEEN

CHARLSTM 86.38 80.65 (±0.46) 82.24 (±0.46)
CHARCNN 86.28 79.80 (±0.41) 81.49 (±0.40)
FLAIR 89.42 86.00 (±0.44) 87.39 (±0.51)
BERT 89.84 84.72 (±0.18) 85.61 (±0.00)
BERT-CRF 89.32 85.46 (±0.40) 86.83 (±0.46)

Table 9: Recall over all mentions and each type-
confusable mention subset (OntoNotes 5.0 English)

Model ALL U-ANY U-TOKENS

CHARLSTM 86.38 72.71 (±0.80) 74.34 (±0.80)
CHARCNN 86.28 72.50 (±0.76) 74.10 (±0.75)
FLAIR 89.42 77.56 (±0.21) 79.05 (±0.16)
BERT 89.84 79.97 (±0.11) 81.14 (±0.14)
BERT-CRF 89.32 78.46 (±0.56) 79.63 (±0.61)

Table 10: Recall over all mentions and each unseen
mention subset (OntoNotes 5.0 English)

only seen with other types in the training data.

OntoNotes 5.0 English. Examination of the
OntoNotes English data shows that Flair outper-
forms BERT for type-confusable mentions, but
BERT maintains its lead in overall recall when
examining unseen mentions. Tables 9 and 10 give
recall for type-confusable and unseen mentions.13

Summary. Table 11 gives a high-level compari-
son between BERT and Flair on English data. Us-
ing the TMR metrics, we find that the models that
attain the highest overall recall may not perform
the best on tough mentions. However, the results
vary based on the entity ontology in use. In a head-
to-head comparison between Flair and BERT on
ReCoNLL English, despite Flair having the highest
overall and TCM recall, BERT performs better than
Flair on UNSEEN-TYPE, suggesting that BERT is
better at predicting the type for a mention seen
only with other types in the training data. In con-
trast, on OntoNotes 5.0 English, BERT attains the
highest recall on UNSEEN mentions, but performs
worse than Flair on TCMs. The larger and more
precise OntoNotes ontology results in the unseen
and type-confusable mentions being different than
in the smaller CoNLL ontology. In general, Flair
performs consistently better on TCMs while BERT
performs better on UNSEEN mentions.

13We do not display results for TCM-UNSEEN and
UNSEEN-TYPE as they each represent less than 1% of the
test mentions. BERT’s recall for TCM-UNSEEN mentions is
19.51 points higher than any other system. However, as there
are 41 mentions in that set, the difference is only 8 mentions.

4.4 TMR for CoNLL-02 Spanish/Dutch

Tables 12 and 13 give recall for type-confusable
and unseen mentions for CoNLL-2002 Spanish and
Dutch.14 The range of the overall recall for Spanish
(11.80) and Dutch (17.13) among the five systems
we evaluate is much larger than in English (1.76),
likely due to systems being less optimized for those
languages. In both Spanish and Dutch, BERT has
the highest recall overall and in every subset.

While our proposed TMR metrics do not help
differentiate models in Spanish and Dutch, they
can provide estimates of performance on subsets of
tough mentions from different languages and iden-
tify areas for improvement. For example, while the
percentage of UNSEEN-TYPE mentions in Span-
ish (1.8) and ReCoNLL English (1.5) is similar,
the performance for BERT for those mentions in
Spanish is 34.04 points below that for ReCoNLL
English. By using the TMR metrics, we have iden-
tified a gap that is not visible by just examining
overall recall.

Compared with ReCoNLL English (6.3%)
and Spanish (10.7%), there are far fewer type-
confusable mentions in Dutch (0.2%). Given the
sports-centric nature of the English and Spanish
datasets, which creates many LOC/ORG confus-
able mentions, it is likely that their TCM rate is
artificially high. However the near-zero rate in
Dutch is a reminder that either linguistic or data
collection properties may result in a high or negli-
gible number of TCMs. OntoNotes English shows
a similar rate (7.7%) to ReCoNLL English, but due
to its richer ontology and larger set of types, these
numbers are not directly comparable.

5 Conclusion

We have proposed Tough Mentions Recall (TMR),
a set of evaluation metrics that provide a fine-
grained analysis of different sets of formalized men-
tions that are most challenging for a NER system.
By looking at recall on specific kinds of “tough”
mentions—unseen and type-confusable ones—we
are able to better differentiate between otherwise
similar-performing systems, compare systems us-
ing dimensions beyond the overall score, and eval-
uate how systems are doing on the most difficult
subparts of the NER task.

We summarize our findings as follows. For

14In Table 12, TCM-UNSEEN is not shown because it in-
cludes less than 1% of the test mentions (0.6%); in Table 13
UNSEEN-TYPE (0.2%) and TCM (0.2%) are not shown.
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Dataset Model ALL U-ANY U-TOK. U-TYPE TCM-ALL TCM-SEEN TCM-UNSEEN

ReCoNLL-English BERT 4

FLAIR 4 4 4 4 4 4

Ontonotes 5.0 BERT 4 4 4 N/A N/A
FLAIR N/A 4 4 N/A

Table 11: Performance comparison between BERT and Flair on English data. A 4 indicates higher recall under a
metric. No comparisons are made for UNSEEN-TYPE and TCM-UNSEEN using OntoNotes due to data sparsity.

ALL U- U- U- TCM-
Model ANY TOK. TYPE ALL

CHARLSTM 79.76 70.56 (±0.93) 71.72 (±0.94) 46.25 (±3.86) 70.31 (±0.84)
CHARCNN 77.05 67.28 (±0.69) 68.13 (±0.51) 49.38 (±4.76) 68.48 (±0.68)
FLAIR 87.47 79.89 (±0.59) 81.65 (±0.50) 42.81 (±3.05) 77.02 (±1.23)
BERT 88.85 83.04 (±0.58) 84.55 (±0.58) 51.25 (±3.39) 80.00 (±0.78)
BERT-CRF 88.70 82.36 (±0.42) 83.93 (±0.40) 49.38 (±1.78) 79.74 (±0.63)

Table 12: Recall over all mentions and unseen and type-confusable mention subsets (CoNLL-2002 Spanish)

Model ALL U-ANY U-TOKENS

CHARLSTM 77.35 66.32 (±0.23) 66.46 (±0.23)
CHARCNN 74.55 64.50 (±0.37) 64.61 (±0.32)
FLAIR 89.43 82.86 (±0.26) 83.00 (±0.26)
BERT 91.68 86.65 (±0.17) 86.74 (±0.20)
BERT-CRF 91.26 85.88 (±0.58) 85.94 (±0.58)

Table 13: Recall over all mentions and unseen mention
subsets (CoNLL-2002 Dutch)

English, the TMR metrics provide greater differ-
entiation across systems than overall recall and
are able to identify differences in performance be-
tween BERT and Flair, the best-performing sys-
tems in our evaluation. Flair performs better on
type-confusable mentions regardless of ontology,
while performance on unseen mentions largely fol-
lows the overall recall, which is higher for Flair on
ReCoNLL and for BERT on OntoNotes.

In Spanish and Dutch, the TMR metrics are not
needed to differentiate systems overall, but they
provide some insight into performance gaps be-
tween Spanish and English related to UNSEEN-
TYPE mentions.

One challenge in applying these metrics is sim-
ply that there may be relatively few unseen men-
tions or TCMs, especially in the case of lower-
resourced languages. While we are interested in
finer-grained metrics for lower-resourced settings,
data sparsity issues pose great challenges. As
shown in Section 3.3, even in a higher-resourced
setting, some subsets of tough mentions include
less than 1% of the total mentions in the test set.
We believe that lower-resourced NER settings can
still benefit from our work by gaining information

on pretraining or tuning models towards better per-
formance on unseen and type-confusable mentions.

For new corpora, these metrics can be used to
guide construction and corpus splitting to make
test sets as difficult as possible, making them better
benchmarks for progress. We hope that this form
of scoring will see wide adoption and help provide
a more nuanced view of NER performance.
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Precision Recall F1

CHARCNN 76.74 (±0.36) 74.55 (±0.27) 75.63 (±0.26)
CHARLSTM 78.21 (±0.34) 77.35 (±0.21) 77.78 (±0.27)
FLAIR 90.11 (±0.15) 89.43 (±0.13) 89.77 (±0.14)
BERT 91.26 (±0.23) 91.68 (±0.18) 91.47 (±0.18)
BERT-CRF 90.75 (±0.47) 91.26 (±0.18) 91.00 (±0.32)

Table 14: Standard precision/recall/F1 for all types for each model trained on the CoNLL-2002 Dutch dataset

Precision Recall F1

CHARCNN 77.75 (±0.22) 77.05 (±0.21) 77.40 (±0.20)
CHARLSTM 80.09 (±0.59) 79.76 (±0.63) 79.93 (±0.61)
FLAIR 86.96 (±0.23) 87.47 (±0.19) 87.21 (±0.20)
BERT 87.36 (±0.52) 88.85 (±0.39) 88.10 (±0.45)
BERT-CRF 87.25 (±0.38) 88.70 (±0.20) 87.97 (±0.29)

Table 15: Standard precision/recall/F1 for all types for each model trained on the CoNLL-2002 Spanish dataset

Mentions ALL GPE PER ORG DATE CARD NORP PERC MONEY

UNSEEN-ANY 30.3 10.5 48.9 41.4 20.3 15.3 12.4 29.5 61.8
UNSEEN-TOKENS 29.4 9.9 48.0 40.8 19.7 14.9 12.0 29.5 60.2
UNSEEN-TYPE 0.9 0.6 0.9 0.6 0.6 0.4 0.4 0.0 1.6

TCM-ALL 7.7 11.5 1.7 4.9 3.2 15.4 18.5 0.0 5.1
TCM-SEEN 7.3 11.1 1.6 3.8 3.2 15.2 18.4 0.0 5.1
TCM-UNSEEN 0.4 0.4 0.1 1.1 0.1 0.2 0.1 0.0 0.0

Total (Count) 11,265 2,241 1,991 1,795 1,604 936 842 349 314

Table 16: Percentage of all mentions in each subset, with total mentions in the final row (OntoNotes 5.0 English).
Due to space constraints, types are split across this table and the following one.

Mentions TIME ORD LOC WA FAC QUAN PROD EVENT LAW LANG

UNSEEN-ANY 41.5 3.6 39.1 83.1 80 73.3 52.6 47.6 75.0 22.7
UNSEEN-TOKENS 39.6 3.1 34.1 78.9 74.8 73.3 48.7 47.6 57.5 4.5
UNSEEN-TYPE 1.9 0.5 5.0 4.2 5.2 0.0 3.9 0.0 17.5 18.2

TCM-ALL 7.5 12.8 14 5.4 15.5 0.0 0.0 7.9 0.0 54.5
TCM-SEEN 7.5 12.8 14 2.4 14.8 0.0 0.0 7.9 0.0 54.5
TCM-UNSEEN 0.0 0.0 0.0 3.0 0.7 0.0 0.0 0.0 0.0 0.0

Total (Count) 212 195 179 166 135 105 76 63 40 22

Table 17: Percentage of all mentions in each subset, with total mentions in the final row (OntoNotes 5.0 English).
Due to space constraints, types are split across this table and the preceding one.

163



Proceedings of the 16th Conference of the European Chapter of the Associationfor Computational Linguistics: Student Research Workshop, pages 164–174
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

The Effectiveness of Morphology-aware Segmentation in Low-Resource
Neural Machine Translation

Jonne Sälevä
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Abstract

This paper evaluates the performance of sev-
eral modern subword segmentation methods
in a low-resource neural machine translation
setting. We compare segmentations produced
by applying BPE at the token or sentence
level with morphologically-based segmenta-
tions from LMVR and MORSEL. We evalu-
ate translation tasks between English and each
of Nepali, Sinhala, and Kazakh, and predict
that using morphologically-based segmenta-
tion methods would lead to better performance
in this setting. However, comparing to BPE,
we find that no consistent and reliable differ-
ences emerge between the segmentation meth-
ods. While morphologically-based methods
outperform BPE in a few cases, what performs
best tends to vary across tasks, and the perfor-
mance of segmentation methods is often statis-
tically indistinguishable.

1 Introduction

Despite the advances of neural machine transla-
tion (NMT), building effective translation systems
for lower-resourced and morphologically rich lan-
guages remains a challenging process. The lack of
large training data sets tends to lead to problems
of vocabulary sparsity, a problem exacerbated by
the combinatorial explosion of permissible surface
forms commonly encountered when working with
morphologically rich languages.

Current NMT systems typically operate at the
level of subwords. Most commonly, these systems
achieve vocabulary reduction by decomposing to-
kens into character sequences constructed by maxi-
mizing an information-theoretic compression crite-
rion. The most widely used subword segmentation
method is byte pair encoding, originally invented
in the data compression literature by Gage (1994),
and introduced to the MT community by Sennrich
et al. (2016). Another approach to open vocabulary

NMT has been to compose characters or character
n-grams to form word representations (Ataman and
Federico, 2018a; Ling et al., 2015).

As BPE has become mainstream, the question
of whether segmenting words in a linguistically-
informed fashion provides a benefit remains open.
Intuitively, the translation task may be easier when
using subwords that contain maximal linguistic
signal, as opposed to heuristically derived units
based on data compression. The greatest benefit
may come in low-resource settings, where the train-
ing data is small and biases toward morphological
structure may lead to more reusable units.

We seek to address this question by exploring the
usefulness of linguistically-motivated subword seg-
mentation methods in NMT, as measured against
a BPE baseline. Specifically, we investigate the
effectiveness of morphology-based segmentation
algorithms of Ataman et al. (2017) and Lignos
(2010) as alternatives to BPE at the word or sen-
tence level and find that they do not lead to reliable
improvements under our experimental conditions.
We perform our evaluation using both BLEU (Pap-
ineni et al., 2002) and CHRF3 (Popović, 2015). In
our low-resource NMT setting, all these methods
provide comparable results.

The contribution of this work is that it provides
insights into the performance of these segmentation
methods using a thorough experimental paradigm
in a highly replicable environment. We evaluate
without the many possible confounds related to
back-translation and other processes used in state-
of-the-art NMT systems, focusing on the perfor-
mance of a straightforward Transformer-based sys-
tem. To analyze the performance differences be-
tween the various segmentation strategies, we uti-
lize a Bayesian linear model as well as nonparamet-
ric hypothesis tests.
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Translation task Split Sentences Tokens (EN) Tokens (non-EN)

NE↔ EN Train 563,947 4,483,440 4,200,818
SI↔ EN Train 646,781 4,837,496 4,180,520
KK↔ EN Train (120k) 124,770 379,546 319,484
KK↔ EN Train (220k) 222,424 1,717,414 1,365,605
NE↔ EN Dev 2,559 46,267 37,576
SI↔ EN Dev 2,898 53,471 48,659
KK↔ EN Dev 2,066 45,975 37,258
NE↔ EN Test 2,835 51,455 43,802
SI↔ EN Test 2,766 50,973 46,318
KK→ EN Test 1,000 20,376 15,943
EN→ KK Test 998 24,074 19,141

Table 1: Number of sentences in raw corpora. The 120k and 220k training conditions for KK correspond to training
KK↔EN models with/without an additional crawled corpus. The test sets for KK→EN and EN→KK are different
from each other and mirror the released WMT19 data.

2 Related work

Attempts to create unsupervised, morphologically-
aware segmentations have often been derived from
the Morfessor family of morphological segmenta-
tion tools (Virpioja et al., 2013). In addition to
extensions of Morfessor, such as Cognate Morfes-
sor (Grönroos et al., 2018), Ataman et al. (2017)
and Ataman and Federico (2018b) introduced the
LMVR model, derived from Morfessor FlatCat
(Grönroos et al., 2014), and applied it to NMT
tasks on Arabic, Czech, German, Italian, Turk-
ish and English, noting that LMVR outperforms
a BPE baseline in CHRF3 and BLEU. Contrary
to their results, however, Toral et al. (2019) find
that using LMVR yielded mixed results: on a
Kazakh-English translation task the authors ob-
served marginal BLEU improvements over BPE,
whereas for English-Kazakh, the authors reported
LMVR to perform marginally worse than BPE in
terms of CHRF3.

There have also been efforts to combine BPE
with linguistically motivated approaches. For in-
stance, Huck et al. (2017) propose to combine BPE
with various linguistic heuristics such as prefix,
suffix, and compound splitting. The authors work
with English-German and German-English tasks,
and observe performance improvements of approx-
imately 0.5 BLEU compared to a BPE-only base-
line. As another example, Weller-Di Marco and
Fraser (2020) combine BPE with a full morpho-
logical analysis on the source and target sides of
an English-German translation task, and report per-
formance improvements exceeding 1 BLEU point

over a BPE-only baseline.
Finally, even though Sennrich et al. (2016) origi-

nally only used the NMT training set to train their
segmentation model, others have recently found
benefit in adding monolingual data to the process.
In particular, Scherrer et al. (2020) used both Sen-
tencePiece and Morfessor as segmentation models
on an Upper Sorbian–German translation task and
found a monotonic increase in BLEU when the seg-
mentation model was trained with additional data,
while at the same time keeping the NMT training
data constant.

3 Experiments

To investigate the effect of subword segmentation
algorithms on NMT performance, we train trans-
lation models using the Transformer architecture
of Vaswani et al. (2017). We base our work on two
recent datasets: FLoRes (Guzmán et al., 2019), and
select languages from the WMT 2019 Shared Task
on News Translation (Barrault et al., 2019). Corpus
statistics for all corpora can be found in Table 1.

The FLoRes dataset consists of two language
pairs, English-Nepali and English-Sinhala. To
add another lower-resourced language, we use the
Kazakh-English translation data from WMT19. In
terms of morphological typology, both Nepali and
Sinhala are agglutinative languages (Prasain, 2011;
Priyanga et al., 2017), as is Kazakh (Kessikbayeva
and Cicekli, 2014).

We conduct two sets of experiments on Kazakh
to investigate how the amount of training data
influences our results: first, we train only on
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Segmentation Sentence

Original The nation slowly started being centralized and during
SentencePiece the n ation sl ow ly start ed being cent ral ized and d ur ing
Subword-NMT the n@@ ation s@@ low@@ ly star@@ ted being cen@@ tr@@ ali@@ z@@ ed and d@@ ur@@ ing
LMVR the nation s +low +ly st +ar +ted be +ing c +ent +ral +ized and d +ur +ing
MORSEL the nation s@@ low +ly start +ed being cen@@ tr@@ ali@@ z +ed and du@@ r +ing

Table 2: Examples of segmentation strategies and tokenization.

the WikiTitles and News Commentary corpora
(train120k), followed by another set of exper-
iments (train220k) where we include the web
crawl corpus prepared by Bagdat Myrzakhmetov
of Nazarbayev University. We also conducted ex-
periments with Gujarati data from WMT19, but
BLEU scores were too low to allow for meaning-
ful analysis. For our models, we generally follow
the architecture and hyperparameter choices of the
FLoRes Transformer baseline, except for setting
clip norm to 0.1 and enabling FP16 training.

Despite the widespread use of auxiliary tech-
niques such as back-translation we deliberately re-
frain from employing such techniques in this work.
This is done to best isolate the effect of varying the
subword segmentation algorithm, and to avoid the
complexity of disentangling it from the effect of
other factors. It should be noted, however, that such
techniques were highly prevalent among of systems
submitted to the KK↔EN WMT19 News Transla-
tion Shared Task: 64% used back-translation, 61%
used ensembling, and 57% employed extensive cor-
pus filtering (Barrault et al., 2019).

3.1 Subword segmentation algorithms

Below we describe our hyperparameter settings
for the various subword segmentation algorithms.
Sinhala and Nepali are tokenized using the Indic
NLP tokenizer (Kunchukuttan, 2020), whereas for
English and Kazakh we use the Moses tokenizer
(Koehn et al., 2007). Example segmentations from
actual data can be seen in Table 2.

The segmentation methods we evaluate learn
their subword vocabularies from frequency distri-
butions of tokenized text. The exception to this is
SentencePiece, whose subword units are learned
from sentences, including whitespace. In the case
of English and Kazakh, these sentences are unto-
kenized whereas for Nepali and Sinhala, prepro-
cessing with the Indic NLP tokenizer is applied
following the approach of Guzmán et al. (2019).

3.1.1 Subword-NMT and SentencePiece

As our baseline subword segmentation algorithm,
we use the BPE implementation from Subword-
NMT1. Throughout our experiments we use a joint
vocabulary of the source and target and set the
number of requested symbols to 5,000. For Senten-
cePiece, we use the default BPE implementation2

with a joint vocabulary size of 5,000 words. These
choices are motivated by the general observation by
Sennrich and Zhang (2019) that lowering BPE size
improves translation quality in ultra-low resource
conditions, and the specific value of 5,000 was pre-
viously used by Guzmán et al. (2019). The same
small vocabulary size has been used elsewhere in
the low-resource NMT literature, for instance by
Roest et al. (2020) while training NMT systems
for Inuktitut. We also conducted a hyperparameter
sweep for 2,500, 5,000, 7,500 and 10,000 merge
operations, but noticed no improvement over the
choice of 5,000 motivated by prior work.

3.1.2 LMVR

For LMVR (Ataman et al., 2017), we utilize
slightly modified versions of the sample scripts
from the author’s Github repository3. Our main
modification is tuning the corpusweight hyper-
parameter in the Morfessor Baseline (Virpioja et al.,
2013) model used to seed the LMVR model. Tun-
ing is performed by maximizing the F1 score for
segmenting the English side of the training data,
using the English word lists from the Morpho Chal-
lenge 2010 shared task (Kurimo et al., 2010) as
gold standard segmentations. After tuning the Mor-
fessor Baseline model, we train a separate LMVR
model for each language in a language pair using a
vocabulary size parameter of 2,500 per language.

1https://github.com/rsennrich/
subword-nmt

2https://github.com/google/
sentencepiece

3https://github.com/d-ataman/lmvr
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3.1.3 MORSEL
MORSEL (Lignos, 2010) provides linguistically-
motivated unsupervised morphological analysis
that has been shown to work effectively on small
datasets (Chan and Lignos, 2010). While it
provides derivations of morphologically complex
forms via a combination of stems and affix rules,
we modified it to provide a segmentation and then
postprocessed its output to apply BPE to the stems
to yield a limited-size vocabulary.

For example, on the English side of the NE-EN
training data, MORSEL analyzes the word alge-
braic as resulting from the stem algebra being
combined with the suffix rule +ic. A BPE model
is trained on all of the stems in MORSEL’s anal-
ysis, and when that is applied to the stem, it is
segmented as al@@ ge@@ br@@ a. The stem
and suffix are combined using a special plus char-
acter to denote suffixation, so the final segmen-
tation is al@@ ge@@ br@@ a +ic. Tuning is
performed as with LMVR, using the English word
lists from the Morpho Challenge 2010 shared task
(Kurimo et al., 2010) as a reference. We adjust
the number of BPE units learned from the stems
to keep the total per-language vocabulary below
2,500.

4 Results and analysis

Our experimental results can be seen in Table 3. All
BLEU scores were computed using sacrebleu,
and all CHRF3 scores using nltk. Each row con-
sists of the mean and standard deviation computed
across 5 random seeds for each configuration. We
also plot the raw results in Figure 1. Table 4 gives
counts for the number of times each segmentation
approach was the top-performing one or statisti-
cally indistinguishable from it. Table 7 in the
appendix gives p-values for all comparisons per-
formed.

Overall, based on Tables 3 and 4, no segmenta-
tion method seems to emerge as the clear winner
across translation tasks, although BPE applied at
the token (Subword-NMT) or sentence (Sentence-
Piece) level performs well consistently. Subword-
NMT or SentencePiece perform best in 12 out of 16
cases (counting BLEU and CHRF3 for each trans-
lation task), while morphology-based methods rank
best in 4 out of 16 cases. In particular, we note that
morphology-based methods seem to achieve or tie
the best BLEU performance for translation tasks
involving SI, and best CHRF3 performance for

Segm. method BLEU CHRF3

EN-KK (train120k)

LMVR 1.00 ± 0.12 21.98 ± 0.41
MORSEL 0.94 ± 0.11 21.24 ± 0.89
SentencePiece 1.04 ± 0.09 21.48 ± 0.47
Subword-NMT 1.32 ± 0.08 22.12 ± 0.28

EN-KK (train220k)

LMVR 1.82 ± 0.13 22.74 ± 0.84
MORSEL 2.06 ± 0.11 22.88 ± 0.40
SentencePiece 2.18 ± 0.08 22.78 ± 0.43
Subword-NMT 1.94 ± 0.22 22.62 ± 0.88

KK-EN (train120k)

LMVR 1.70 ± 0.07 23.72 ± 0.44
MORSEL 2.62 ± 0.08 26.26 ± 0.36
SentencePiece 2.34 ± 0.21 24.64 ± 0.81
Subword-NMT 3.14 ± 0.18 25.92 ± 0.54

KK-EN (train220k)

LMVR 9.42 ± 0.26 33.88 ± 0.76
MORSEL 10.44 ± 0.48 34.58 ± 0.88
SentencePiece 10.02 ± 0.29 33.50 ± 0.54
Subword-NMT 10.68 ± 0.34 35.52 ± 0.41

EN-NE

LMVR 4.32 ± 0.04 31.00 ± 0.29
MORSEL 4.38 ± 0.16 31.28 ± 0.47
SentencePiece 4.58 ± 0.15 31.36 ± 0.35
Subword-NMT 4.42 ± 0.16 30.96 ± 0.34

NE-EN

LMVR 7.84 ± 0.11 34.10 ± 0.16
MORSEL 5.30 ± 0.30 28.18 ± 0.97
SentencePiece 8.42 ± 0.23 34.40 ± 0.73
Subword-NMT 8.46 ± 0.15 34.18 ± 0.13

EN-SI

LMVR 1.44 ± 0.32 28.22 ± 0.30
MORSEL 1.12 ± 0.13 27.44 ± 0.34
SentencePiece 1.08 ± 0.31 27.56 ± 0.43
Subword-NMT 0.88 ± 0.13 26.78 ± 0.51

SI-EN

LMVR 7.24 ± 0.22 32.16 ± 0.63
MORSEL 7.78 ± 0.16 34.32 ± 0.30
SentencePiece 7.52 ± 0.08 33.58 ± 0.43
Subword-NMT 7.76 ± 0.25 34.38 ± 0.38

Table 3: Mean and standard deviation of BLEU and
CHRF3 across translation tasks and segmentation meth-
ods. Underlined values represent the highest mean
scores. Bolded values are not significantly different
(p > 0.05) than the highest score as determined by
Dunn’s test.

KK-EN with smaller training data (train120k)
as well as EN-SI. However, when using LMVR, we
fail to find the significant gains in BLEU compared
to BPE reported by Ataman et al. (2017).

Comparing our results to Guzmán et al. (2019),
we note that the scores are similar, although not di-
rectly comparable as we report lowercased BLEU
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Figure 1: CHRF3 vs. BLEU with different translation tasks indicated by color and segmentation by marker shape.

Segmentation method BLEU CHRF3

Subword-NMT 6 6
SentencePiece 6 6
MORSEL 6 6
LMVR 1 5

Table 4: Number of times each segmentation method
was or tied with the best-performing method under
each metric, counted across all tasks.

scores.4 They report EN-NE/NE-EN baseline
BLEU scores of 4.3 and 7.6 using a single random
seed, which are in line with our results in Table 3.
For EN-SI/SI-EN, the authors report 1.2 and 7.2
BLEU, which likewise matches our findings. Even
though our scores are low overall, they are as low as
is to be expected using this approach, size of data,
and languages. In order to compare our results to
WMT19 participant systems, it is only meaningful
to compare our system to baseline systems due to
the widespread use of auxiliary training techniques,
such as back-translation. For instance, Casas et al.
(2019) report baseline NMT scores of 2.32 on KK-
EN and 1.42 on EN-KK, which are in line with
our MORSEL and SentencePiece results on KK-
EN, and Subword-NMT results on EN-KK in the
train120k condition.

4.1 Modeling BLEU and CHRF3
Based on Figure 1 and Tables 3 and 4, the BLEU
and CHRF3 scores vary with both the translation
task and segmentation method. Intuitively, the

4We lowercased all data in preprocessing because
MORSEL and Morfessor, which LMVR is derived from, are
designed to operate on lowercase inputs.

Pairwise comparison τ (BLEU) τ (CHRF3)

SentencePiece - Subword-NMT -0.05 ± 0.08 -0.07 ± 0.20
MORSEL - Subword-NMT -0.12 ± 0.07 0.02 ± 0.18
LMVR - Subword-NMT -0.26 ± 0.06 -0.19 ± 0.21

Table 5: Posterior means and standard deviations of
τm− τSubword−NMT (pairwise comparison with BPE)
under the BLEU and CHRF3 models. Values are
rounded to two decimal places.

scores seem to cluster around a certain range for
each translation task, and are perturbed slightly de-
pending on the choice of segmentation method. To
better disentangle the influence of these factors, we
fit a Bayesian linear model to the experimental data,
treating the final BLEU/CHRF3 score as a sum of a
“translation task effect” η, a “segmentation method
effect” τ , and a translation task-specific noise term
ε.5 The η and ε terms are estimated for each of the
eight translation tasks (e.g. SI-EN and EN-SI are
estimated separately), and τ is estimated for each of
the four segmentation methods using results from
all translation tasks.

To explicitly compare SentencePiece, LMVR
and MORSEL to the Subword-NMT baseline, we
also model the pairwise differences between each
method’s τ -term and that of Subword-NMT. The
posterior inferences for these quantities can be
seen in Table 5 and are plotted in the appendix.
For BLEU, the differences for LMVR are sev-
eral standard deviations below 0, suggesting that it
performs worse than the Subword-NMT baseline

5In the appendix, Section A gives details of our model, and
Table 6 gives the point estimates of the posterior mean and
standard deviation for η and τ .
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when accounting for all translation tasks. Similarly,
MORSEL is almost 2 standard deviations away
from 0, though its posterior interval does cover 0.
In both cases, the effect size is small, with a mean
of -0.12 and -0.26 points of BLEU for MORSEL
and LMVR, respectively. The reliability of this
difference also disappears for LMVR under the
CHRF3 model, where no segmentation method’s
posterior mean is several standard deviations away
from 0.

We hypothesize that this greater discrimination
among methods when using BLEU may origi-
nate from the differences between how BLEU and
CHRF3 operate. Since CHRF3 is a character-level
metric, it is less prone than BLEU to penalizing a
given translation due to subword outputs that are
almost correct. For instance, consider output of
do@@ gs → dogs with dog as the reference;
while CHRF3 awards credit for this as a partial
match, BLEU treats it as entirely incorrect. This
further underscores our observation that segmenta-
tion methods perform inconsistently across experi-
mental conditions.

5 Conclusion and future work

Contrary to our hypothesis about the usefulness
of morphology-aware segmentation, we see no
consistent advantage, and possibly a small dis-
advantage, to using LMVR or MORSEL in this
resource-constrained setting. By and large, our
experiments and modeling show that no segmen-
tation approach consistently achieves the best
BLEU/CHRF3 across all translation tasks. BPE
remains a good default segmentation strategy, but
it is possible that LMVR, MORSEL, or similar sys-
tems may show larger performance advantages for
languages with specific morphological structures.

Consequently, we believe further work is needed
to better understand when morphology-aware meth-
ods are most effective and to develop methods that
provide a consistent advantage over BPE. One such
avenue of future work would be to broaden our
analysis to more languages and include languages
that are higher-resourced but morphologically rich
and as well as ones that are lower-resourced but
morphologically poor. Ortega et al. (2021), which
we encountered during preparation of the final ver-
sion of this paper, began to address these questions
by comparing Morfessor with BPE and their own
BPE variant on Finnish, Quechua and Spanish.

An alternative approach which we intend to pur-

sue in future work is experimenting with supervised
morphological segmenters or analyzers that can
be efficiently developed even in lower-resourced
settings. Incorporating such “gold standard” seg-
mentations may make it clearer whether the unsu-
pervised morphological segmenters are capturing
linguistically-relevant structure.

Finally, there is the question of whether BPE
can approximate a general representation for a lan-
guage instead of converging on a corpus-specific
set of subwords. To test this, one can add mono-
lingual data and train the BPE segmentation on
that larger data set. Ideally the new, “enriched”
segmentations would depend less on the specific
vocabulary of the training corpus. As noted above,
Scherrer et al. (2020) observed this approach to
be helpful in terms of BLEU. However, it remains
unknown why the subwords derived from a larger
corpus perform better, and whether better identifi-
cation of morphological structure could be respon-
sible.

We hope that this work and these ideas will cat-
alyze further research, and that efficient methods
for translating to and from lower-resourced lan-
guages can be developed as a result.
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A Bayesian Linear Model Details

Mathematically, our model can be expressed as:

φlm = ηl + τm + εl (1)

where φlm ∈ {BLEU, CHRF3}, ηl and τm repre-
sent the “translation task effect” and “segmentation
method effect,” and εl is a translation task-specific
variance term.

To initialize our Bayesian linear model from
Equation 1, we set the following priors. For the
BLEU model, ηl ∼ N (4, 3) and τm ∼ N (0, 1).

Segmentation method effect τ (BLEU) τ (CHRF3)

LMVR -0.09 ± 0.47 0.41 ± 0.50
MORSEL 0.05 ± 0.47 0.63 ± 0.50
SentencePiece 0.12 ± 0.47 0.53 ± 0.50
Subword-NMT 0.17 ± 0.47 0.60 ± 0.50

Pairwise comparison τ (BLEU) τ (CHRF3)

SentencePiece - Subword-NMT -0.05 ± 0.08 -0.07 ± 0.20
LMVR - Subword-NMT -0.26 ± 0.06 -0.19 ± 0.21
MORSEL - Subword-NMT -0.12 ± 0.07 0.02 ± 0.18

Translation task effect η (BLEU) η (CHRF3)

EN-KK (train120k) 1.01 ± 0.47 21.16 ± 0.52
EN-KK (train220k) 1.94 ± 0.47 22.21 ± 0.51
EN-NE 4.36 ± 0.47 30.60 ± 0.50
EN-SI 1.07 ± 0.47 26.95 ± 0.52
KK-EN (train120k) 2.39 ± 0.48 24.58 ± 0.56
KK-EN (train220k) 10.07 ± 0.48 33.81 ± 0.54
NE-EN 7.41 ± 0.56 32.02 ± 0.82
SI-EN 7.51 ± 0.47 33.05 ± 0.54

Table 6: Posterior means and standard deviations for τ
and η under the BLEU and CHRF3 models.

For the CHRF3 model, ηl ∼ N (15, 7) and τm ∼
N (0, 1). The priors are the same regardless of
translation task or segmentation method. For our
noise terms, we use a εl ∼ HalfCauchy(5) prior in
all models. Our rationale for these priors is that ηl
should place most of its probability mass within
the observed range of BLEU/CHRF3, whereas τm
should, a priori, take on positive and negative val-
ues with equal probability, reflecting a lack of prior
information. All models are fit using PyMC3, and
MCMC posterior inference performed using the
No-U-Turn Sampler.

All posterior means for η are close to the average
BLEU/CHRF3 scores per translation task observed
in Table 3, and fall between 1.01 and 10.07 for the
BLEU model, and 21.16 and 33.81 for the CHRF3
model. In contrast, the posterior means for τ are
universally small: -0.09, 0.05, 0.12, and 0.17 for
LMVR, MORSEL, SentencePiece and Subword-
NMT, respectively, with a posterior standard de-
viation of 0.47. The τ -terms under the CHRF3
model exhibit a similar pattern: 0.41, 0.63, 0.53,
0.60, with a posterior standard deviation of 0.50.
Compared to the posterior standard deviation, as
well as translation task effects η, the τ -terms are
practically 0. This, in conjunction with our analy-
sis using Dunn’s test, suggests that there is not a
segmentation method that consistently works best
across translation tasks.

Figures 2 and 3 show posterior predictive dis-
tributions for the BLEU and CHRF3 models. Fig-
ure 4 shows the posterior distribution of pairwise
differences between each of the other segmentation
methods and Subword-NMT.
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Figure 2: Posterior predictive distribution of BLEU under the Bayesian linear model.

Figure 3: Posterior predictive distribution of CHRF3 under the Bayesian linear model.
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Figure 4: Posterior distribution of pairwise differences τm − τSubword-NMT in the BLEU model (left) and CHRF3
model (right). Note: m ∈ {SentencePiece, LMVR, MORSEL}
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Language pair Segmentation method p-value (BLEU) p-value (CHRF3)

EN-NE LMVR 0.014 0.071
EN-NE MORSEL 0.057 0.466
EN-NE SentencePiece 1.000 1.000
EN-NE Subword-NMT 0.137 0.046

NE-EN LMVR 0.036 0.405
NE-EN MORSEL 0.001 0.002
NE-EN SentencePiece 0.872 1.000
NE-EN Subword-NMT 1.000 0.767

EN-SI LMVR 1.000 1.000
EN-SI MORSEL 0.246 0.036
EN-SI SentencePiece 0.071 0.091
EN-SI Subword-NMT 0.003 0.000

SI-EN LMVR 0.002 0.001
SI-EN MORSEL 1.000 0.851
SI-EN SentencePiece 0.080 0.057
SI-EN Subword-NMT 0.850 1.000

KK-EN (train220k) LMVR 0.001 0.009
KK-EN (train220k) MORSEL 0.592 0.149
KK-EN (train220k) SentencePiece 0.069 0.002
KK-EN (train220k) Subword-NMT 1.000 1.000

EN-KK (train220k) LMVR 0.002 0.788
EN-KK (train220k) MORSEL 0.216 0.768
EN-KK (train220k) SentencePiece 1.000 1.000
EN-KK (train220k) Subword-NMT 0.037 0.893

KK-EN (train120k) LMVR 0.000 0.001
KK-EN (train120k) MORSEL 0.140 1.000
KK-EN (train120k) SentencePiece 0.011 0.026
KK-EN (train120k) Subword-NMT 1.000 0.611

EN-KK (train120k) LMVR 0.008 0.872
EN-KK (train120k) MORSEL 0.001 0.068
EN-KK (train120k) SentencePiece 0.032 0.096
EN-KK (train120k) Subword-NMT 1.000 1.000

Table 7: Dunn’s test p-values for BLEU and CHRF3. Boldface indicates statistical significance at the α = 0.05
level.
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Abstract

Generating diverse texts is an important fac-
tor for unsupervised text generation. One ap-
proach is to produce the diversity of texts
conditioned by the sampled latent code. Al-
though several generative adversarial networks
(GANs) have been proposed thus far, these
models still suffer from mode-collapsing if the
models are not pre-trained. In this paper, we
propose a GAN model that aims to improve
the approach to generating diverse texts con-
ditioned by the latent space. The generator
of our model uses Gumbel-Softmax distribu-
tion for the word sampling process. To en-
sure that the text is generated conditioned upon
the sampled latent code, reconstruction loss
is introduced in our objective function. The
discriminator of our model iteratively inspects
incomplete partial texts and learns to distin-
guish whether they are real or fake by using
the standard GAN objective function. Exper-
imental results using the COCO Image Cap-
tions dataset show that, although our model is
not pre-trained, the performance of our model
is quite competitive with the existing baseline
models, which requires pre-training.

1 Introduction

Generative adversarial networks (GANs) (Goodfel-
low et al., 2014) have recently received significant
attention in the field of unsupervised text genera-
tion, which aims to generate realistic texts by unsu-
pervised learning approach.

For language GANs, the diversity of the gener-
ated texts is an important evaluation metric. There
are mainly two approaches to produce the diversity
of texts by the generative models. One approach,
which includes SeqGAN (Yu et al., 2017) and Leak-
GAN (Guo et al., 2018), is to generate the diverse
texts by sampling words during the text-generation
process. The generators of these models set the ini-
tial state as zero and randomly sample every word

depending on the word distribution, and thus we
cannot control the generated text depending on any
conditions. The other approach, which includes
TextGAN (Zhang et al., 2017) and FM-GAN (Chen
et al., 2018), produces the diversity of texts depend-
ing on the randomly sampled latent code from the
prior distribution. These models set the latent code
information at the initial state or the input of every
time step for the generator.

In this paper, we propose a GAN model that
aims to improve the approach to generating diverse
texts from the latent space. As for TextGAN and
FM-GAN, the generator almost decisively selects
each word using soft-argmax approximation to gen-
erate a sentence depending on the latent space in-
formation. To avoid mode-collapsing, instead of
using standard GAN objective function, the dis-
criminator of each model respectively measures
the Maximum Mean Discrepancy (MMD) or the
Feature Mover’s Distance (FMD) between the true
text representations and fake ones. These models
succeed in generating diverse texts if the generators
are pre-trained by a Variational Autoencoder. How-
ever, it is verified that these methods still fall into
mode-collapsing if the generator is not pre-trained
(Section 4.3.1). One of the possible reasons for
the mode-collapsing is the deterministic word sam-
pling process through a soft-argmax approximation
from the beginning of the training. Deterministic
word sampling process hinders the generator from
exploring a variety of text generation, which may
lead the generator to fall into sub-optimal point.
The second possible reason is that the discrimina-
tor tries to discriminate the completed sentences.
Generating a good-completed sentence from the
beginning of the training is too difficult for the
generator because the possible number of combina-
tions of words increases exponentially if the num-
ber of words sampled becomes large. Therefore,
there is a possibility that, without pre-training, the
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discriminator does not serve useful signals to the
generator if the discriminator looks at only com-
pleted sentences. Based on these assumptions, our
model adopts the following approach: The gen-
erator randomly samples words depending on the
word probability distribution using the Gumbel-
Softmax distribution (Jang et al., 2016). To ensure
that the texts generated are conditioned upon the
latent code, a reconstructor is introduced, which is
fed the generated sentence and outputs the recon-
structed latent code. The generator and the recon-
structor cooperatively minimize the reconstruction
loss. The discriminator of our model iteratively
inspects incomplete partial texts and learns to dis-
tinguish whether they are real or fake using the
standard GAN objective.

We trained our model using the COCO Image
Captions dataset (Lin et al., 2014) for the experi-
ment. The results show that although our model
is not pre-trained, its performance is quite compet-
itive with the existing baseline models. We also
found that, by controlling the weight of the recon-
struction loss coefficient, our model can obtain a
higher diversity of generated texts even when texts
are generated by greedy decoding.

2 Related Work

The language GANs, in which the generator and
discriminator optimize their objective functions in
an adversarial manner to generate realistic texts,
have two main perspectives.

As the first perspective, a reinforcement learn-
ing approach is used for optimizing the generator.
SeqGAN (Yu et al., 2017), LeakGAN (Guo et al.,
2018), MaskGAN (Fedus et al., 2018), RankGAN
(Lin et al., 2017), RL-GAN (Caccia et al., 2019),
and ScratchGAN (de Masson d’Autume et al.,
2019) are typical models. These models are non-
differentiable from the discriminator to the genera-
tor. Therefore, the generator cannot be optimized
using a standard GAN approach. Instead, the out-
put of the discriminator is regarded as a reward for
the sampling of words, and the expected rewards
are maximized to optimize the generator. This
reinforcement approach generally produces the di-
versity of texts during the word sampling process.

As the second perspective, the model is end-to-
end differentiable from the discriminator to the
generator. TextGAN (Zhang et al., 2017), RelGAN
(Nie et al., 2018), and FM-GAN (Chen et al., 2018)
are typical models. The sampling of words is ap-

Model
Generate text
Conditioned by
Latent space

Require
Pretraining

SeqGAN,
LeakGAN, etc

No Yes (MLE)

ScratchGAN,
COT, MLE

No No

TextGAN,
FM-GAN

Yes Yes (VAE)

Ours[GAN],
VAE-Based

Yes No

Table 1: Summary of previous studies, where ( · ) indi-
cates a pretraining approach. MLE, Maximum Likeli-
hood Estimator; VAE, Variational Autoencoder.

proximated using a soft-argmax approximation or
the Gumbel-Softmax distribution, which is used
to create approximated one-hot vectors by lower-
ing the temperature of the softmax function. Some
models of this approach produce the diversity of
texts by sampling latent code from the prior distri-
bution. Note that GSGAN (Kusner and Hernández-
Lobato, 2016) is also an end-to-end differentiable
model for discretized data, but does not verify the
effectiveness in the case of text generation.

Other text generation approaches beyond those
described above also exist, such as a VAE-based
model (Bowman et al., 2016; Bao et al., 2019)
and COT(Lu et al., 2019) among others (Gagnon-
Marchand et al. (2019), Li et al. (2019)).

To the best of our knowledge, our approach is the
first GAN model that does not require variational
Autoencoder pre-training and is able to generate
texts conditioned by the latent code1. Previous
studies are summarized in Table 1.

3 Model

Figure 1 shows a schematic illustration of the pro-
posed method. We describe the details in the fol-
lowing paragraphs.

Our goal is to generate sentences conditioned
by the latent space in a GAN framework. When
training language GANs, if the discriminator only
looks at the complete sentences, the generator ob-
tains no learning signals early in the training be-

1For FM-GAN, no description regarding the necessity of
pre-training is provided in this paper. However, their released
code refers to the pre-training procedure and is available
at https://github.com/vijini/FM-GAN. We also
verified that a model without VAE pre-training cannot achieve
the expected performance (Figure 3).
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T/F T/F T/F T/F
・・・
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Generator(LSTM)
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x1 x2 x8 x9・・・

x0 x1 x7 x8・・・

FCZPrior
Dist.

Reconstruction loss

Gumbel Softmax
+

Vector Quantization
（=hard onehot）

Gumbel Softmax
（=soft onehot）
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Figure 1: Overview of our model. The latent code z sampled from the prior distribution is fed into the fully
connected layer and set as the initial state of the generator. The generator iteratively generates soft one-hot vectors
of words using the Gumbel-Softmax distribution. The discriminator is fed the soft one-hot vectors and outputs the
dense reward iteratively for the GAN loss. The reconstructor is fed the vector-quantized hard one-hot vectors and
outputs the reconstructed latent code for the reconstruction loss. This network is end-to-end differentiable from
the discriminator/reconstructor to the generator.

・・・

0.45

Probability distribution 
of next word 

0.98

Soft one-hot vector
by gumbel softmax function

1.00

Hard one-hot vector
by vector quantization

・・・

Figure 2: Example of vector quantization of words from soft one-hot vector to hard one-hot vector. This approach
can back-propagate the loss from the reconstructor to the generator using only the sampled word parameters.
Implementation details: hard one-hot = onehot(Argmax(soft one-hot)) - StopGradient[soft one-hot] + soft one-hot

cause the complete sentences generated are easily
determined to be fake by the discriminator(de Mas-
son d’Autume et al., 2019). To address this prob-
lem, following the idea of Fedus et al. (2018), Se-
meniuta et al. (2018), and de Masson d’Autume
et al. (2019), our discriminator Dφ iteratively in-
spects incomplete partial texts and learns to dis-
tinguish whether they are real or fake. Therefore,
the generator can obtain more informative signals
from the recurrent discriminator during the iterative
word sampling process. By using this recurrent dis-
criminator, it is expected that our model does not
require pre-training, as reported in ScratchGAN
(de Masson d’Autume et al., 2019). The objec-
tive function of the discriminator Dφ is the same
as that in ScratchGAN, except that the generator
pθ generates a sequence of tokens {x1, ..., xT } de-
pending on the sampled latent code z from the prior
distribution p(z).

max
φ

T∑

t=1

Ep∗(xt|x<t)[logDφ(xt|x<t)] (1)

+
T∑

t=1

Ep(z)pθ(xt|z,x<t)[log(1−Dφ(xt|x<t))],

where x<t := {x1, .., xt−1} denotes a sequence
of words before timestep t, and p∗ is the real data
distribution.

In a practical sense, the typical word sampling
process makes the differentiability from the dis-
criminator to the generator impossible because sam-
pling a word from a word probability distribution
is equivalent to creating a non-differentiable one-
hot vector. As a workaround, we use the Gumbel-
Softmax distribution (Jang et al., 2016), which en-
ables our model to sample words from pθ by creat-
ing an approximated one-hot vector while making
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the differentiability from the discriminator to the
generator possible. Here, we call this one-hot vec-
tor a ”soft one-hot vector.” The Gumbel-Softmax
distribution used to create the soft one-hot vector x̃
is set as follows:

x̃ = softmax((log(pθ) + g)/τ1)

where pθ = softmax(o/τ2)
(2)

Here, g is a randomly sampled value from the
Gumbel distribution Gumbel(0, 1), o is the output
from the generator. Note that τ1 is the Gumbel-
Softmax temperature, and τ2 is the word probability
distribution temperature.

To ensure that the texts generated are condi-
tioned by the sampled latent code, our model intro-
duces a reconstructor Rψ, which is fed the gener-
ated text and outputs a reconstructed latent code to
minimize the reconstruction loss between the latent
code and the reconstructed code. The generator pθ
and reconstructorRψ are optimized simultaneously.
Therefore, the objective function of the reconstruc-
tor is added to that of the generator multiplied by a
coefficient λ.

min
θ,ψ

T∑

t=1

Ep(z)pθ(xt|z,x<t)[log(1−Dφ(xt|x<t))]

+λEp(z)pθ(x1..,xt)
[ 1

Nz
||Rψ(x1, .., xt)−z||22

]
(3)

where Nz denotes the dimension size of the
latent code z. It should be noted that the joint
distribution pθ(x1...xt) is decomposed into the
iterative conditional distribution pθ(x1...xt) =
pθ(x1)pθ(x2|x1)...pθ(xt|x<t) such that condi-
tional sampling can be executed using the Gumbel-
Softmax distribution described above.

We found several heuristic approaches for stabi-
lizing the training. As the first, vector quantization
(Van Den Oord et al., 2017) is applied to the soft
one-hot vector to create a ”hard one-hot vector”
for the reconstructor input. Vector quantization
can back-propagate the loss from the reconstructor
to the generator using only the sampled word pa-
rameters. By using this approach, reconstruction
loss training is stabilized. Figure 2 illustrates an
example of the vector quantization process. As
the second technique, if a blank token is chosen
at any time step by the Gumebel softmax of the
generator, the rest of the sentence is automatically
padded with blank tokens. The pseudocode is given
in Appendix C.

4 Experiment

First, we describe the data setting and evaluation
metrics for the experiment. Second, we describe
the experimental results to better evaluate the per-
formance of our model.

4.1 Data Setting

We experimentally evaluated the quality and diver-
sity of our generated models using a real sentence
dataset, i.e., COCO Image Captions (Lin et al.,
2014). We used the same sampled data as in Zhu
et al. (2018), which consist of 10,000 training texts
and 10,000 evaluation texts2. The maximum sen-
tence length was 37 tokens, the average length of
the sentence was 11.3 tokens, and the vocabulary
size was 6577. For the experiment, the end of the
text was padded with blank tokens.

4.2 Evaluation Metrics

The quality and diversity of the generated text were
measured using the Negative BLEU score and the
Self-BLEU score (Zhu et al., 2018), respectively.
In tuition, the BLEU score measures the quality of
the generated sentences through a comparison with
real sentences from the viewpoint of how much the
N-gram words overlap. The negative BLEU score
is defined as the -1 ∗ BLEU score. The Self-BLEU
scores measure the diversity of every generated sen-
tence by comparing with the other generated sen-
tences by inspecting how much the N-gram words
overlap. Therefore, a lower value indicates a better
performance for both metrics. We draw the temper-
ature curve(Caccia et al., 2019) for each model, in
which the texts are generated by gradually chang-
ing the temperature of the softmax function, and
plotting the quality and diversity score for every
temperature point on a two-dimensional quality-
diversity canvas. Therefore, the closer the curve
is to the origin, the better the performance of the
model. We plot the results for temperatures at inter-
vals of 0.0 to 1.0 with 0.1 increments. Note that at
a temperature of 0.0, the model generates the text
using a greedy approach, which can be interpreted
as temperature τ → 0. In principle, as the temper-
ature decreases, the quality of the generated texts
increases, but the diversity decreases. Thus, the
greedy decoding case is the upper leftmost point
on each temperature curve. We generate 10,000
texts from the trained model at every temperature

2The dataset is available at https://github.com/
geek-ai/Texygen/tree/master/data
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Figure 3: Performance comparison of our model with
baseline models. The lower value indicates the better
performance for diversity and quality metrics.
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Figure 4: Effect of changing reconstruction loss coeffi-
cient λ.

for evaluation. The generated sample texts can be
found at Table 2. Note that in the Gumbel-Softmax
distribution, the changing target of the temperature
is τ2, and not τ1 in equation (2).

4.3 Results

4.3.1 Comparison with Baseline Models

We compared the performance of our model
with the baseline models: VAE, FM-GAN, and
TextGAN. VAE used the CNN-LSTM autoencoder
architecture as in Gan et al. (2017). FM-GAN and
TextGAN require VAE pre-training. Our model
settings and hyperparameter details can be found in
Appendix A and B. Figure 3 illustrates the temper-
ature curves for each model to compare the perfor-
mance from the viewpoint of quality and diversity.
This result indicates that the overall performance of
our model is slightly inferior to that of the baseline
models, but is quite competitive despite our model

not being pre-trained. We also evaluated FM-GAN
and TextGAN without pre-training case. Both of
them achieved far worse performance than the pre-
trained case. This result indicates that these models
without pre-training fall into mode-collapsing.

4.3.2 Effect of Changing Value of λ
We observe the effect of changing the value of the
reconstruction coefficient λ in equation (3) on the
performance of our model. Figure 4 shows the
temperature curves for different coefficients. The
result indicates that, as the value of λ increases, the
performance of our models improves. However, if
the value of λ is too high such as λ = 2.0, the qual-
ity of the generated sentence significantly worsens.
We also found that for the greedy decoding case,
which is the upper-left point of each curve, as λ
increases, the diversity of the generated sentences
increases and the quality-diversity distribution be-
comes closer to that of the training data. Greedy
decoding is the most extreme case for verifying
if the generated sentences are conditioned by the
latent space. Therefore, it can be assumed that
the reconstruction loss has the ability to make the
generated text more dependent on the latent space
information.

5 Conclusion and Discussion

This paper proposed a GAN model that aims to
improve the approach to generating diverse texts
conditioned by a latent space. In a quantitative ex-
periment using the COCO Image Captions dataset,
it was shown that although our model is not pre-
trained, its performance is quite competitive with
the existing baseline models, which require pre-
training. Future work will include further improve-
ments to the performance of our model, and ap-
plication of our model to other tasks that need to
transform the data between domains through a la-
tent space, such as improving the quality and diver-
sity of machine translation or multi-modal learning
related to text generation.
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Real Data

a bicycle replica with a clock as the front wheel.
a black honda motorcycle parked in front of a garage.
a room with blue walls and a white sink and door.
a car that seems to be parked illegally behind a legally parked car
a large passenger airplane flying through the air.
there is a gol plane taking off in a partly cloudy sky.
blue and white color scheme in a small bathroom.
this is a blue and white bathroom with a wall sink and a lifesaver on the wall.
a blue boat themed bathroom with a life preserver on the wall

VAE

a bathroom sink with only the tub in the bathroom
a large boy and a plane sitting on the landing .
a clock tower with pots and windows
a car at an open door leading to a bunch of foot .
office space force force jet on display during day .
an image of benches on a street and chairs being terminal .
a large airplane flying in the open of a kitchen .
a couple of an airplane flying through the clear blue oven .
an airplane with some chairs on a table by the counter .

FM-GAN

a man wearing two sheep on a blue umbrella
a group of birds standing around a table in a forest .
a bathroom with a vanity , sink , and white and shower .
a building with a clock on a clock tower
a large white plane sits on a sidewalk in the kitchen .
a row of cars are parked outside the street at an intersection .
a woman looks plays in the kitchen
an orange and woman walking around a park bench .
a man standing in the kitchen at a tv .

TextGAN

a person with a football standing in front of a house
an old airplane flying through a blue sky above a house .
a man sitting on a bed with a dog and fries inside a car .
a group of people riding bicycles down a city street .
two motorcycles lined up with green seats in snow .
a man wearing glasses wearing glasses and black bookbag riding a horse down a street .
a bathroom with a toilet , shower , and toilet , trash can on the wall
a cat drinking the back of a white toilet paper
a man and motorcycle riders are riding on the road

Our Model

a small bird sit on a white bathroom with a mirror seat .
two chefs counter standing in front of a toilet .
a modern black and white checkered oven underneath area .
looking off from you doors from doors .
a white kitchen with chrome space at cabinets .
a racing plane in a sky by land on a track .
there is a yellow bathroom stands next to a toilet under a mirror .
a kitchen with wooden appliances in flight
a bathroom that has a mirror and a wall and basket .
an image of men are crossing from the car .

Table 2: Randomly selected samples of COCO Image Captions from real data, VAE, FM-GAN, TextGAN, and our
model. Text generations are based on greedy decoding for all models.
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A Model Settings

• For the generator, reconstructor, and dis-
criminator, we used long short-term memory
(LSTM) (Hochreiter and Schmidhuber, 1997).

• Two different fully connected layers are set to
linearly transform z into the initial states C0

and H0 respectively for the LSTM network of
the generator.

• Positional information of 8-dimensions in size
(de Masson d’Autume et al., 2019) is concate-
nated with the word embeddings in each net-
work.

• A dropout is applied to the word embeddings
before the word embeddings are fed into each
LSTM network of the discriminator.

• All trainable parameters are optimized using
Adam (Kingma and Ba, 2015). A weight de-
cay is applied to all trainable parameters of
the discriminator using an L2 penalty.

• The prior distribution of Latent space is de-
fined as Gaussian distribution G(0, 1).

B Hyperparameters of Our Model for
COCO Image Captions Experiment

• LSTM feature size of the discriminator: 64

• LSTM feature size of the generator: 128

• LSTM feature size of the reconstructor: 128

• Dimension size of latent code z: 8

• Learning rate for Adam: 0.0002

• β1 for Adam: 0.5

• β2 for Adam: 0.999

• Minibatch size: 256

• Dropout rate for word embedding: 0.1

• τ1 in Equation (2): 0.1

• τ2 in Equation (2): 0.1

• λ in Equation (3): 1.0

• Weight decay rate: 0.0001

• Iteration size: 50000

C Training Algorithm of Our Model

Algorithm 1
GS:=GumbelSoftmax,
VQ:=VectorQuantization,
SG:=StopGradient

Require: initial generator parameter θ, discrimi-
nator parameter φ, reconstructor parameter ψ.

1: while θ, φ, ψ has not converged do
2: Sample x ∼ p∗(x), z ∼ p(z)
3: for t = 1, ..., T do
4: if Argmax( ˜xt−1) = BlankID then
5: x̃t ← Onehot(BlankID)
6: else
7: x̃t ← GS(Pθ(x̃t|z, ¨x<t))
8: end if
9: ẋt ← V Q(x̃t)

10: ẍt ← SG(ẋt)
11: end for
12: Dt ← − 1

T

∑T
t=1 logDφ(xt|x<t)

13: Df ← − 1
T

∑T
t=1 log(1−Dφ(x̃t| ˜x<t))

14: L ← Dt +Df

15: φ← Adam(∇φL, φ)
16:

17: Sample z ∼ p(z)
18: for t = 1, ..., T do
19: if Argmax( ˜xt−1) = BlankID then
20: x̃t ← Onehot(BlankID)
21: else
22: x̃t ← GS(Pθ(x̃t|z, ¨x<t))
23: end if
24: ẋt ← V Q(x̃t)
25: ẍt ← SG(ẋt)
26: end for
27: Df ← 1

T

∑T
t=1 log(1−Dφ(x̃t| ˜x<t))

28: L ← Df + λRψ(ẋ1, ..., ẋT )
29: θ ← Adam(∇θL, θ)
30: ψ ← Adam(∇ψL, ψ)
31: end while
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Abstract

We explore cross-lingual transfer of register
classification for web documents. Registers,
that is, text varieties such as blogs or news are
one of the primary predictors of linguistic vari-
ation and thus affect the automatic processing
of language. We introduce two new register-
annotated corpora, FreCORE and SweCORE,
for French and Swedish. We demonstrate
that deep pre-trained language models per-
form strongly in these languages and outper-
form previous state-of-the-art in English and
Finnish. Specifically, we show 1) that zero-
shot cross-lingual transfer from the large En-
glish CORE corpus can match or surpass pre-
viously published monolingual models, and 2)
that lightweight monolingual classification re-
quiring very little training data can reach or
surpass our zero-shot performance. We fur-
ther analyse classification results finding that
certain registers continue to pose challenges in
particular for cross-lingual transfer.

1 Introduction

Text genre or register (Biber, 1988), such as discus-
sion forum, news article or poem, is one of the most
important predictors of linguistic variation (Biber,
2012). Thus, register affects crucially also the au-
tomatic processing of language (Mahajan et al.,
2015; Webber, 2009; Van der Wees et al., 2018).
Yet, despite its importance, register information
is not available in web-crawled datasets that are
widely used e.g. for pre-training language models
in modern NLP. This is a challenge, as better struc-
tured language resources would also enable more
detailed understanding and more sophisticated use
of this data.

While web register identification would allow
better realization of the potential offered by web-

†The marked authors contributed equally to this paper.

crawled datasets, most previous web register iden-
tification studies have been limited by skewed
datasets, low performance, and near-exclusive fo-
cus on English. For example, Asheghi et al. (2014)
and Pritsos and Stamatatos (2018) reported com-
paratively strong results, but their evaluations were
based on datasets representing only a subset of
the registers found online. With the CORE cor-
pus, Egbert et al. (2015) were the first to present a
dataset featuring the full extent of registers found
on the open, searchable English web. While Biber
and Egbert (2016b) demonstrated the possibility
of automatic register classification using Stepwise
Discriminant Analysis, improvements in modeling
and more efficient methods remained necessary in
order to reach practical levels of performance.

A challenge in modeling web registers is that
web documents drawn from the unrestricted web
do not always fit discrete classes but could rather be
described in a continuous space (Biber and Egbert,
2018; Sharoff, 2018). Not all documents have clear
characteristics of one single register, or even any
register at all. This has shown also in relatively low
inter-annotator agreement for web register annota-
tion (Crowston et al., 2010).

Very recently, however, the advances brought
to NLP by neural networks have shown that regis-
ters can be identified also in a corpus featuring the
full range of online language variation (Laippala
et al., 2020a). Laippala et al. (2019) extended the
possibilities of web register identification beyond
English by presenting an online register corpus on
Finnish (FinCORE) and demonstrating that web
registers can be modeled also in a cross-lingual
setting.

In this paper, we substantially extend on this
early work on cross-lingual web register identifi-
cation through the following contributions: 1) we
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General register category English Finnish French Swedish
NA Narrative 36.46 % 34.95 % 22.33 % 28.32 %
IN Informational description 19.24 % 17.03 % 20.74 % 27.68 %
OP Opinion 16.23 % 15.23 % 6.33 % 6.60 %
ID Interactive discussion 6.77 % 6.29 % 8.03 % 3.57 %
HI How-to/Instructions 3.08 % 6.47 % 3.08 % 2.80 %
IP Informational persuasion 2.75 % 20.04 % 24.15 % 16.82 %
LY Lyrical 1.32 % 0.00 % 0.33 % 0.14 %
SP Spoken 1.21 % 0.00 % 0.83 % 0.14 %
Empty 1.20 % 0.00 % 0.00 % 0.00 %
Hybrids 11.74 % 0.00 % 14.19 % 13.93 %
Total 48452 2226 1818 2182

Table 1: Proportional register distribution and total number of documents in CORE, FinCORE, FreCORE and SweCORE.
Hybrids include all documents annotated with several register labels, and Empty refers to documents not assigned any label.

introduce manually annotated web register datasets
for two new languages, French and Swedish, 2)
we demonstrate competitive performance for cross-
lingual transfer of a register classification model
from English to other languages in a zero-shot
setting, and 3) we analyze zero-shot vs. mono-
lingual training for register classification and re-
maining challenges in both. In particular, using
Transformer-based pre-trained language models,
we show that a zero-shot cross-lingual approach
outperforms monolingual results achieved by a pre-
viously proposed state-of-the-art method for all the
three language pairs (En-Fr, En-Sv, and En-Fi),
and that strong monolingual performance can be
achieved with limited training data.

2 Data

We use four register-annotated corpora representing
the unrestricted open web: the English CORE and
Finnish FinCORE, which have been introduced in
previous work (Egbert et al., 2015; Laippala et al.,
2019), and two new corpora, FreCORE for French
and SweCORE for Swedish. These novel datasets
are released under open licences together with this
paper.1 With these new resources, the possibilities
for web register identification expand substantially.

FreCORE and SweCORE are random samples of
the 2017 CoNLL datasets (Ginter et al., 2017) orig-
inally drawn from Common Crawl. Both datasets
were deduplicated using Onion (Pomikálek, 2011)
with 0.7 threshold and n-gram length of 5. All ma-
terial not belonging to the body of text, such as
boilerplate, was removed. Titles, however, were

1Available at https://github.com/TurkuNLP/
Multilingual-register-corpora

preserved. The cleaning and pre-processing steps
follow the procedure suggested in Laippala et al.
(2020b). The register annotation of the datasets
was conducted individually by two trained annota-
tors with a linguistics background. Uncertain cases
were discussed and resolved together with an anno-
tation supervisor. The inter-annotator agreement,
counted prior to the discussions, was 78% F1-score
for FreCORE and 84% for SweCORE. This can be
considered as a lower bound.

All datasets are similarly annotated across lan-
guages, and they all apply the same hierarchical
register class taxonomy originally introduced for
CORE. It includes eight main registers (e.g., Nar-
rative) and approximately 30 sub-registers (e.g.,
News report within Narrative). The main and sub-
register categories are illustrated in the appendix.
When a document shares characteristics of several
registers, it can be assigned several labels both at
the main and sub-register level. These documents
are called hybrids. As our focus in this paper is on
general register categories, we initially pre-process
all four corpora to remove the more specific sub-
register labels.

The general register categories and their distri-
butions as well as the average document length
and standard deviation for all classes are presented
in Table 1 and Table 2, respectively. The register
class Empty consists of texts whose register the
annotators could not agree on. Due to the very
small number of each type of hybrid label com-
bination in the data, in Tables 1 and 2, the class
Hybrids includes all documents that have more than
one label. Table 1 reveals that the register distri-
butions in the four languages are broadly similar,
featuring Narrative, Informational description, and
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Register English Finnish French Swedish
mean std. mean std. mean std. mean std.

NA 1081 2490 649 2170 623 2284 602 2461
IP 1066 3370 301 391 325 493 426 2225
IN 1353 3373 989 4755 1446 9688 323 626
OP 1595 4021 739 1188 857 1835 1055 1825
HI 1007 1402 277 285 623 1130 437 508
ID 1079 4042 2017 8907 970 1579 577 885
LY 468 1114 - - 387 314 263 225
SP 2047 3335 - - 999 939 525 178
Empty 13345 3215 - - - - - -
Hybrids 1290 3141 - - 1170 3296 859 1207
All 1083 2747 713 3295 703 3900 482 1446

Table 2: Average length (number of words) and standard deviation of Finnish, French, Swedish and English documents.

hybrids among the four most frequent categories.
The top four also include Informational persuasion
in FinCORE, FreCORE, and SweCORE, while in
CORE this label is relatively infrequent. Addition-
ally, Opinion is notably more frequent in CORE
and FinCORE than in FreCORE and SweCORE.
These differences may reflect differences in data
compilation. Table 2 shows that, on average, En-
glish documents are longer than documents in other
languages, whereas Swedish documents tend to be
shortest. Overall the number of words in a docu-
ment in most of the classes show large variation,
with the longest documents containing tens of thou-
sands of words.

3 Experimental setup

The architectures and models we are using are pre-
sented below.2 We perform multi-label document
classification, where each document can have zero,
one, or several register labels. The experiments are
divided into 1) a monolingual setup with training
and evaluation on Finnish, French, Swedish, and
English (as reference), and 2) a zero-shot cross-
lingual setup with training on English and evalua-
tion on the other languages.

BERT, Bidirectional Encoder Representations
from Transformers (Devlin et al., 2019) is a state-
of-the-art deep bidirectional language model pre-
trained on large unlabelled corpora. BERT’s ar-
chitecture is a multi-layer Transformer encoder
that is based on the original Transformer architec-
ture introduced by Vaswani et al. (2017). We use
cased BERT models (TensorFlow versions) through

2The code is available at: https://github.com/
TurkuNLP/Multilingual-register-corpora

the Huggingface Transformers library (Wolf et al.,
2020) with the following language-specific mod-
els: the original English BERT, Finnish FinBERT
(Virtanen et al., 2019), French FlauBERT (Le et al.,
2020) and Swedish KB-BERT (Malmsten et al.,
2020). Additionally, we use Multilingual BERT
(mBERT) (Devlin et al., 2019), which was pre-
trained on monolingual Wikipedia corpora from
104 languages with a shared multilingual vocabu-
lary.

XLM-RoBERTa (XLM-R, Conneau et al.
(2020)) is a multilingual language model that fol-
lows the Cross-lingual Language Modeling (XLM)
approach (Conneau and Lample, 2019) and is based
on the RoBERTa model (Liu et al., 2019), which
shares the architecture of BERT. The authors ar-
gue that XLM and mBERT are undertuned and that
the improved and prolonged training procedure of
RoBERTa in combination with more data – on aver-
age two orders of magnitude more for low-resource
languages – is key to improving cross-lingual per-
formance. XLM-R is trained on 2.5TB of filtered
Common Crawl (Wenzek et al., 2020) data com-
prising of monolingual texts in 100 languages. It is
claimed to be the first multilingual model to outper-
form monolingual models, as well as Multilingual
BERT in a number of experiments (Conneau et al.,
2020; Libovický et al., 2020; Tanase et al., 2020).

We also apply a CNN (Convolutional Neural
Network) based architecture following Kim (2014),
as our baseline model. We modify the cross-lingual
CNN used by Laippala et al. (2019) to a multi-
label setting. We use the multilingual word vectors
introduced by Conneau et al. (2018). The CNN
employs a convolution layer with ReLU activation,
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Monolingual
Model Train- Dev Test

Test F1 (%) Std. F1 (%) Std.
CNN Fi 59.04 (0.67) 58.04 (1.02)
mBERT Fi 65.91 (0.85) 64.83 (1.16)
XLM-R large Fi 76.25 (0.45) 73.18 (1.35)
FinBERT Fi 76.28 (1.23) 72.98 (0.74)
CNN Fr 59.78 (1.10) 58.14 (1.10)
mBERT Fr 70.74 (1.67) 68.66 (0.63)
XLM-R large Fr 77.38 (0.51) 76.92 (0.24)
FlauBERT large Fr 73.93 (0.93) 72.56 (1.40)
CNN Sv 69.43 (0.56) 67.89 (1.01)
mBERT Sv 76.91 (0.45) 76.43 (0.46)
XLM-R large Sv 82.61 (0.37) 83.04 (0.62)
KB-BERT Sv 80.15 (0.50) 80.75 (0.09)
CNN En 64.56 (0.78) 64.03 (0.30)
mBERT En 72.80 (0.21) 73.06 (0.09)
XLM-R large En 75.80 (0.12) 75.68 (0.05)
BERT large En 74.01 (0.42) 74.07 (0.28)

Cross-lingual
Train- Dev Test
Test F1 (%) Std. F1 (%) Std.
En-Fi 40.53 (1.11) 41.56 (0.20)
En-Fi 51.02 (2.92) 50.21 (0.74)
En-Fi 61.60 (2.01) 61.35 (1.26)

En-Fr 46.44 (0.51) 46.78 (1.80)
En-Fr 56.73 (1.54) 55.04 (0.66)
En-Fr 65.66 (0.52) 64.27 (1.58)

En-Sv 43.74 (0.82) 43.78 (1.00)
En-Sv 62.37 (0.82) 62.53 (0.78)
En-Sv 70.49 (0.58) 69.22 (1.66)

Table 3: Monolingual and zero-shot cross-lingual classification results (N=3). Best results for each experiment shown in bold.

a max-pooling layer and sigmoid activation.
The French and Swedish data were divided into

training, development and test sets using stratified
sampling with a 50/20/30 split. For BERT-based
models we used large model size when available to
maximize model performance. We used the maxi-
mum sequence length of 512 tokens (with trunca-
tion at the end) and batch size of 7, and performed
a grid search on learning rate (8e-6–6e-5) and num-
ber of training epochs (3–7). For the CNN, we
performed a grid search on the kernel size (1–2),
learning rate (1e-4–1e-2), and prediction threshold
(0.4, 0.5, 0.6).

4 Results

In Table 3, we present the primary results on En-
glish, Finnish, French and Swedish monolingual
classification with the models described in Sec-
tion 3, as well as cross-lingual results with English
as the source language and Finnish, French and
Swedish as target languages. We report the mean
and standard deviation of F1 over three repetitions.

In monolingual settings, XLM-R large performs
competitively compared to monolingual models
and clearly outperforms both mBERT and the CNN
baseline. The lead of XLM-R over monolingual
models is substantial in all cases except for the Fin-
BERT model, where the two perform within one
standard deviation of each other. Our results sup-
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Figure 1: Monolingual performance when training with vary-
ing number of examples (solid lines) in relation to zero-shot
cross-lingual performance when training on full English set
(dotted lines). Error bars represent standard deviations (N=6).

port the claimed competitiveness of XLM-R large
with monolingual models, mentioned in Section 3.

English, Finnish and French BERT models
achieve similar monolingual test results (73–74%
F1-score), while the Swedish KB-BERT achieves
the highest F1-score (81%). The Finnish classifica-
tion task is seemingly easier due to smaller number
of classes, nevertheless, other factors may cause the
difficulty of the task to differ between languages.
For instance, the measured human inter-annotator
agreements at 78% (Fr) and 84% (Sv) F1-score (see
Section 2) represent a theoretical upper bound for
the classification task and reflect the tendency of
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HI ID IN IP NA OP HYB
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IN
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NA

OP

HYB

0.62 0.00 0.27 0.05 0.00 0.00 0.06

0.00 0.55 0.13 0.00 0.13 0.09 0.09

0.07 0.02 0.60 0.02 0.14 0.09 0.06

0.02 0.00 0.13 0.67 0.07 0.08 0.03

0.01 0.00 0.03 0.01 0.86 0.05 0.03

0.01 0.02 0.06 0.02 0.13 0.71 0.05

0.00 0.00 0.00 0.00 0.00 0.00 0.00

Finnish-Finnish
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OP
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0.58 0.00 0.08 0.00 0.08 0.00 0.25

0.00 0.89 0.02 0.00 0.03 0.00 0.05

0.01 0.02 0.62 0.05 0.07 0.01 0.23

0.00 0.01 0.06 0.73 0.05 0.00 0.15

0.00 0.00 0.03 0.03 0.80 0.03 0.12

0.03 0.02 0.05 0.06 0.10 0.38 0.36

0.03 0.04 0.14 0.13 0.18 0.07 0.41
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0.00 0.55 0.07 0.00 0.27 0.08 0.03

0.00 0.01 0.89 0.03 0.02 0.00 0.05
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0.00 0.01 0.02 0.01 0.88 0.01 0.07

0.00 0.01 0.00 0.07 0.12 0.66 0.14

0.04 0.01 0.08 0.20 0.27 0.07 0.33
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0.19 0.05 0.53 0.00 0.00 0.00 0.23

0.00 0.57 0.12 0.00 0.12 0.07 0.11

0.00 0.00 0.83 0.00 0.01 0.07 0.09

0.00 0.00 0.53 0.12 0.02 0.03 0.30

0.00 0.01 0.20 0.00 0.62 0.06 0.10

0.00 0.03 0.10 0.00 0.08 0.71 0.08

0.00 0.00 0.00 0.00 0.00 0.00 0.00

English-Finnish
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0.06 0.05 0.40 0.05 0.16 0.08 0.19
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0.00 0.52 0.02 0.00 0.33 0.00 0.13
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0.00 0.00 0.08 0.00 0.75 0.03 0.13
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Figure 2: Confusion matrices presenting class label observations (rows) vs. class label predictions (columns) in monolingual
(upper row) and cross-lingual (lower row) settings. The numbers and coloring represent the proportions of predictions per row.
HYB is a combination of all hybrid cases with multiple labels.

Swedish being easier to classify; the level of agree-
ment has not been reported for Finnish. Although
not strictly comparable, our results clearly outper-
form the previous state-of-the-art results achieved
with the CNN (Laippala et al., 2019) in terms of
F1, which in turn outperforms Biber and Egbert
(2016b), who used the same corpus but in multi-
class setting.

Furthermore, Table 3 shows very strong zero-
shot cross-lingual results with XLM-R large, with
F1-scores in the 61–69% range. This represents
a remarkably consistent relative decrease of 16.2–
16.6% (11.8–13.8% absolute) from the monolin-
gual scores of XLM-R. Its lead over mBERT in-
creases from 6.6–8.4% absolute F1 to 7.8–11.4% in
the cross-lingual settings, whereas its lead over the
CNN goes from 15.1–18.8% to 17.5–25.4%. Most
interestingly, the zero-shot XLM-R even beats the
monolingually trained CNN baselines by a signifi-
cant margin for Finnish and French, while its lead
remains within a standard deviation for Swedish.

In Figure 1, we illustrate the effect of train-
ing monolingual XLM-R large models with vary-
ing train set sizes and compare the performance
against the reported zero-shot performance. The

optimal monolingual hyperparameter settings for
each language are used, while training the model
instances on 100–900 examples each. We see that
zero-shot cross-lingual performance is surpassed al-
ready with about 150 training instances for French,
225 for Swedish and 400 for Finnish, while perfor-
mance seems to converge around 500.

Previous studies have shown repeatedly that reg-
isters vary considerably in terms of how well they
are linguistically defined and thus how well they
can be automatically identified (Biber and Egbert,
2018, 2016a; Laippala et al., 2020a). For instance,
while texts in the IN (Informational description)
and NA (Narrative) classes, such as Encyclopedia
articles and Sports reports, have very distinctive
characteristics and can be identified with a very
high reliability, others, such as Information blogs
in the IN class or Advice in the OP (Opinion) class
receive much lower scores.

Figure 2 presents confusion matrices on the pre-
dictions in monolingual and cross-lingual settings,
using the best-performing model.3 For the sake of
simplicity, the multi-label predictions have been

3See appendix for class-specific F1 results.
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collapsed into multi-class by including all hybrids
under one label HYB in Figure 2. In the monolin-
gual settings, we can see that particularly hybrids
present a challenge. This is expected, as they fea-
ture characteristics of several registers. Addition-
ally, while IP (Informational persuasion) and NA
are predicted with high performance in all three
languages, the other classes display more variation.
For instance, ID (interactive discussion) reaches an
F1-score of 90% (see appendix) in French mono-
lingual setting, whereas in Swedish and Finnish it
is frequently misclassified, most likely because of
the small number of examples in the training data.

The hybrids are also frequently misclassified in
cross-lingual settings. Interestingly, register classes
also feature clear differences in the extent to which
the cross-lingual transfer affects the identification
performance. The register class IN tends to be pre-
dicted strongly in all zero-shot language pairs. This
is probably due to the IN class including documents
with strong cross-lingual signals. For instance, IN
includes Encyclopedia articles (see appendix), such
as Wikipedia texts, that tend to be very similar
across languages.

While most of the non-hybrid classes experience
a small drop in performance, the identification rate
for IP and HI (How-to/Instructions) drops dramati-
cally in cross-lingual settings in all language pairs.
The decrease of IP can be linked to its smaller
proportion in the English data (see Section 2), but
the drops experienced by IP and HI can also re-
flect the variation displayed by registers across lan-
guages. Biber (2014) showed that registers, such as
spoken texts, display functional similarities across
languages, which obviously is needed for high-
quality transfer in register identification. However,
analyzing the English CORE registers, Laippala
et al. (2020a) noted that some registers, such as
many blogs, depend highly on lexical characteris-
tics reflecting the discussion topics. These topics,
however, may vary extensively between languages.
This, again, may complicate the transfer learning
for these classes.

5 Discussion and conclusions

Despite the many opportunities that reliable recog-
nition of text register would introduce for the anal-
ysis and use of web documents and many efforts
to address this task over the years, only limited
progress has been made toward unrestricted web
document register classification. Previous work has

also focused almost exclusively on English.
In this study, we have introduced manual register

annotation compatible with that of the large English
CORE corpus for two languages previously lack-
ing such a resource, namely French and Swedish.
We also demonstrated that state-of-the-art multilin-
gual neural language models can support zero-shot
transfer of register annotations from English to a
Germanic, Romance and Finnic language at levels
of performance broadly comparable or better to pre-
viously published monolingual results on CORE.

Moreover, we demonstrated that small amounts
of monolingual training data are needed to reach or
surpass this level of performance, which attests that
reliable register identification in a new language
is readily attainable using current pre-trained lan-
guage models. We further compared and analysed
the results for monolingual and cross-lingual regis-
ter classifiers, finding that certain registers as well
as hybrid texts combining several register character-
istics continue to pose challenges in particular for
cross-lingual transfer. In future work, we will build
on these results to extend multi- and cross-lingual
modeling in order to create massive multilingual
register-annotated web corpora.
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A Appendix

Tables 4 and 5 present the detailed results for the
zero-shot cross-lingual and monolingual register
classification experiments, respectively. Table 6
presents the register taxonomy with the main regis-
ters and their sub-registers.
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En-Fi En-Fr En-Sv
F1 Std. F1 Std. F1 Std.

HI 48.43 % 1.98 % 55.12 % 5.65 % 62.91 % 0.60 %
ID 69.79 % 6.06 % 87.48 % 2.05 % 52.05 % 3.07 %
IN 44.43 % 0.32 % 58.68 % 0.17 % 68.81 % 0.20 %
IP 52.79 % 5.72 % 53,57 % 2.53 % 51.45 % 1.88 %
LY 0.00 % 0.00 % 66.67 % 0.00 % 95.24 % 6.73 %
NA 77.85 % 0.80 % 75.18 % 0.32 % 78.36 % 0.70 %
OP 70.32 % 1.59 % 59.26 % 1.51 % 60.57 % 0.32 %
SP 0.00 % 0.00 % 79.08 % 7.53 % 0.00 % 0.00 %

Table 4: Class-wise F1-scores and standard deviations on cross-lingual experiments

Fi-Fi Fr-Fr Sv-Sv
F1 Std. F1 Std. F1 Std.

HI 64.02 % 1.94 % 58.81 % 0.59 % 70.70 % 4.56 %
ID 66.18 % 3.54 % 90.37 % 1.58 % 60.48 % 3.21 %
IN 58.68 % 1.59 % 74.00 % 0.40 % 87.79 % 0.29 %
IP 75.74 % 2.34 % 80.02 % 1.04 % 81.75 % 1.10 %
LY – – 66.67 % 0.00 % 0.00 % 0.00 %
NA 82.38 % 0.98 % 77.02 % 1.16 % 86.66 % 0.69 %
OP 67.10 % 2.05 % 66.23 % 3.08 % 75.37 % 1.66 %
SP – – 65.28 % 1.96 % 0.00 % 0.00 %

Table 5: Class-wise F1-scores and standard deviations on monolingual experiments

Narrative
News report / news blog, sports report,
personal blog, historical article, fiction, travel
blog, community blog, online article

Informational description
Description of a thing, encyclopedia article,
research article, description of a person,
information blog, FAQ, course material, legal
terms / condition, report, job description

Opinion
Review, opinion blog, religious blogs/sermon, advice

Interactive discussion
Discussion forum, question-answer forum

How-to/Instructions
How-to/instruction, recipe

Informational Persuasion
Description with intent to sell, news+opinion
blog / editorial

Lyrical
Songs, poem

Spoken
Interview, formal speech, TV transcript

Table 6: All register classes. Main registers are shown in bold.
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Abstract

Type- and token-based embedding architec-
tures are still competing in lexical semantic
change detection. The recent success of type-
based models in SemEval-2020 Task 1 has
raised the question why the success of token-
based models on a variety of other NLP tasks
does not translate to our field. We investigate
the influence of a range of variables on cluster-
ings of BERT vectors and show that its low per-
formance is largely due to orthographic infor-
mation on the target word, which is encoded
even in the higher layers of BERT representa-
tions. By reducing the influence of orthogra-
phy we considerably improve BERT’s perfor-
mance.

1 Introduction

Lexical Semantic Change (LSC) Detection has
drawn increasing attention in the past years (Kutu-
zov et al., 2018; Tahmasebi et al., 2018; Hengchen
et al., 2021). Recently, SemEval-2020 Task 1
and the Italian follow-up task DIACR-Ita pro-
vided a multi-lingual evaluation framework to com-
pare the variety of proposed model architectures
(Schlechtweg et al., 2020; Basile et al., 2020). Both
tasks demonstrated that type-based embeddings
outperform token-based embeddings. This is sur-
prising given that contextualised token-based ap-
proaches have achieved significant improvements
over the static type-based approaches in several
NLP tasks over the past years (Peters et al., 2018;
Devlin et al., 2019).

In this study, we relate model results on LSC de-
tection to results on the word sense disambiguation
data set underlying SemEval-2020 Task 1. This al-
lows us to test the performance of different methods
more rigorously, and to thoroughly analyze results
of clustering-based methods. We investigate the
influence of a range of variables on clusterings of
BERT vectors and show that its low performance

is largely due to orthographic information on the
target word which is encoded even in the higher
layers of BERT representations. By reducing the
influence of orthography on the target word while
keeping the rest of the input in its natural form we
considerably improve BERT’s performance.

2 Related work

Traditional approaches for LSC detection are type-
based (Dubossarsky et al., 2019; Schlechtweg et al.,
2019). This means that not every word occur-
rence is considered individually (token-based); in-
stead, a general vector representation that summa-
rizes every occurrence of a word (including poly-
semous words) is created. The results of SemEval-
2020 Task 1 and DIACR-Ita (Basile et al., 2020;
Schlechtweg et al., 2020) demonstrated that over-
all type-based approaches (Asgari et al., 2020;
Kaiser et al., 2020; Pražák et al., 2020) achieved
better results than token-based approaches (Beck,
2020; Kutuzov and Giulianelli, 2020; Laicher et al.,
2020). This is surprising, however, for two main
reasons: (i) contextualized token-based approaches
have significantly outperformed static type-based
approaches in several NLP tasks over the past years
(Ethayarajh, 2019). (ii) SemEval-2020 Task 1 and
DIACR-Ita both include a subtask on binary change
detection that requires to discover small sets of
contextualized usages with the same sense. Type-
based embeddings do not infer usage-based (or
token-based) representations and are therefore not
expected to be able to find such sets (Schlechtweg
et al., 2020). Yet, they show better performance on
binary change detection than clusterings of token-
based embeddings (Kutuzov and Giulianelli, 2020).

3 Data and evaluation

We utilize the annotated English, German and
Swedish datasets (ENG, GER, SWE) underlying
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SemEval-2020 Task 1 (Schlechtweg et al., 2020).
Each dataset contains a list of target words and a
set of usages per target word from two time peri-
ods, t1 and t2 (Schlechtweg et al., submitted). For
each target word, a Word Usage Graph (WUG)
was annotated, where nodes represent word usages,
and weights on edges represent the (median) se-
mantic relatedness judgment of a pair of usages, as
exemplified in (1) and (2) for the target word plane.

(1) Von Hassel replied that he had such faith in
the plane that he had no hesitation about
allowing his only son to become a Starfighter
pilot.

(2) This point, where the rays pass through the
perspective plane, is called the seat of their
representation.

The final WUGs were clustered with a variation
of correlation clustering (Bansal et al., 2004) (see
Figure 1 in Appendix A, left) and split into two sub-
graphs representing nodes from t1 and t2 respec-
tively (middle and right). Clusters are interpreted
as senses, and changes in clusters over time are in-
terpreted as lexical semantic change. Schlechtweg
et al. then infer a binary change value B(w) for
Subtask 1 and a graded change value G(w) for
Subtask 2 from the two resulting time-specific clus-
terings for each target word w.

The evaluation of the shared task participants
only relied on the change values derived from the
annotation, while the annotated usages were not
released. We gained access to the data set, which
enables us to relate performances in change detec-
tion to the underlying data.1 We can also analyze
the inferred clusterings with respect to bias factors,
and compare their influence on inferred vs. gold
clusterings. A further advantage of having access
to the underlying data is that it reflects more accu-
rately the annotated change scores. In SemEval-
2020 Task 1 the annotated usages were mixed with
additional usages to create the training corpora for
the shared task, possibly introducing noise on the
derived change scores.

4 Models and Measures

BERT Bidirectional Encoder Representations
from Transformers (BERT, Devlin et al., 2019) is a

1We had no access to the Latin annotated data. For the
ENG clustering experiments we use the full annotated re-
source containing three additional graphs (Schlechtweg et al.,
submitted).

transformer-based neural language model designed
to find contextualised representations for text by
analysing left and right contexts. The base version
processes text in 12 different layers. In each layer,
a contextualized token vector representation is cre-
ated for every word. A layer, or a combination of
multiple layers (we use the average), serves as a
representation for a token. For every target word,
we feed the usages from the SemEval data set into
BERT and use the respective pre-trained cased base
model to create token embeddings.2

Clustering LSC can be detected by clustering
the token vectors from t1 and t2 into sets of us-
ages with similar meanings, and then comparing
these clusters over time (cf. Schütze, 1998; Nav-
igli, 2009). This section introduces the clustering
algorithms and clustering performance measures
that we used. Agglomerative Clustering (AGL)
is a hierarchical clustering algorithm starting with
each element in an individual cluster. It then re-
peatedly merges those two clusters whose merging
maximizes a predefined criterion. We use Ward’s
method, where clusters with the lowest loss of infor-
mation are merged (Ward Jr, 1963). Following Giu-
lianelli et al. (2020) and Martinc et al. (2020a), we
estimate the number of clusters k with the Silhou-
ette Method (Rousseeuw, 1987): we perform a
cluster analysis for each 2 ≤ k ≤ 10 and calculate
the silhouette index for each k. The number of clus-
ters with the largest index is used for the final clus-
tering. The Jensen-Shannon Distance (JSD) mea-
sures the difference between two probability dis-
tributions (Lin, 1991; Donoso and Sanchez, 2017).
We convert two time specific clusterings into prob-
ability distribution P and Q and measure their dis-
tance JSD(P,Q) to obtain graded change values
(Giulianelli et al., 2020; Kutuzov and Giulianelli,
2020). If P and Q are very similar, the JSD re-
turns a value close to 0. If the distributions are
very different, the JSD returns a value close to
1. Spearman’s Rank-Order Correlation Coeffi-
cient ρ measures the strength and the direction of
the relationship between two variables (Bolboaca
and Jäntschi, 2006) by correlating the rank order of
two variables. Its values range from -1 to 1, where
1 denotes a perfect positive relationship between
the two variables, and -1 a perfect negative rela-
tionship. 0 means that the two variables are not
related.

2We first clean the GER usages by replacing historical with
modern characters.
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Cluster bias We perform a detailed analysis on
what the inferred clusters actually reflect. We test
hypotheses on word form, sentence position, num-
ber of proper names and corpus. The influence
strength of each of these variables on the clusters
is measured by the Adjusted Rand Index (ARI)
(Hubert and Arabie, 1985) between the inferred
cluster labels for each test sentence and a labeling
for each test sentence derived from the respective
variable. For the variable word form, we assign
the same label to each use where the target word
has the same orthographic form (same string). If
ARI = 1, then the inferred clusters contain only
sentences where the target word has the same form.
For sentence position each sentence receives label
0, if the target word is one of the first three words
of the sentence, 2, if the target word is one of the
last three words, else 1.3 For proper names a sen-
tence receives label 0, if no proper names are in
the sentence, 1, if one proper name occurs, else
2.4 The hypothesis that proper names may influ-
ence the clustering was suggested in Martinc et al.
(2020b). For corpora, a sentence is labeled 0, if it
occurs in the first target corpus, else 1.

Average measures Given two sets of token vec-
tors V1 and V2 from t1 and t2, Average Pairwise
Distance (APD) is calculated by randomly picking
n vectors from both sets, calculating their pair-
wise cosine distances d(x, y) where x ∈ V1 and
y ∈ V2 and averaging over these. (Schlechtweg
et al., 2018; Giulianelli et al., 2020). We deter-
mine n as the minimum size of V1 and V2. APD-
OLD/NEW measure the average of pairwise dis-
tances within V1 and V2, respectively. They are
calculated as the average distance of max. 10, 000
randomly sampled unique combinations of vectors
from either V1 or V2. COS is calculated as the co-
sine distance of the respective mean vectors for V1
and V2 (Kutuzov and Giulianelli, 2020).

5 Results

5.1 Clustering
Because of the high computational load, we apply
the clustering only to the ENG and the GER part
of the SemEval data set. For this, we use BERT to
create token vectors and cluster them with AGL,

3We assume that especially the beginning and ending of a
sentence have a strong influence.

4The influence of proper names is only measured for ENG,
since no POS-tagged data was readily available for GER.

as described above. We then perform a detailed
analysis of what the clusters reflect.5

We report a subset of the clustering experiment
results in Table 1, the complete results are provided
in Appendix B. Table 1 shows JSD performance on
graded change (ρ), clustering performance (ARI)
as well as the ARI scores for the influence factors
introduced above, across BERT layers. For each
influence factor we add two baselines: (i) The ran-
dom baseline measures the ARI score of the influ-
ence factor using random cluster labels, and (ii) the
actual baseline measures the ARI score between
the true cluster labels and the influence factor. In
other words, (i) and (ii) respectively answer the
question of how strong the influence factor is by
chance, and how strong it is according to the human
annotation. The values of the two baselines are cru-
cial: If an influence factor has an ARI score greater
than both baselines, the clustering reflects the in-
fluence factor more than expected. If additionally
the influence factor has an ARI score greater than
the actual performance ARI score, the clustering
reflects the partitioning according to the influence
factor more than the clustering derived from human
annotations.

Word form bias As explained above, the word
form influence measures how strongly the inferred
clusterings represent the orthographic forms of the
target word. Table 1 shows that for both GER and
ENG the form bias of the raw token vectors (col-
umn ‘Token’) is extremely high and always yields
the highest influence score for each layer combi-
nation of BERT. Additionally, the influence of the
word form is significantly higher when using lower
layers of BERT. This fits well with the observa-
tions of Jawahar et al. (2019) that the lower layers
of BERT capture surface features, the middle lay-
ers capture syntactic features and the higher layers
capture semantic features of the text. With the first
layer of BERT the sentences are almost exclusively
(.9) clustered according to the form of the target
word (e.g. plural/singular division). Even in the
higher layers word form influence is considerable
in both languages (layer 12: ≈ .4). This strongly
overlays the semantic information encoded in the
vectors, as we can see in the low ρ and ARI scores,
which are negatively correlated with word form

5We also run most of our experiments with k-means (Forgy,
1965). Both algorithms performed similarly with a slight ad-
vantage for AGL. We therefore only report the results achieved
using AGL.
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Layer Token Lemma TokLem

ρ
1 -.141 -.033 .100
12 .205 .154 .168
9-12 .325 .345 .293

ARI
1 .022 .041 .045
12 .116 .111 .158
9-12 .150 .159 .163

Form
1 .907 .014 .014
12 .389 .018 .077
9-12 .334 .018 .051

Position
1 .001 .026 .024
12 .012 .012 .015
9-12 .002 .007 .003

Corpora
1 .019 .021 .033
12 .078 .056 .082
9-12 .056 .044 .063

Names
1 -.007 .010 .010
12 .025 .027 .033
9-12 .019 .022 .026

Layer Token Lemma TokLem

ρ
1 -.265 -.062 -.170
12 .123 .427 .624
9-12 .122 .420 .533

ARI
1 .033 .002 .003
12 .119 .159 .161
9-12 .155 .142 .154

Form
1 .706 .024 .004
12 .439 .056 .150
9-12 .420 .047 .094

Position
1 .005 .023 .027
12 -.002 .005 -.002
9-12 .009 .018 .012

Corpora
1 .074 .003 .005
12 .110 .095 .096
9-12 .107 .068 .089

Names
1 - - -
12 - - -
9-12 - - -

Table 1: Overview of English clustering scores (left) and German clustering scores (right). Bold font indicates best
scores for ρ and ARI (top) or scores above all corresponding baselines for influence variables (bottom).

influence.6

The word form bias seems to be lower in GER
than in ENG (layer 1: .7 vs. .9). However, this
is misleading, as our approach to measure word
form influence does not capture cases where vec-
tors cluster according to subword forms as in the
case of Ackergerät. Its word forms differ as to
whether they are written with an ‘h’ or not, as in
Ackergerät vs. Ackergeräth. As a manual inspec-
tion shows this is strongly reflected in the inferred
clustering. However, these forms then further sub-
divide into inflected forms such as Ackergeräthe
and Ackergeräthes, which is reflected in our influ-
ence variable. For these cases, our approach tends
to underestimate the influence of the variable.

In order to reduce the influence of word form we
experiment with two pre-processing approaches:
(i) We feed BERT with lemmatised sentences
(Lemma) instead of raw ones. (ii) We only replace
the target word in every sentence with its lemma
(TokLem). TokLem is motivated by the fact that
BERT is trained on raw text. Thus, we assume
that BERT is more familiar with non-lemmatised
sentences and therefore expect it to work better on
raw text. In order to continue working with non-
lemmatised sentences we only remove the target

6Note that it is very difficult to reach high ARI scores
because ARI incorporates chance.

word form bias by exchanging the target word with
its lemma.

As we can see in Table 1, lemmatisation strongly
reduces the influence of word form, as expected.7

Accordingly, ρ and ARI improve. However, it also
leads to deterioration in some cases. Also, TokLem
reduces the influence of word form and in most
cases yields the overall maximum performance.
The ARI scores for both languages are similar (≈
.160) while the ρ performance varies very strongly
between languages, achieving a very high score for
GER (.624).

Replacing the target word by its lemma form
seems to shift the word form influence in the differ-
ent layers: Especially for GER, layers 1 and 1+12
show the highest influences (.706 and .687) with
Token (see also Appendix B). In combination with
TokLem, both layers are influenced the least (.004
and .046). For ENG we see the same effect for
layer 1.

Other bias factors We can see in Table 1 that
most influences are above-baseline. As explained
above, the word form bias heavily decreases using
higher layers of BERT. For all other influences the
bias increases when using high layers of BERT.

7In some cases it is however above the baselines, indicating
that word form is correlated with other sentence features.
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This may be because decreasing the word form in-
fluence reveals the existence of further –less strong
but still relevant– influences. The same is observ-
able with the Lemma and TokLem results, since
there the form influence is decreased or even elimi-
nated. While for ENG the influence scores mostly
increase using Lemma and TokLem, for GER only
the position influence increases, while corpora in-
fluence decreases. This is probably because the
corpora influence is to some extent related to word
form, which often reflects time-specific orthogra-
phy as in Ackergeräth vs. Ackergerät, where the
spelling with the ”h” mostly occurs in the old cor-
pus.

Influence of position and proper names seems
to be less important but the respective scores are
still most of the times higher than the baselines. So
overall the reflection of the two corpora seems to
be the most influential factor apart from word form.
Often the corpus bias is almost as high as the actual
ARI score.

5.2 Average Measures
For the average measures we perform experiments
for all three languages (ENG, GER, SWE).

Layers Because we observe a strong variation
of influence scores with layers, as seen in Section
(5.1), we test different layer combinations for the
average measures. The following are considered: 1,
12, 1+12, 1+2+3+4 (1-4), 9+10+11+12 (9-12). As
shown in Table 2, the choice of the layers strongly
affects the performance. We see that for APD the
higher layer combinations 12 and 9-12 perform
best across all three languages, while the latter is
slightly better (.571, .407 and .554). Interestingly,
these two are the only layer combinations that do
not include layer 1. All three layer combinations
that include layer 1 are significantly worse in com-
parison. While COS performs best with layer com-
bination 1-4 for ENG (.390), for GER and SWE
we see a similar trend as with APD. Again, the
higher layer combinations perform better than the
other three, which all include layer 1. For GER
layer combination 12 (.472) performs best, while
9-12 yields the highest result for SWE (.183). Our
results are mostly in line with the findings of Kutu-
zov and Giulianelli (2020) that APD works best on
ENG and SWE, while COS yields the best scores
for GER.

Pre-processing As with the clustering, we try to
improve the performance of the average measures

Layer APD COS
ENG GER SWE ENG GER SWE

1 .297 .205 .228 .246 .246 .089
12 .566 .359 .529 .339 .472 .134
1+12 .455 .316 .280 .365 .373 .077
1-4 .431 .227 .355 .390 .297 .079
9-12 .571 .407 .554 .365 .446 .183

Table 2: Token performance for different layer combi-
nations across languages.

by using the two above-described pre-processing
approaches. We perform experiments only for three
layer combinations in order to reduce the complex-
ity: (i) 12 and (ii) 9-12 perform best and are there-
fore obvious choices. (iii) From the remaining com-
binations 1+12 shows the most stable performance
across measures and languages. Table 3 shows the
performance of the pre-processings (Lemma, Tok-
Lem) over these three combinations. We can see
that both APD and COS perform slightly worse for
ENG when paired with a pre-processing (exception
to this is 1+12 Lemma). In contrast, GER prof-
its heavily: While APD with layer combinations
12 and 9-12 performs slightly worse with Lemma,
and slightly better with TokLem, we observe an
enormous performance boost for layer combina-
tion 1+12 (.643 Lemma and .731 TokLem). We
achieve a similar boost for all three layer combina-
tions with COS as a measure. We reach a top per-
formance of .755 for layer 12 with TokLem. SWE
does not benefit from Lemma. We observe large
performance decreases, with the exception of com-
bination 1+12 (APD). The APD performance of
layers 12 and 9-12 is slightly worse with TokLem.
However, layers 1+12, which performed poorly
without pre-processing, reaches peak performance
of .602 with TokLem. All COS performances in-
crease with TokLem, but are still well below the
APD counterparts. The general picture is that GER
and SWE profit strongly from TokLem.

Word form bias In order to better understand the
effects of layer combinations and pre-processing,
we compute correlations between word form and
model predictions. To lessen the complexity, only
layer combination 1+12 (which performed worst
overall and includes layer 1), layer combination 9-
12 (which performed best overall) in combination
with Token and the superior TokLem are consid-
ered. The results are presented in Table 4. We
observe similar findings for all three languages.
The correlation between word form and APD pre-
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Layer Token Lemma TokLem

E
N

G A
PD

12 .566 .483 .494
1+12 .455 .483 .455
9-12 .571 .493 .547

C
O

S 12 .339 .251 .331
1+12 .365 .239 .193
9-12 .365 .286 .353

G
E

R A
PD

12 .359 .303 .456
1+12 .316 .643 .731
9-12 .407 .305 .516

C
O

S 12 .472 .693 .755
1+12 .373 .698 .729
9-12 .446 .689 .726

SW
E A

PD

12 .529 .214 .505
1+12 .280 .368 .602
9-12 .554 .218 .531

C
O

S 12 .134 -.019 .285
1+12 .077 .012 .082
9-12 .183 -.002 .284

Table 3: Performance of pre-processing variants for
three layer combinations.

dictions is strong (.613, .554 and .730) for lay-
ers 1+12 without pre-processing. The correlation
is much weaker with layers 9-12 (.068, .292 and
.237) or TokLem (−.026, .105 and .176). This is
in line with the performance development that also
increases using layers 9-12 or TokLem. Both ap-
proaches (different layers, pre-processing) result in
a considerable performance increase as described
previously. Using layer combination 9-12 with Tok-
Lem further decreases the correlation (with the ex-
ception of ENG). However, the performance is bet-
ter when only one of these approaches is used. The
correlation between word form and COS model
predictions is weaker overall (.246, .387 and .429).
We see a similar correlation development as for
APD, however this time the performance of ENG
does not profit from the lowered bias (see Table 3).
Both GER and SWE see a performance increase
when the word form bias is lowered by either using
layers 9-12 or TokLem.

Polysemy bias The SemEval data sets are
strongly biased by polysemy, i.e., a perfect model
measuring the true synchronic target word poly-
semy in either t1 or t2 could reach above .7 perfor-
mance (Schlechtweg et al., 2020). We use APD-
OLD and APD-NEW (see Section 4) to see whether
we can exploit this fact to create a purely syn-
chronic polysemy model with high performance.
We achieve moderate performances for ENG and

Layer Token TokLem

E
N

G A
PD

1+12 .613 -.026
9-12 .068 .090

C
O

S 1+12 .246 -.062
9-12 .020 .004

G
E

R A
PD

1+12 .554 .271
9-12 .292 .105

C
O

S 1+12 .387 -.017
9-12 .205 -.008

SW
E A
PD

1+12 .730 .176
9-12 .237 .048

C
O

S 1+12 .429 -.031
9-12 .277 -.035

Table 4: Correlations of word form and predicted
change scores.

GER (.274/.332 and .321/.450 respectively) and a
good performance for SWE (.550/.562). While the
performance for ENG and GER is clearly below
the high-scores, the performance is high for a mea-
sure that lacks any kind of diachronic information.
And in the case of SWE, the performance of both
APD-OLD and APD-NEW is just barely below the
high-scores (cf. Table 3). Note that regular APD (in
contrast to COS) is, in theory, affected by polysemy
(Schlechtweg et al., 2018). It is thus possible that
APD’s high performance stems at least partly from
this polysemy bias. This is supported by comparing
the SWE results of APD and COS in Table 3: COS
is weakly influenced by polysemy and performs
poorly, while APD has higher performance, but
only slightly above the purely synchronic measures
APD-OLD/NEW.

6 Conclusion

BERT token representations are influenced by vari-
ous factors, but most strongly by target word form.
Even in higher layers this influence persists. By
removing the form bias we were able to consid-
erably improve the performance across languages.
Although we reach comparably high performance
with clustering for graded change detection in Ger-
man, average measures still perform better than
cluster-based approaches. The reasons for this
are still unclear and should be addressed in future
research. Furthermore, we used BERT without
fine-tuning. It would be interesting to see how
fine-tuning interacts with influence variables and
whether it further improves performance.

197



References
Ehsaneddin Asgari, Christoph Ringlstetter, and Hinrich

Schütze. 2020. EmbLexChange at SemEval-2020
Task 1: Unsupervised Embedding-based Detection
of Lexical Semantic Changes. In Proceedings of
the 14th International Workshop on Semantic Eval-
uation, Barcelona, Spain. Association for Computa-
tional Linguistics.

Nikhil Bansal, Avrim Blum, and Shuchi Chawla. 2004.
Correlation clustering. Machine Learning, 56(1-
3):89–113.

Pierpaolo Basile, Annalina Caputo, Tommaso Caselli,
Pierluigi Cassotti, and Rossella Varvara. 2020.
Overview of the EVALITA 2020 Diachronic Lexi-
cal Semantics (DIACR-Ita) Task. In Proceedings of
the 7th evaluation campaign of Natural Language
Processing and Speech tools for Italian (EVALITA
2020), Online. CEUR.org.

Christin Beck. 2020. DiaSense at SemEval-2020 Task
1: Modeling sense change via pre-trained BERT
embeddings. In Proceedings of the 14th Interna-
tional Workshop on Semantic Evaluation, Barcelona,
Spain. Association for Computational Linguistics.

Sorana-Daniela Bolboaca and Lorentz Jäntschi. 2006.
Pearson versus spearman, kendall’s tau correlation
analysis on structure-activity relationships of bio-
logic active compounds. Leonardo Journal of Sci-
ences, 5(9):179–200.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Gonzalo Donoso and David Sanchez. 2017. Dialecto-
metric analysis of language variation in twitter. In
Proceedings of the Fourth Workshop on NLP for Sim-
ilar Languages, Varieties and Dialects, pages 16–25,
Valencia, Spain.

Haim Dubossarsky, Simon Hengchen, Nina Tahmasebi,
and Dominik Schlechtweg. 2019. Time-Out: Tem-
poral Referencing for Robust Modeling of Lexical
Semantic Change. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 457–470, Florence, Italy. Associ-
ation for Computational Linguistics.

Kawin Ethayarajh. 2019. How contextual are contex-
tualized word representations? comparing the geom-
etry of BERT, ELMo, and GPT-2 embeddings. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 55–65,

Hong Kong, China. Association for Computational
Linguistics.

Edward W. Forgy. 1965. Cluster analysis of multivari-
ate data: Efficiency vs. interpretability of classifica-
tions. Biometrics, 21:768–780.

Mario Giulianelli, Marco Del Tredici, and Raquel
Fernández. 2020. Analysing lexical semantic
change with contextualised word representations. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 3960–
3973, Online. Association for Computational Lin-
guistics.

Simon Hengchen, Nina Tahmasebi, Dominik
Schlechtweg, and Haim Dubossarsky. 2021.
Challenges for computational lexical semantic
change. In Nina Tahmasebi, Lars Borin, Adam
Jatowt, Yang Xu, and Simon Hengchen, editors,
Computational Approaches to Semantic Change,
volume Language Variation, chapter 11. Language
Science Press, Berlin.

Lawrence Hubert and Phipps Arabie. 1985. Compar-
ing partitions. Journal of Classification, 2:193–218.

Ganesh Jawahar, Benoı̂t Sagot, and Djamé Seddah.
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A Word Usage Graphs

Please find an example of a Word Usage Graph
(WUG) for the German word Eintagsfliege in Fig-
ure 1 (Schlechtweg et al., 2020, submitted).

B Extended clustering performances and
influences

Please find the full results of our cluster experi-
ments in Tables 5 and 6.

200



full t1 t2

Figure 1: Word Usage Graph of German Eintagsfliege. Nodes represent uses of the target word. Edge weights
represent the median of relatedness judgments between uses (black/gray lines for high/low edge weights). Colors
indicate clusters (senses) inferred from the full graph. D1 = (12, 45, 0, 1), D2 = (85, 6, 1, 1), B(w) = 0 and
G(w) = 0.66.

Layer Token Lemma TokLem

Pe
rf

or
m

an
ce
ρ

1 -.141 -.033 .100
12 .205 .154 .168
1+12 -.316 .130 .081
6+7 .075 -.103 .017
9-12 .325 .345 .293

A
R

I

1 .022 .041 .045
12 .116 .111 .158
1+12 .022 .141 .149
6+7 .119 .111 .145
9-12 .150 .159 .163

Layer Token Lemma TokLem

Pe
rf

or
m

an
ce
ρ

1 -.265 -.062 -.170
12 .123 .427 .624
1+12 -.252 .235 .401
6+7 .002 .464 .320
9-12 .122 .420 .533

A
R

I

1 .033 .002 .003
12 .119 .159 .161
1+12 .037 .064 .080
6+7 .101 .158 .152
9-12 .155 .142 .154

Table 5: English clustering performance (left) and German clustering performance (right).
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Layer Token Lemma TokLem

Fo
rm

In
flu

en
ce

1 .907 .014 .014
12 .389 .018 .077
1+12 .881 .020 .057
6+7 .572 .013 .028
9-12 .334 .018 .051

R
an

do
m

1 .002 .002 .002
12 -.001 .001 -.001
1+12 -.002 -.001 -.001
6+7 .001 .002 .001
9-12 -.001 -.001 -.002

B
as

el
in

e

1 .017 .017 .017
12 .017 .017 .017
1+12 .017 .017 .017
6+7 .017 .017 .017
9-12 .017 .017 .017

Po
si

tio
n

In
flu

en
ce

1 .001 .026 .024
12 .012 .012 .015
1+12 -.001 .019 .007
6+7 -.002 .018 -.003
9-12 .002 .007 .003

R
an

do
m

1 .001 .003 .001
12 .001 -.001 -.001
1+12 -.001 -.001 -.001
6+7 .001 -.001 -.001
9-12 .001 .001 -.001

B
as

el
in

e

1 -.002 -.002 -.002
12 -.002 -.002 -.002
1+12 -.002 -.002 -.002
6+7 -.002 -.002 -.002
9-12 -.002 -.002 -.002

C
or

po
ra

In
flu

en
ce

1 .019 .021 .033
12 .078 .056 .082
1+12 .027 .050 .074
6+7 .034 .035 .050
9-12 .056 .044 .063

R
an

do
m

1 .001 -.001 .003
12 .001 .001 .001
1+12 -.001 .001 .001
6+7 .001 .001 .002
9-12 .002 .001 .002

B
as

el
in

e

1 .018 .018 .018
12 .018 .018 .018
1+12 .018 .018 .018
6+7 .018 .018 .018
9-12 .018 .018 .018

N
am

es

In
flu

en
ce

1 -.007 .010 .010
12 .025 .027 .033
1+12 .018 .022 .027
6+7 .012 .016 .027
9-12 .019 .022 .026

R
an

do
m

1 -.001 -.002 -.002
12 -.001 .001 .001
1+12 -.001 .001 -.001
6+7 -.001 .001 .001
9-12 -.001 -.001 .001

B
as

el
in

e

1 .019 .019 .019
12 .019 .019 .019
1+12 .019 .019 .019
6+7 .019 .019 .019
9-12 .019 .019 .019

Layer Token Lemma TokLem

Fo
rm

In
flu

en
ce

1 .706 .024 .004
12 .439 .056 .150
1+12 .687 .039 .046
6+7 .503 .050 .050
9-12 .420 .047 .094

R
an

do
m

1 -.001 -.002 .020
12 -.001 .001 .021
1+12 -.001 -.001 .020
6+7 .002 .001 .019
9-12 .001 -.001 .021

B
as

el
in

e

1 .036 .036 .036
12 .036 .036 .036
1+12 .036 .036 .036
6+7 .036 .036 .036
9-12 .036 .036 .036

Po
si

tio
n

In
flu

en
ce

1 .005 .023 .027
12 -.002 .005 -.002
1+12 .002 .021 .013
6+7 .010 .020 .018
9-12 .009 .018 .012

R
an

do
m

1 .001 .001 .001
12 .001 -.001 .001
1+12 -.001 -.001 .002
6+7 -.001 .001 .001
9-12 -.001 .001 .001

B
as

el
in

e

1 .005 .005 .005
12 .005 .005 .005
1+12 .005 .005 .005
6+7 .005 .005 .005
9-12 .005 .005 .005

C
or

po
ra

In
flu

en
ce

1 .074 .003 .005
12 .110 .095 .096
1+12 .077 .024 .052
6+7 .101 .058 .075
9-12 .107 .068 .089

R
an

do
m

1 -.001 -.001 .001
12 .001 -.001 .001
1+12 -.001 .001 .002
6+7 -.001 .001 -.001
9-12 -.001 .001 -.001

B
as

el
in

e

1 .083 .083 .083
12 .083 .083 .083
1+12 .083 .083 .083
6+7 .083 .083 .083
9-12 .083 .083 .083

N
am

es

In
flu

en
ce

1 - - -
12 - - -
1+12 - - -
6+7 - - -
9-12 - - -

R
an

do
m

1 - - -
12 - - -
1+12 - - -
6+7 - - -
9-12 - - -

B
as

el
in

e

1 - - -
12 - - -
1+12 - - -
6+7 - - -
9-12 - - -

Table 6: English clustering influences (left) and German clustering influences (right).
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Abstract
The present paper investigates the impact
of the anaphoric one words in English on
the Neural Machine Translation (NMT) pro-
cess using English-Hindi as source and tar-
get language pair. As expected, the exper-
imental results show that the state-of-the-art
Google English-Hindi NMT system achieves
significantly poorly on sentences containing
anaphoric ones as compared to the sentences
containing regular, non-anaphoric ones. But,
more importantly, we note that amongst the
anaphoric words, the noun class is clearly
much harder for NMT than the determinatives.
This reaffirms the linguistic disparity of the
two phenomenon in recent theoretical syntac-
tic literature, despite the obvious surface simi-
larities.

1 Introduction

English has three distinct lexemes spelled as one–
the regular third person indefinite pronoun, such
as in (1); the indefinite cardinal numeral (determi-
native), such as in (2); and regular common count
noun, such as in (3).

1. One must obey the laws of the state at all
times.

2. Could you pass me one one glass of water
here.

3. It is important that we take care of our loved
ones.

A visible difference in their orthographic base
form is not observable. However, these can be
totally differentiated on the basis of their morpho-
logical, syntactic, and semantic functions in the
language. Note that the examples presented in (1),
(2) and (3) are non-anaphoric one words. Coming
to the anaphoric class of one– we have two sub-
types. The first one belongs to the determinative
category, as seen in (4); and the second one is a
noun, as in (5).

4. I bought three red glasses, but she bought only
one.

5. After looking at all the glasses, I decided to
buy this small one.

As expected, the determinative anaphoric ones
behave like a determiner, and the one-anaphora
behave like nouns in a sentence. Note that the
plural form of the determinative one in example
(4) is some, but that of one-anaphora in (5) is ones.
They are also different with respect to the kind
of antecedents they take. The constituent whose
repetition the determinative anaphora avoids is the
whole NP, a glass. But in case of one-anaphora, it
is the noun head optionally with one or more of its
modifiers red glass, but never the whole NP (Payne
et al., 2013).

Like other cohesive devices like pronouns and
ellipsis, anaphoric ones make language less redun-
dant and more engaging (Menzel, 2017; Mitkov,
1999; Halliday and Hasan, 1976). Resolving the in-
formation encoded in such structures is not hard for
humans as they can easily disambiguate meanings
from linguistic or extralinguistic context, cognitive
commonsense extension as well as logical reason-
ing (Chen, 2016). However, all of this is not that
straightforward for a machine. In fact, anaphoric
ones can potentially present a special challenge for
Machine Translation (MT) since the meaning of
the word does not come from its most frequent us-
age as a cardinal number, but instead relies on its
context, thereby becoming unavailable overtly at
the surface syntax for text processing.

2 Previous Work

The determinative anaphoric ones have been dis-
cussed majorly as an instance of noun ellipsis,
nominal ellipsis or noun phrase ellipsis (NPE) in
linguistics (Halliday and Hasan, 1976; Dalrym-
ple et al., 1991b; Lobeck, 1995; Lappin, 1996;
Hobbs and Kehler, 1997; Hardt, 1999; Johnson,
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2001; Wijnen et al., 2003; Merchant, 2004; Frazier,
2008; Chung et al., 2010; Merchant, 2010; Gok-
sun et al., 2010; Gunther, 2011; Rouveret, 2012;
Lindenbergh et al., 2015; van Craenenbroeck and
Merchant, 2013; Park, 2017; Hyams et al., 2017;
Kim et al., 2019). One-anaphora, on the other
hand, has been referred to as noun anaphora, one-
insertion, one-substitution and pronominalization
(Menzel, 2017, 2014; Kayne, 2015; Hankamer and
Sag, 2015; Payne et al., 2013; Corver and van Kop-
pen, 2011; Gunther, 2011; Culicover and Jackend-
off, 2005; Akhtar et al., 2004; Cowper, 1992; Lu-
perfoy, 1991; Dalrymple et al., 1991a; Dahl, 1985;
Radford, 1981; Baker, 1978; Halliday and Hasan,
1976; Bresnan, 1971).

To the best of our knowledge, the earliest compu-
tational approach to one-anaphora comes from Gar-
diner (2003), who presents several linguistically-
motivated heuristics to distinguish one-anaphora
from other non-anaphoric uses of one in English,
and later from Ng (2005) that uses Gardiner’s
heuristics as features to train a simple Machine
Learning (ML) model. Another seminal work
on the anaphoric one comes from Recasens et al.
(2016) where it has been treated as one of the sev-
eral sense anaphoric relations in English. The au-
thors create sAnaNotes corpus where they anno-
tate one third of the OntoNotes corpus for sense
Anaphora. They use a Support Vector Machine
(SVM) classifier - LIBLINEAR implementation
(Fan et al., 2008) along with 31 lexical and syntac-
tic features, to distinguish between the anaphoric
and the non-anaphoric class. Trained and tested
on one-third of the OntoNotes dataset annotated
as the SAnaNotes corpus, their system achieves
61.80% F1 score on the detection of all anaphoric
relations, including one-anaphora. The detection
and resolution of the determinative one anaphor,
on the other hand, has been carried out as a part of
computational research on noun ellipsis (Khullar
et al., 2020b, 2019).

Recent research shows that discourse devices
such as pronominal anaphora, ellipsis, deixis and
lexical cohesion create inconsistencies in MT out-
put (Voita et al., 2019; Mitkov, 2004). Unlike
these discourse devices, however, the exact role
of anaphoric ones in NLP tasks such as MT has not
been studied. In the present paper, we conduct a
data-driven study to study this extent and nature of
this impact, using English and Hindi as source and
target language pairs.

Point Fluency Adequacy
4 Flawless Perfect/Ideal
3 Few errors Mostly correct
2 Many errors Somewhat correct
1 Unacceptable Unrelated to source

Table 1: 4-Point Numeric scale for judging the fluency
and adequacy of the translations.

3 Experiment

3.1 Curating Test sets

We prepare three test sets– the first containing sen-
tences with determinative anaphoric ones; the sec-
ond containing one-anaphora; and the third contain-
ing regular non-anaphoric one words. For the first
test set, we randomly choose 750 sentences from
the NoEl corpus (Khullar et al., 2020b), the cu-
rated dataset prepared by (Khullar et al., 2019) and
the sAnaNotes corpus (Recasens et al., 2016); for
the second, we take 750 sentences from (Khullar
et al., 2020a) and (Recasens et al., 2016); and for
the third, pick 750 sentences each from Cornel
movie dialogs dataset (Danescu-Niculescu-Mizil
and Lee, 2011) and The British National Corpus
(2001), manually checked to contain non-anaphoric
ones. We also undertake translation of these 2,250
sentences to assist automatic evaluation. The trans-
lation is carried manually by a professional transla-
tor, who is bilingual in English and Hindi. We get
up to three translations for each sentence, which
are then verified by a native Hindi speaker.

3.2 Obtaining Translations

To get the English sentences translated into Hindi,
we use Google NMT (GNMT). The system com-
prises a deep LSTM network with 8 encoder and
8 decoder layers with attention and residual con-
nections (Wu et al., 2016). It serves us well for
our experiment as its performance is at par with the
current state-of-the-art NMT systems and is also
freely available for translations between English
and Hindi. This system is run on the three test sets
and the translations are saved for analysis.

3.3 Evaluation

In automatic evaluation, we get a BLEU (Bilin-
gual Evaluation Understudy Score) (Papineni et al.,
2002) score of 39.72 for the sentences in the first
test set, 38.21 in the second and 41.46 in the third.
We also try manual evaluation, where four evalua-
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tors rate the translations of all sentences from the
three test sets for their fluency) or syntactic correct-
ness and (adequacy or translation accuracy. The
evaluation of all the metrics is done on a 4-point
Likert scale, see Table 1 for reference. The as-
signed scores by different raters are totalled and
averaged for all the given sentences. We use the
Fleiss's Kappa coefficient (Fleiss, 1971) to calcu-
late the inter-annotator agreement between multiple
evaluators. We get a score of 0.83 for fluency and
0.77 for adequacy that confirms reliability of the
evaluation.

4 Results and Discussion

As can be seen, BLEU is the lower for the sen-
tences containing anaphoric ones as compared to
non-anaphoric ones. However, this may not be in-
dicative of a trend as the test set is small and the
difference observed is not that huge. Coming to
manual evaluation, a total of 389 sentences from
the first set, 601 from the second test set and 202
sentences from the third set get a rating of either
1 or 2 in the adequacy evaluation perspective. See
Table 2. This shows that a majority of the sentences
containing anaphoric one words are either poorly
translated or have major translation quality errors,
although they are grammatically still acceptable.

Figure 1: Translation of an English sentence containing
one-anaphora to Hindi. The one-anaphora gets trans-
lated as non-anaphoric cardinal numeral one in the tar-
get language.

About 90% of the sentences containing the non-
anaphoric instances of one are translated rather
well by the system. Most of the errors observed are
due to the incorrect translation of named entities
and incorrect subject-verb agreement for gender
marking. We do not encounter any errors that are
caused due to incorrect translation of the word one
in the target language.

Figure 2: Translation of an English sentence contain-
ing determinative anaphoric one to Hindi. The one-
anaphora gets translated incorrectly as a pronoun in the
target language.

In comparison to the sentences contaning the
non-anaphoric one words, the sentences containing
anaphoric one words are translated much poorly.
Within the latter, we note that the highest number
of wrong translations are for the sentences with
one-anaphora. The errors observed in such incor-
rect translations can be categorized into three types.
In the first type, the anaphoric one words are trans-
lated into non-anaphoric one expressions, specifi-
cally as the cardinal numeral, in the target language.
For example in Figure 1, the one-anaphora in the
English sentence, which means name as seen from
preceding context, gets translated as cardinal nu-
meral one in the target language. Out of 750 sen-
tences, a total of 232 sentences exhibit this error.
One possible reason for this error could be the most
common occurrence of the word one in English as
a cardinal number (Gardiner, 2003). Hence, in case
of ambiguity, the word one is more likely to be
treated as a cardinal number by the MT system.
The second type of errors are where the anaphoric
one gets translated as a pronoun in the target lan-
guage. Such errors occur very few times–only 25
from all sentences in our test set. See Figure 2 for
one such example. Finally, in the third type of er-
rors, the one-anaphora gets completely disregarded
by the translation system and the translated sen-
tence shows no equivalent lexeme to the anaphor.
Note that these errors result into poor translation
adequacy, but a majority of the translated sentence
are more or less grammatically acceptable as per
the rules of the target language, as seen in Figure
1 and Figure 2. They can, however, also become
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Test set Evaluation Perspective 1 2 3 4
Determinative Anaphora Fluency 102 159 291 198

(750) Adequacy 188 210 199 153

One-anaphora Fluency 94 188 354 114
(750) Adequacy 309 292 85 66

Non-anaphoric ones Fluency 59 98 263 330
(750) Adequacy 94 101 304 251

&

Table 2: Evaluation scores of the sentences in the test sets containing determinative anaphoric ones, one-anaphora
and non-anaphoric one words. There are 750 sentences in each test set. The highest values in each row are
highlighted.

totally absurd in meaning in some cases, as can be
seen in Figure 2.

As compared to one-anaphora, the severity of
wrong translations for determinative anaphoric
ones is slightly less. Hindi is morphologically
richer as compared to English. We observe that
the error in the translations come from copying of
wrong agreement morphology on the verb in the
absence of the noun whose repetition the determi-
native anaphoric one avoids. See Figure 3 for one
such example. This also implies that although such
sentences get a lower rating for fluency, they rate
higher for translation adequacy.

From a long time in traditional syntactic lit-
erature, right from Baker (1978), one-anaphora
and determinative anaphoric one words have been
clubbed together, with frequent interchangeable
uses of them in discussions and analysis. It is only
recently (Payne et al., 2013) that the morphological,
syntactic and semantic differences between the two
anaphoric forms have been extensively discussed.
Note that although recent work by Kayne (2015)
aims to render all instances of the word one a homo-
geneous internal structure, comprising a classifier
merged with an indefintive article through a variety
of examples, he too identifies subtypes within this
class and points out how they behave differently
than one another. Our simple experiment highlights
the differences between these two forms, restating
their linguistic analysis and advocating for a dis-
parate treatment for them in future Computational
Linguistics and NLP research.

Finally, in the sentences that are correctly trans-
lated, we observe that a majority of the one-
anaphora and the determinative anaphoric ones get
translated exactly into their antecedent. This means

Figure 3: Translation of an English sentence containing
determinative anaphoric one to Hindi. Although the
translation is fine, the wrong agreement morphology on
the verb makes it grammatically incorrect.

that the anaphoric expression per se is lost in the
target language. For instance, the corresponding
expression for one-anaphora in Hindi is vaala (sin-
gular, masculine). We see only 69 out of 750 trans-
lated sentences actually containing this lexeme. It
is not surprising that 66 out of such sentences are
rated 4 in the evaluation.

It is debatable, however, to claim that a transla-
tion that contains an anaphoric expression similar
to the source is of better quality as compared to
the translation that only copies the antecedent and
replaces the anaphor with it. While both achieves
nearly the same meaning and are grammatically ac-
ceptable, in our experiment, the former type were
rated higher. It could be, then, argued that the latter
added redundant information which might not be
desirable in most cases.
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5 Conclusion

In the present paper, we performed a simple ex-
periment to investigate the impact of anaphoric
and non-anaphoric one words on Neural Machine
Translation process using English and Hindi as
source and target language pair. Evaluation by
manual methods revealed that anaphoric instances
of the word one are much harder to translate as
compared to the non-anaphoric one words. We
also conclude that within the anaphoric class, one-
anaphora are harder to translate than determinative
anaphors, which reaffirms the linguistic disparity
between the two phenomenon as shown in recent
syntactic research. The long term goal of such a
study is to improve the quality of translation of
discourse structures such as anaphoric ones.
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son, Xiaobing Liu, Åukasz Kaiser, Stephan Gouws,
Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith
Stevens, George Kurian, Nishant Patil, Wei Wang,
Cliff Young, Jason Smith, Jason Riesa, Alex Rud-
nick, Oriol Vinyals, Greg Corrado, Macduff Hughes,
and Jeffrey Dean. 2016. Google’s neural machine
translation system: Bridging the gap between human
and machine translation. CoRR, abs/1609.08144.

208



Author Index

Abdullah, Badr M., 16, 96
Al-Negheimish, Hadeel, 80
Almeida, Mariana S. C., 88
Angelovska, Marina, 65
Asger Sørensen, Søren, 36
Assent, Ira, 36

Behera, Laxmidhar, 111
Biber, Douglas, 183
Boy, Susann, 103
Brouwer, Harm, 16

Ciosici, Manuel R., 36
Crabbé, Benoit, 71

Debnath, Alok, 30
Dunn, Bas, 65
Durrett, Greg, 50

Egbert, Jesse, 183

Ghasemi, Negin, 58
Gómez-Romero, Juan, 148
Goyal, Pawan, 111
Gupta, Ashim, 111

Hellström, Saara, 183
Hiemstra, Djoerd, 58

Iwasawa, Yusuke, 175

Jardim, Bruno, 88

Kahanda, Indika, 43
Kashima, Hisashi, 1
Kazi, Nazmul, 43
Khullar, Payal, 203
Klakow, Dietrich, 16, 96, 103
Kojima, Takeshi, 175
Krishna, Amrith, 111
Kuhn, Jonas, 192
Kurtyigit, Sinan, 192

Laicher, Severin, 192
Laippala, Veronika, 183
Lane, Nathaniel, 43

Lignos, Constantine, 155, 164
Luo, Ziyang, 8

Macher, Nicole, 16
Madhyastha, Pranava, 80
Majumder, Sagnik, 50
Martin-Bautista, Maria J., 148
Matsatsinis, Nikolaos, 23
Matsuo, Yutaka, 175
Mayn, Alexandra, 96
Morales-Garzón, Andrea, 148

Oinonen, Miika, 183

Papadakis, Nikolaos, 23
Papadopoulos, Dimitris, 23
Payberah, Amir H., 65
Pyysalo, Sampo, 183

Rei, Ricardo, 88
Repo, Liina, 183
Rönnqvist, Samuel, 183
Roth, Michael, 30
Ruiter, Dana, 103
Russo, Alessandra, 80

Saleva, Jonne, 164
Salmela, Anna, 183
Samant, Chinmoy, 50
Sandhan, Jivnesh, 111
Schlechtweg, Dominik, 192
Schulte im Walde, Sabine, 192
Sheikholeslami, Sina, 65
Shim, Heereen, 121
Simoulin, Antoine, 71
Skantsi, Valtteri, 183
Stickley, Daniel, 129

Toftrup, Mads, 36
Toyokuni, Ayato, 1
Tu, Jingxuan, 155

Vincent, Sebastian, 137

Yamada, Makoto, 1
Yokoi, Sho, 1

209


	Program
	Computationally Efficient Wasserstein Loss for Structured Labels
	Have Attention Heads in BERT Learned Constituency Grammar?
	Do we read what we hear? Modeling orthographic influences on spoken word recognition
	PENELOPIE: Enabling Open Information Extraction for the Greek Language through Machine Translation
	A Computational Analysis of Vagueness in Revisions of Instructional Texts
	A reproduction of Apple's bi-directional LSTM models for language identification in short strings
	Automatically Cataloging Scholarly Articles using Library of Congress Subject Headings
	Model Agnostic Answer Reranking System for Adversarial Question Answering
	BERT meets Cranfield: Uncovering the Properties of Full Ranking on Fully Labeled Data
	Siamese Neural Networks for Detecting Complementary Products
	Contrasting distinct structured views to learn sentence embeddings
	Discrete Reasoning Templates for Natural Language Understanding
	Multilingual Email Zoning
	Familiar words but strange voices: Modelling the influence of speech variability on word recognition
	Emoji-Based Transfer Learning for Sentiment Tasks
	A Little Pretraining Goes a Long Way: A Case Study on Dependency Parsing Task for Low-resource Morphologically Rich Languages
	Development of Conversational AI for Sleep Coaching Programme
	Relating Relations: Meta-Relation Extraction from Online Health Forum Posts
	Towards Personalised and Document-level Machine Translation of Dialogue
	Semantic-aware transformation of short texts using word embeddings: An application in the Food Computing domain
	TMR: Evaluating NER Recall on Tough Mentions
	The Effectiveness of Morphology-aware Segmentation in Low-Resource Neural Machine Translation
	Making Use of Latent Space in Language GANs for Generating Diverse Text without Pre-training
	Beyond the English Web: Zero-Shot Cross-Lingual and Lightweight Monolingual Classification of Registers
	Explaining and Improving BERT Performance on Lexical Semantic Change Detection
	Why Find the Right One?

