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Abstract

Language Identification is the task of identify-
ing a document’s language. For applications
like automatic spell checker selection, language
identification must use very short strings such
as text message fragments. In this work, we re-
produce a language identification architecture
that Apple briefly sketched in a blog post. We
confirm the bi-LSTM model’s performance and
find that it outperforms current open-source
language identifiers. We further find that its
language identification mistakes are due to con-
fusion between related languages.

1 Introduction

Automatic Language Identification is the task
of identifying a document’s language, an es-
sential task for document classification and ma-
chine translation (Ling et al., 2013). General-
purpose, open-source Language Identification tools
like langid.py (Lui and Baldwin, 2012) and Fast-
Text (Grave, 2017) are the de facto standards for
Language Identification in large documents.

During the last two decades, text messaging and
social media have generated large amounts of short
plain-text documents. Language identification on
partial and complete short texts presents unique
challenges (Jauhiainen et al., 2019). Successful
Language Identification can support marketing, po-
litical, and socioeconomic analyses on large cor-
pora of short texts such as tweets. Such analyses
can, for example, study hate speech towards im-
migrants and women (Basile et al., 2019) or seek
to understand support groups for smoking cessa-
tion (Prochaska et al., 2012).

On a smartphone, Language Identification on
short texts can support several features. Language
identification of incoming text messages can help
virtual assistants read incoming text messages,
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which can be an essential tool for minorities such
as visually impaired multilingual speakers.

Language identification can also help when typ-
ing short texts. Identifying language from the first
few characters typed (a very short string) can al-
low a smartphone to select the correct spelling
and grammar checker automatically. Such fea-
tures motivated a team at Apple to study character-
level Language Identification using bi-directional
LSTMs (Apple, 2019).

This paper reproduces the architecture presented
in an industry blog post (Apple, 2019) on Lan-
guage Identification on extremely short strings (10
characters or less). The blog post briefly sketches
the language identification system used by Apple’s
smartphones and computers. However, due to the
use of internal, proprietary corpora, the architec-
ture’s performance cannot be compared with the
current de facto standards for Language Identifi-
cation: the open-source tools langid.py (Lui and
Baldwin, 2012) and FastText (Joulin et al., 2017,
2016; Grave, 2017).

Our reproduction confirms the performance de-
scribed in the original blog post (Apple, 2019).
We go beyond mere reproduction and (1) compare
the bi-LSTM model with the current de facto stan-
dards for Language Identification and (2) analyze
performance on related languages. We find that
the bi-LSTM is more accurate than out-of-the-box
FastText and langid.py, even outperforming the
re-trained FastText. Our results suggest that the
bi-LSTM architecture could be an alternative to
FastText and langid.py for Language Identification
on short strings.1

1Our source code and models are available at https://
github.com/AU-DIS/LSTM_langid. End-users can
download our code as a library from the Python Pack-
age Index (PyPI) via https://pypi.org/project/
LanguageIdentifier/.

https://github.com/AU-DIS/LSTM_langid
https://github.com/AU-DIS/LSTM_langid
https://pypi.org/project/LanguageIdentifier/
https://pypi.org/project/LanguageIdentifier/
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2 Related work

The simplest Language Identification methods dis-
criminate using elementary distinguishing traits
like unique character combinations, frequent or
unique words, diacritics, or common n-grams (Dun-
ning, 1994; Souter et al., 1994; Truică et al., 2015).
Increasing model complexity, some Language Iden-
tification methods model sequences of words, char-
acters, or bytes. Some methods focus on mod-
eling the frequency of n-grams, e.g., frequency
of character n-grams (Ahmed et al., 2004; Souter
et al., 1994). Such methods outperform techniques
based on unique words. Markov model-based ap-
proaches estimate the probability of a string based
on n-grams of characters or bytes (Dunning, 1994),
as is the case of langid.py (Lui and Baldwin, 2012,
2011). Due to its availability as an open-source
library, langid.py is one of the most popular lan-
guage identifiers.

Recent language identifiers increasingly use
word representations. For example, in a blog post,
Grave (2017) shows how to identify languages
using FastText vectors (Bojanowski et al., 2016;
Joulin et al., 2017, 2016), which model character
n-grams. Language identification with FastText
vectors is as performant as langid.py (Grave, 2017).
Similar to langid.py, FastText language identifica-
tion models are open-source and, therefore, popu-
lar.

LanideNN (Kocmi and Bojar, 2017) identifies
languages in multilingual documents using a recur-
rent neural network with a single layer of gated
recurrent units (GRU). Unlike Markov-based meth-
ods, recurrent neural network architectures do not
model character sequences with a fixed window
of context. The language identifier that Apple
briefly sketched in a blog post (Apple, 2019) uses
a recurrent neural network with a two-layer bi-
directional LSTM to model character sequences.
Apple’s method differs from LanideNN in architec-
ture complexity (two layers, LSTM cells instead of
the simpler GRU cells) and in its focus. LanideNN
works with long multilingual documents, whereas
Apple classify extremely short monolingual strings.

In a survey, Jauhiainen et al. (2019) present more
than the techniques above, discuss challenges, and
identify remaining research questions. Among the
remaining research questions are very short texts
(the problem motivating Apple) and discrimination
of related languages. In this paper, we go beyond
reproducing Apple’s work by analyzing the effect

Figure 1: The bi-LSTM architecture. Figure reproduced
from Apple (2019).

of related languages.

3 Model architecture

Figure 1 gives an overview of the two-layer bi-
directional LSTM architecture powering Apple’s
products, as briefly sketched in a blog post (Apple,
2019).

The model takes as input strings of characters.
In the following, we describe the left-to-right direc-
tion of the bi-directional LSTM. The right-to-left
direction is identical but mirrored. In the first step,
vector embeddings replace all characters in the in-
put string. The network uses a single embedding
for all languages since the language is unknown at
this point. At each time step, the LSTM ingests a
character’s embedding and the hidden layer repre-
sentation from the previous step. The per-character
output from the left-to-right LSTM layer is con-
catenated with that of the right-to-left layer. The
concatenated vectors pass to a second LSTM layer
that is identical to the first but does not share pa-
rameters. After the second layer, the concatenated
vectors go through a single linear layer, producing
a distribution over all supported languages. The
linear layer provides character-level language iden-
tification. In other words, for each input character,
the network generates a probability distribution
over the possible languages.

With the outputs from the linear layer, Apple
(2019) state that A max pooling style majority vot-
ing decides the dominant language of the string.
However, max pooling and majority voting are dif-
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ferent techniques. A combination of the two is
impossible as one cannot perform majority vot-
ing over outputs that have been max pooled, and
vice versa. Instead, we sum over the linear layer’s
output values at each time step and softmax the
summed output to obtain a prediction. We expect
this approach to be what the original authors in-
tended. The similarity between our reproduction’s
performance and what Apple report in the original
blog post confirms our approach.

4 Data sets

Apple (2019) only mention the kind of data used
in their experiments. Therefore, we use two large
and openly available data sets of the same kind
as Apple: a subset of OpenSubtitles (Lison and
Tiedemann, 2016) to study performance on dialog;
and Universal Dependencies (UD, Zeman et al.,
2019) for prose. Following Apple, we trim strings
to 50 characters per sample, with all samples start-
ing at the beginning of a word, and remove special
characters.

Apple test on 20 languages that use the Latin
alphabet, but only show results on 9 of the 20 and
do not specify the remaining 11 languages. Be-
sides the 9 languages in the original blog post, we
select 11 languages, some of which are closely re-
lated. Thus, our experimental setup2 is similar to
Apple’s. Including closely related languages in-
creases our data sets’ difficulty but supports more
interesting and more representative experiments.
Specifically, it supports performance analysis on
related languages, an open research question (Jauhi-
ainen et al., 2019).

5 Experiments and results

We use five-fold cross-validation in all experiments.
Following Apple (2019), we evaluate on strings
of 10 characters. We test all models on the same
strings.

We use the AdamW optimizer with default pa-
rameters in PyTorch; we set the character embed-
ding dimension to 150 and the bi-LSTM’s hidden
dimension to 150; we train for 25 epochs using
batches of 64 examples and use weighted cross-
entropy for the loss function.

2The languages we use are: Catalan (ca), Czech (cs),
Danish (da), French (fr), German (de), English (en), Span-
ish (es), Estonian (et), Finnish (fi), Croatian (hr), Hungarian
(hu), Italian (it), Lithuanian (lt), Dutch (nl), Norwegian (no),
Portuguese (pt), Polish (pt), Romanian (ro), Swedish (sv), and
Turkish (tr).

Figure 2: Apple (2019)’s original results.

Out-of-the-box, FastText and langid.py can iden-
tify more than our set of 20 languages. For fair eval-
uation, we limit the set of languages that the mod-
els output. For langid.py, we use a built-in method
that limits the number of languages under consid-
eration. For FastText, we take the probability dis-
tribution over all language predictions, extracting
only the relevant 20. We use the large pre-trained
FastText model3. When re-training FastText, we
use 15 epochs, with a minimum n-gram length of
one character and a maximum of six characters.
We leave all other parameters at their default.

5.1 Comparison with original work
Figure 3 contains the results of our reproduction
of the experiment in Figure (b) from Apple (2019),
a confusion matrix of the bi-LSTM model trained
and evaluated on the UD data set. Since Apple
do not include averaged results, we use the confu-
sion matrices for comparison. Figure 2 includes
a copy of Figure (b) from Apple (2019) for easier
comparison. We find that performance per lan-
guage is similar between the two implementations.
While in one case, accuracy is almost identical
(Turkish, tr), for most languages, our implementa-
tion is either a few points of accuracy below (e.g.,
French, fr, −2.85 points, and Italian, it, −2.62) or
above the original model (e.g., Dutch, nl, +1.87).
For some languages, our implementation consider-
ably underperforms the original (e.g., English, en,
−7.4 points, and Spanish, es, −16.7). Our imple-
mentation considerably outperforms the original
on German (de +6.91) and Swedish (sv +7.54).

3Available at https://fasttext.cc/docs/en/
language-identification.html

https://fasttext.cc/docs/en/language-identification.html
https://fasttext.cc/docs/en/language-identification.html
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Figure 3: Confusion matrix for bi-LSTM on UD. Figure 4: Confusion matrix for re-trained FastText on UD.

We attribute the difference in performance to ran-
domness during training and differences in training
data. The original blog post does not state the size
nor language composition of the data set.

In Figure 3, we follow Apple and threshold
values in the confusion matrix at 1.0. Thus, we
can effortlessly compare error patterns. Interest-
ingly, the patterns are almost identical. Both matri-
ces show issues distinguishing between Italian (it)
and Portuguese (pt), German (de) and Dutch (nl),
French (fr) and English (en), and Italian (it) or
Portuguese (pt) vs. Spanish (es) or French (fr). Un-
surprisingly, most confusions appear for languages
from the same families, Romance (es, fr, it, pt) and
Germanic (de, nl).

5.2 Comparative analysis

In Tables 1 and 2, we include the comparative anal-
ysis results with the current de facto standards for
Language Identification: FastText and langid.py.
We use two weighing strategies for F1 to pro-
vide different insights. Macro-F1 averages the per-
language results and considers languages equally
important. Weighted-F1 takes into account the
popularity of the different languages in the data
sets. Weighted-F1 measures the performance on
the data set, while macro-F1 illustrates language
coverage as it is not affected by label frequency.
In multi-class classification, micro-F1 equals accu-
racy. We, therefore, include only accuracy, denoted
acc@1.

On both data sets, the bi-LSTM exceeds the
weighted- and macro-F1 of langid.py, pre-trained
FastText, and re-trained FastText. The performance
difference between the bi-LSTM and the next best

LSTM pFT rFT langid.py
wF1 87.41 72.45 78.67 64.89
maF1 79.22 61.20 67.90 51.66
acc @1 86.93 70.45 77.92 61.73
acc @3 96.07 85.84 90.59 82.83
acc @5 97.78 90.92 94.45 88.99

Table 1: Results on UD. pFT = pre-trained FastText;
rFT = re-trained FastText

LSTM pFT rFT langid.py
wF1 91.38 67.45 84.14 54.31
maF1 91.38 67.45 84.14 54.31
acc @1 91.37 67.73 84.13 53.47
acc @3 98.14 84.15 95.08 76.30
acc @5 98.93 89.31 97.38 84.22

Table 2: Results on OpenSubtitles. pFT = pre-trained
FastText; rFT = re-trained FastText

model (the re-trained FastText) also appears in the
confusion matrix. Figure 4 shows that even the
re-trained FastText exhibits confusion across all
pairs. It also shows a strong bias towards some lan-
guages like English (en), French (fr), or Dutch (nl)
regardless of the input language. All columns in
Figure 4 that correspond to these languages exhibit
confusion errors.

The OpenSubtitles data is more challenging than
UD for out-of-the-box langid.py and FastText, but
easier for bi-LSTM and re-trained FastText. Also,
there is a considerable improvement from the pre-
trained FastText to the re-trained FastText on both
data sets. These observations suggest that (1) do-
main adaptation has a considerable impact on Fast-
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ca es pt fr it ro da no sv de nl en cs pl hr lt et fi hu tr
Predicted

ca
es

pt
fr

it
ro

da
no

sv
de

nl
en

cs
pl

hr
lt

et
fi

hu
tr

Ac
tu

al

78.24 7.64 4.08 2.99 2.59

8.72 71.65 8.71 1.78 3.15 1.05

3.13 8.56 78.54 1.25 3.02 1.12

2.99 1.60 1.48 83.80 2.19 1.22 2.37

2.13 2.05 2.28 1.67 86.38 1.14

1.07 1.09 1.09 1.60 91.07

67.72 15.32 5.44 2.41 1.65 1.59

17.35 67.45 5.80 1.93 1.00 1.02

6.10 6.22 78.74 1.97 1.20

92.61 1.31 1.41

1.80 1.35 3.03 84.72 1.76

1.23 1.07 2.13 1.56 2.10 1.21 84.68

89.91 1.41 3.01

1.19 93.07 1.52

2.06 89.04 1.27

1.51 93.66

90.83 2.21

4.11 89.57

93.24

93.31

Figure 5: Confusion matrix for bi-LSTM on UD.

Text, and (2) that dialog is more difficult for the
out-of-the-box models. OpenSubtitles contains sub-
titles of movies predominantly produced in English.
Consequently, character names are also English-
centered, e.g., Jane. Character names can appear in
dialog, which might confuse the pre-trained models
to assign such dialog lines to English, despite their
translation.

5.3 Error analysis

Tables 1 and 2 show a jump from accu-
racy at the top of the list of prioritized pre-
dicted languages (acc@1) to accuracy at the top
three (acc@3). For most models, a smaller jump
follows to accuracy at the top five (acc@5). The
sizeable jump indicates that, even when the models
are wrong, the correct answer is usually among the
top three. For example, from acc@1 to acc@3, the
bi-LSTM jumps 9.14 points on UD and 6.77 on
OpenSubtitles, but only 1.71 and 0.79 from acc@3
to acc@5. The gap from acc@1 to acc@3 is much
larger for langid.py and FastText, illustrating a
higher confusion. Recent work in language identi-
fication suggests that the accuracy gap might be a
symptom of confusion of related languages (Haas
and Derczynski, 2020).

To understand the bi-LSTM’s jump in accuracy,
we turn to the complete confusion matrix. In Fig-
ure 5, we show the confusion matrix of the bi-
LSTM on all 20 languages in our experiments.

There is intense confusion between highly simi-
lar languages. We observe three large clusters of
confused languages: Romance (ca, es, fr, it, pt,
ro), West Germanic (de, en, nl), and languages of
Northern Europe (da, no, sv). More closely related
languages are more confusing, for example, Cata-
lan (ca) vs. Spanish (es) and Danish vs. Norwegian
(no). The clusters of confusion between related
languages indicate that, despite the bi-LSTM’s im-
proved performance, highly similar languages still
pose a challenge.

5.4 Storage requirements
Apple (2019) also consider storage requirements.
Our bi-LSTM uses 4 MB of storage, confirming
the claims in the original blog post. The re-trained
FastText model requires 1.5 GB of storage, but that
could reduce to approximately 150 MB, follow-
ing Joulin et al. (2016). langid.py’s model is only
2.5 MB. Given its language identification perfor-
mance and model size, the bi-LSTM is a great value
proposition, especially on storage-constrained mo-
bile devices, confirming Apple’s use case scenario.

6 Conclusions

We have reproduced the bi-LSTM language iden-
tification architecture described in a blog post by
Apple (2019). Our reproduction experiments con-
firm the performance claims in the original blog
post. We evaluated the bi-LSTM against the de
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facto open-source language identifiers in experi-
ments on two openly available data sets. Our eval-
uation considered dialog and prose, and targeted
twenty languages, including some highly similar
languages such as Danish (da) and Norwegian (no)
or Catalan (ca) and Spanish (es). Our experiments
illustrate the difficulty of identifying the language
in very short strings. The reproduced bi-LSTM
outperformed FastText and langid.py on all mea-
sures, even when training FastText on the same data.
However, we went beyond a straightforward re-
production and considered related languages. Our
analysis shows that the bi-LSTM can easily confuse
languages from the same family (e.g., Romance,
West Germanic, or Scandinavian) and highly simi-
lar languages such as Catalan (ca) and Spanish (es).
We publish our implementation’s source code and
make a trained model available as a library. In
the future, we would like to consider avenues for
improving the bi-LSTM architecture. For exam-
ple, we would like to replace the majority voting
mechanism in the bi-LSTM with a more robust
alternative.
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