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Abstract

Institutes are required to catalog their articles
with proper subject headings so that the users
can easily retrieve relevant articles from the in-
stitutional repositories. However, due to the
rate of proliferation of the number of articles in
these repositories, it is becoming a challenge
to manually catalog the newly added articles
at the same pace. To address this challenge,
we explore the feasibility of automatically an-
notating articles with Library of Congress Sub-
ject Headings (LCSH). We first use web scrap-
ing to extract keywords for a collection of ar-
ticles from the Repository Analytics and Met-
rics Portal (RAMP). Then, we map these key-
words to LCSH names for developing a gold-
standard dataset. As a case study, using the
subset of Biology-related LCSH concepts, we
develop predictive models by formulating this
task as a multi-label classification problem.
Our experimental results demonstrate the via-
bility of this approach for predicting LCSH for
scholarly articles.

1 Introduction

An Institutional Repository (IR) is the collection
of scholarly work hosted and maintained by insti-
tutions such as universities. For example, “Scholar-
Works' is an open access repository for the capture
of the intellectual work of Montana State Univer-
sity (MSU) in support of its teaching and research
goals”. Repository Analytics and Metrics Portal
(RAMP) is a web service that accurately counts
item downloads for each article in the institutional
repository (Obrien et al., 2016; OBrien et al., 2017).
Besides counting the number of downloads, RAMP
stores metadata of the articles such as title, abstract,
and keywords. Currently, nearly 40 institutions
have registered their repositories with RAMP.

"https://scholarworks.montana.edu/
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To facilitate the easy finding of articles, the IR
managers need to catalog them using different sub-
ject headings manually. One of the most popu-
lar vocabularies for cataloging is the Library of
Congress Subject Headings (LCSH) (Walsh, 2011).
LCSH is a subject indexing language that is actively
maintained since 1898 to catalog materials in the
Library of Congress and most widely adopted by
large and small libraries around the world (Work,
2016). A subject heading is the most specific word
or a group of words that capture the essence of
a subject category. Due to the rapid growth of
items in IRs, manual cataloging using LCSH or
other vocabularies is becoming highly resource-
consuming (Engelson, 2013).

Due to the above challenge, there have been a
few previous attempts on the automatic assignment
of LCSH through keyword extraction (Wartena
etal., 2010; Aga et al., 2016), by collecting LCSH
concepts that are assigned to similar texts (Paynter,
2005), using semantic similarity (Yi, 2010), and
co-occurrence-based mapping (Vizine-Goetz et al.,
2004). These techniques primarily depend on the
presence of the keywords or similar words/ phrases
within the actual text and do not utilize machine
learning. Furthermore, one of the studies claims
that the prediction of LCSH using machine learning
may be infeasible due to the large size of the vocab-
ulary leading to inadequate training data (Wartena
et al., 2010). Note that machine learning has been
used for a seemingly similar but actually differ-
ent task of predicting Library of Congress Classi-
fication (LCC) (Frank and Paynter, 2004). How-
ever, despite the similarity in their names, LCC and
LCSH are completely different vocabularies.

Semantic indexing with other vocabularies has
gained traction recently (Mirowski et al., 2010;
Salakhutdinov and Hinton, 2009; Wu et al., 2014).
Most notably, predicting Medical Subject Headings
(MeSH) for biomedical literature using machine
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learning and deep learning techniques has seen
significant recent interest (Mao and Lu, 2017; Jin
et al., 2018; Kehoe et al., 2017; Rios and Kavuluru,
2015; Kosmopoulos et al., 2015; Yan et al., 2016)
thanks to the BioASQ challenge on Biomedical
Semantic Indexing (Tsatsaronis et al., 2015).

In this work, we explore the feasibility of devel-
oping an automated pipeline for predicting LCSH
for scholarly articles using machine learning. As
a case study, we leverage an extensive collection
of scholarly articles from RAMP and generate a
gold-standard dataset by assigning Biology-related
LCSH concepts to each article through web scrap-
ing and string matching techniques. Using this
gold-standard data, we develop predictive mod-
els that can predict LCSH by modeling this as a
multi-label classification problem. Our experimen-
tal results indicate the effectiveness of the proposed
approach.

2 Methodology

2.1 Data
In this approach, we build a gold-standard dataset
by scraping RAMP data from 27 institutional repos-

itories (IRs). A high-level overview of our ap-
proach is shown in Figure 1.
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Figure 1: A high-level overview of our approach.

We identify the citable content downloads (CCD)
from each institutional repository (IR) between July
2017 and July 2018 . Then, we scrape all metadata
of each CCD from RAMP for the subset that in-
cludes all unique CCDs.
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The raw data (scraped from RAMP) contains
457,879 articles and 270 different metadata types.
However, we use only ftitle concatenated with ab-
stract, article type, and keywords for this study, and
discard other metadata. There are many reasons
why some of the metadata are empty. For example,
items such as newspapers do not include abstracts,
and sometimes IR managers add items into reposi-
tories without populating metadata. Therefore, we
first discard articles without a title, an abstract, or
keywords, which reduces the dataset to 126,655 ar-
ticles that have a title, an abstract, and at least one
keyword. Then, we map each keyword to the sub-
ject names from the 41! edition of LCSH? using
full string matching (case insensitive). If a keyword
does not match with any subject, we ignore that
keyword.

Any article without at least one assigned subject
heading is discarded. This results in a smaller set
of articles with annotated subject headings. Then,
we filter out any subjects not related to Biology by
only retaining the concept Biology (sh85014203)3
and its descendants. Finally, we remove subject
headings that are annotated to less than 100 articles.
After all the above, we have a dataset composed
of 17,367 articles with 66 Biology-related subject
headings. This LCSH-annotated dataset is used
as the gold-standard dataset for developing predic-
tive models. Note that while the string matching
technique used in this study itself can potentially
be used for “predicting” LCSH terms, we are as-
suming that unseen items that need to be annotated
with LCSH in real-life may not necessarily come
with keywords (and hence we resort to developing
predictive machine learning models). The distribu-
tion of articles across IRs in this dataset is shown
in Table 1.

2.2 Models

We model the task of predicting LCSH concepts
as a multi-label classification problem and develop
three supervised machine learning models using the
above generated gold-standard data. These models
are 1) Decision Tree (DT), 2) Artificial Neural Net-
works (ANN), and 3) Bidirectional Encoder Rep-
resentations from Transformers (BERT). All the
models are implemented using scikit-learn*, Ten-

Zhttps://loc.gov/aba/publications/FreeLCSH/freelcsh.html
3http://id.loc.gov/authorities/subjects/sh85014203.html
*https://scikit-learn.org/



IR Name # Articles

1 | Deep Blue 7,820
2 | DRUM 1,578
3 | EASP 1,171
4 | UWSpace 1,063
5 | OpenBU 960
6 | MacSphere 917
7 | Texas ScholarWorks 849
8 | Mountain Scholar 631
9 | Epsilon Open Archive 576
10 | K-REx 464
11 | MSU ScholarWorks 405
12 | OAKTrust 380
13 | MD-SOAR 245
14 | SHAREOK 192
15 | Others 116
Total: 17,367

Table 1: Number of articles per institute in the gold-
standard dataset.

sorFlow>, Transformers® and PyTorch’ libraries.
In our preliminary work, We also train models us-
ing Support Vector Machines and Random Forest
classifiers, but none of them perform better than
the models reported in this paper (data not shown).

We choose standard but varying pre-processing
steps independently for each model since certain
pre-processing techniques work well for some mod-
els over the others. For example, removing stop-
words is a common practice for Decision Tree mod-
els but not for BERT since stopwords typically can
act as noise for the former.

2.2.1 Decision Tree (DT) model

We apply the Decision Tree classifier to develop
a tree-based one-vs-rest classification model. We
use TF-IDF (term frequency-inverse document fre-
quency) vectorizer with a word-based analyzer for
feature extraction. We use lemmatization and stop
word removal as standard pre-processing steps. We
include both uni-grams and bi-grams as features
and train our model over the top 10,000 features.
Our model returns a binary value, i.e., either 0 or 1,
as the prediction.

2.2.2 Artificial Neural Network (ANN) model
For the shallow artificial neural network model,

we use the TF-IDF scores as input. These are

Shttps://www.tensorflow.org/
Shttps://huggingface.co/transformers/
"https://pytorch.org/
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generated using scikit-learn’s Tfidf Vectorizer class.
All stop words (common words such as “the” or
“and”) are removed before vectorization, and only
the terms that appear in a minimum of 1% of all
documents are kept.

Our artificial neural network has four layers: an
input layer with 2,251 nodes, a dropout layer with
a rate of 0.1, a hidden layer with 132 nodes, and
an output layer with 66 nodes (one for each label)
with a sigmoid activation function. We initially
experimented with many different network struc-
tures but ultimately find that a single hidden layer
with 132 nodes, double the number in the output,
produces the best results (data not shown). We
use 5-fold nested cross-validation to find the op-
timal epoch for training the networks. We train
the largest network with 100 epochs and find 10
epochs as optimal as the learning curve reaches
convergence. We use this optimal epoch to train all
networks.

2.2.3 Bidirectional Encoder Representations
from Transformers (BERT) model

We use the pre-trained BERT-Base (uncased)
model (Devlin et al., 2018) and fine-tune it for
multi-label text classification. The base model has
12 transformer blocks, i.e., hidden layers, a hidden
size of 768, 12 attention heads, and 110 million
parameters (Devlin et al., 2018). The model is
pre-trained for English on uncased Wikipedia and
BooksCorpus. For fine-tuning the model, we use
Adam optimizer with a learning rate of 2e — 5,
e = le — 8, L2 weight decay of 0.01, learning rate
warmup over the first 500 steps with linear decay
and Cross-Entropy Loss function. We observe the
learning curve over 5-fold nested cross-validation
and find 6 epochs as the optimal number. Any ex-
ample longer than the 512 token length restriction
enforced by the BERT-Base model is truncated.

2.3 Experimental Setup and Metrics

In order to obtain unbiased estimations of model
performance, we evaluate our models using 5-times
5-fold stratified cross-validation (Sechidis et al.,
2011; Szymanski and Kajdanowicz, 2017). We pri-
marily report the performances of our models using
Maximum F1-score (F},,,.), Precision at F},,,, and
Recall at F,4,. Precision reports the percentage
of true samples among the samples that have been
predicted as true, whereas Recall reports the per-
centage of true samples retrieved by the model.
F1-score is the harmonic mean of precision and re-



Subject Frequency # subjects b1 ANN BERT
P R Fl P R  Fiuz P R  Fiz
[100, 200) 351036 035 036|048 040 043|051 043 043
[200, 300) 151040 039 039|048 046 047|056 051 049
[300, 400) 6031 030 030|042 044 043055 055 054
[400, 900) 71041 041 041048 057 052059 070 0.64
[1700, 2600] 31040 040 040|046 0.67 0541057 071 0.63
Macro average: | 0.38 0.37 037 | 046 051 048 | 0.56 0.58 0.55

Table 2: Model performance per subject frequency range. # subjects: Number of unique subjects within the range,

P: precision, R: recall.

. Length Average Number of Frax
Article Type Freq. —x0g : Std Keywo%ds Subjects | DT | ANN | BERT
Thesis 6,765 | 379.89 191.32 30.24 115 | 031 | 038 | 041
Article 1,077 | 22580 99.52 21.25 129 [ 019 | 023 | 024
Report 880 | 442.89 280.80 15.80 109 | 0.14 | 0.18 | 0.19
Paper 364 | 207.68 111.74 2229 117 [ 010 | 0.12| 0.16
Book 48 | 22131 19441 20.27 1.08 | 002 | 0.03| 004
Others 383 | 164.54 116.59 24.53 130 | 0.12 | 0.14 | 0.19
NA 7,850 | 253.99  147.47 21.52 127 1030 | 038 | 041

Table 3: Model performance per article type. NA: Not Available, Freq: number of articles in type, Length: number

of words in title and abstract, P: precision, and R: recall.

Table 4: Top ten easiest to predict subjects. Freq: Fre-
quency of subject in the dataset.

call. Unlike F1, F,,45, which is computed across a
range of thresholds, is threshold independent. More
specifically, let threshold ¢ € [0, 1], then

oo max { 2 - precision(t) - recall(t) }

precision(t) + recall(t)

For this study, we use a step size of 0.05 for thresh-
olds and Macro-averaging (arithmetic mean) for

. Fma;z; . Fma:v
Subject Freq DT T ANN | BERT Subject Freq DT T ANN | BERT
Commencement | 1| 99| 100 | 1.00| | S0 157 [ 0.05| 0.14 | 0.02
ceremonies psychology
Discrimination 227 | 0.83 ] 0.88 | 0.88 Clinical
Irrigation 125 1 0.72 | 0.66 | 0.89 psychology 196 1 0.101 022 0.00
Machl'ne 260 | 068! 071 | 075 Metabolism 104 | 0.14| 0.19 | 0.00
Learning Molecular 135 10071 015 | o011
Nanoparticles 174 | 0.67 | 0.67 | 0.78 biology ' ' '
icjifr—sgicacy 112 | 0.64| 0.69 | 0.71 F])D:;Vigfgl;ﬂtal 174 | 014 | 020 | 0.00
ecology 520 1 0.561 067 0.79 Cognition 109 | 0.18 | 0.20 | 0.00
Autism 103 | 0.68 | 0.51 | 0.75 Epidemiology 224 | 0.17 | 0.20 | 0.04
Feminism 113 | 0.63 | 0.52 | 0.76 Zoology 242 | 0.13| 0.24 | 0.05
Planning 245 1 050 | 0.65 | 0.69 Physiology 190 | 0.12| 0.20 | O.11

Neurology 176 | 0.23 | 0.25 | 0.00

Table 5: Top ten hardest to predict subjects. Freq: Fre-
quency of subject in the dataset.

aggregating the performance across classes.Note
that since the DT model returns binary predictions
directly, without class probabilities, we report the
performance of this model only using F1 instead
of Fraz.
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Figure 2: Model performance against subject frequency. DT: Decision Tree, ANN: Artificial Neural Network.

3 Results and Discussion

The overall performance for all our models is de-
picted in Table 2. Overall, the BERT model per-
forms the best, and the DT model performs the
worst among the three models. The DT model
achieves an average F1 score of 0.37, whereas
the lowest F1 score (0.30) is observed for fre-
quency range [300,400). The performance of
the DT model is seemingly immune to the fre-
quency of subjects. The ANN model notably out-
performs the DT model with an average Fi,; of
0.48. The ANN model also struggles for frequency
range [300, 400). However, the lowest F},,; (0.43)
of ANN is higher than the best F1 score (0.40)
achieved by DT in any frequency range. Except for
frequency range [300, 400), we can see an increase
in Fy,q, of ANN as the frequency range increases.
The BERT model significantly outperforms both
DT and ANN models with an average F};,q, of 0.55
and shows a positive correlation between F};, 4, and
frequency range.

Figure 2 shows variation of performance of all
three against the frequency. The subjects between
range [100,200) are widely spread across the y-
axis (Fy,qz) for each model, which indicates that
the easiest and the hardest subject to predict have
similar subject frequencies. Top ten easiest and
hardest subjects across all three models are listed
in Table 4 and Table 5, respectively. We use macro-
averaged F-score from all three models to compile
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these rankings. All three models show their best
performance for the same subject, Commencement
ceremonies. Both DT and ANN have a non-zero
F-score for each subject. Despite being the best
model, BERT shows zero F,,4, for several subjects,
e.g., Clinical psychology.

We also assess the performance of each model
per document type, as reported in Table 3. For
the following analysis, we exclude the document
type denoted as NA for which the corresponding
metadata was missing. Same as before, BERT per-
forms the best, and ANN outperforms DT. All three
models show their best and worst performance for
the same article types across all models, Thesis
and Book, respectively. The frequency of each
type may have played a significant role in these
extremes. This is further supported by the fact that
the performance across all three models follows
the same trend: as the frequency decreases, the
performance decreases as well.

4 Conclusions and Future Work

In this work, we explore the feasibility of using ma-
chine learning for predicting LCSH for scholarly
articles. We first generate a gold-standard dataset
annotated with LCSH subjects by web scraping/
string matching and utilize this data for develop-
ing multi-label classification models. Our results
indicate the feasibility of our approach. We believe
our approach is applicable to other data similar to
LCSH concepts. This automated pipeline should



be extremely valuable to librarians for expediting
the manual cataloging process. We plan to mea-
sure the efficiency gains of this method through the
Montana State University Library.

While our approach displays promising results,
there are many different avenues for future inves-
tigation. First, in this work, we map the web
scraped keywords to subject names (instead of iden-
tifiers or IDs). However, some subject names may
map to more than one identifier (e.g., Psychology:
sh85108459 or sh2002011487). So, we plan to ex-
plore two different solutions to this. One approach
is to develop a chain-classifier that can predict the
LCSH IDs using the already predicted subjects
(i.e., a second classifier for disambiguation). An-
other option is the improve the web scraping/ string
matching pipeline so that we can generate a gold-
standard dataset directly annotated with IDs.

To improve the performance of our traditional
machine learning models, we plan to investigate
the inclusion of hand-engineered features, other
resources such as MeSH terms, metadata fields
that were ignored in this study, and the hierarchi-
cal information from the LCSH. Besides, using
larger more sophisticated language models (e.g.,
Megatron-LM), using the complete set of LCSH
terms (without restricting to Biology-related), and
structured output models that explicitly use the
hierarchy information will likely improve perfor-
mance. Moreover, Extreme Multi-Label (XML)
models that are equipped to handle very large sets
of classes (Kumar et al., 2019) will also likely pro-
vide better performance.
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