
Proceedings of the 16th Conference of the European Chapter of the Associationfor Computational Linguistics: Student Research Workshop, pages 65–70
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

65

Siamese Neural Networks for Detecting Complementary Products

Marina Angelovska
KTH Royal Institute

of Technology
angelovs@kth.se

Sina Sheikholeslami
KTH Royal Institute

of Technology
sinash@kth.se

Bas Dunn
bol.com

bas@dunn.nl

Amir H. Payberah
KTH Royal Institute

of Technology
payberah@kth.se

Abstract

Recommender systems play an important role
in e-commerce websites as they improve the
customer journey by helping the users find
what they want at the right moment. In
this paper, we focus on identifying a com-
plementary relationship between the products
of an e-commerce company. We propose a
content-based recommender system for detect-
ing complementary products, using Siamese
Neural Networks (SNN). To this end, we
implement and compare two different mod-
els: Siamese Convolutional Neural Network
(CNN) and Siamese Long Short-Term Memory
(LSTM). Moreover, we propose an extension
of the SNN approach to handling millions of
products in a matter of seconds, and we reduce
the training time complexity by half. In the ex-
periments, we show that Siamese LSTM can
predict complementary products with an accu-
racy of ∼ 85% using only the product titles.

1 Introduction

As much as the diverse and rich offers on e-
commerce websites help the users find what they
need at one market place, the online catalogs are
sometimes too overwhelming. Recommender sys-
tems play a significant role in making this process
convenient for users. A specific case for recom-
mender systems is complementary products (also
known as add-ons), which are the products that are
sold separately but are used together, each creat-
ing a demand for the other. Figure 1 shows some
examples of complementary products.

Detecting complementary products in many
of the current platforms is mainly based on co-
purchase history and business rules. In this ap-
proach, if two items have been bought together
more than a certain number of times, they are as-
sumed to complement one another with a high prob-
ability. However, complementarity among products

Figure 1: Complementary product examples.

cannot be accurately detected using only the pur-
chase history because (i) identical items having
different sizes or colors are likely to be bought
together and are pure substitutes instead of com-
plementary products (e.g., a user buys three flower
vases in different sizes), and (ii) if there are no pur-
chases made yet, the ground truth is missing (it is
known as the cold-start problem). One solution to
overcome these problems is to introduce human
labeling for accurate validation. The problem of
this approach lies in the time and scalability limita-
tions. Moreover, these approaches focus on popu-
lar items; thus, unpopular (less frequently bought)
products will stay undiscovered.

To address the aforementioned problems, we pro-
pose a supervised deep learning approach based on
Siamese Neural Networks (SNN) (Chicco, 2021),
and in particular Siamese Convolutional Neural
Network (CNN) and Siamese Long Short-Term
Memory (LSTM). To train the model, we give
the input dataset in the format of MainProduct,
AddOnProduct, and Label(Y/N) that identifies if
two products are complementary. Using this data,
the SNN creates embeddings and generates vector
outputs that show the actual distance between the
two given products in terms of their complemen-
tarity. For each product, we consider the title, the



66

Figure 2: The proposed model pipeline using SNN.

description, and the brand as its attributes. Figure
2 shows the pipeline of the proposed model.

The objectives of this work are three-fold:

1. Studying the performance of Siamese CNN
and Siamese LSTM in predicting complemen-
tary products using textual attributes.

2. Studying the impact of different product at-
tributes (such as the product title, the descrip-
tion, and the brand) on predicting complemen-
tary products.

3. Transforming the problem into a K-Nearest-
Neighbour (KNN) solution to predict com-
plementarity among millions of products in a
matter of seconds.

Our work builds upon the Siamese CNN intro-
duced by Zhao et al. (2017) by comparing Siamese
CNN and Siamese LSTM models and showing how
Siamese architecture can be transformed to handle
massive data. Through the experiments we show
that Siamese LSTM outperforms Siamese CNN
in predicting complementary products using tex-
tual product attributes with an accuracy of ∼ 85%.
We also observe that among different attributes of
products, the product title produces results with a
higher accuracy. Moreover, we show that we can
extend the proposed Siamese LSTM approach to a
KNN problem that reduces the time complexity by
half. The source code of our model is available on
GitHub1.

2 Preliminary

In this section, we briefly present the SNN archi-
tecture and explain how it works. SNN (Chicco,

1https://github.com/marinaangelovska
/complementary products suggestions

Figure 3: Three types of SNNs (a) late merge, (b) inter-
mediate merge, and (c) early merge (Fiaz et al., 2019).

2021) is a twin neural network (NN) composed of
two separate NNs sharing the same architecture
and the same weights, with no limitation on the
NN architecture (Figure 2). In other words, SNN
is an NN architecture capable of learning similarity
between data samples by receiving pairs of sam-
ples and analyzing the differences between their
features to map them to a multidimensional feature
space (Martin et al., 2017). By receiving two dif-
ferent inputs, the main goal of such networks is
to develop similarity knowledge between the two
produced outputs.

Fiaz et al. (2019) categorize SNNs in three
groups based on the time of merging the layers:
late merge (LM), intermediate merge (IM), and
early merge (EM), which are shown in Figure 3. In
LM, the output vectors of each network are merged
at the last dense layer. IM suggests to merge the
outputs of the two networks in the middle of the
network and process them as one output in the last
layers. In EM, the two inputs are merged right be-
fore the actual network, resulting in a single-like
NN architecture.

One of the benefits of using SNN is its scalability.
It processes each data sample once and then com-
putes each pair’s compatibility score, which results
in a significantly lower complexity than iterating
through the whole model for each pair of products.
In a real-life scenario, we are usually given target
products set Q = {q1, q2, · · · , qn} and candidate
set for the add-ons C = {c1, c2, · · · , cm} where n
and m have values larger than 106, indicating a few
millions of products. Thus, to train a NN, we need
to create n × m pairs of products to make input
samples to the NN. However, usually, we are in-
terested in the top k candidate add-ons for a given
target product, and SNNs enable us to do so.

3 Method

We now discuss the network architectures used
in our Siamese CNN and Siamese LSTM models.



67

Figure 4: The difference between IM and LM in the
implementation of the proposed model.

The input to these networks is the pair of any two
product attributes (e.g., title and description).

CNN Architecture. The CNN network has 11
layers. The first layer is an embedding layer to
create embeddings for each of the words in the
product’s attributes. The output dimension is set to
300, so that each word will be represented in 300
different features in the multi-dimensional space.
Then, the ZeroPadding1D, the Conv1D, and the
MaxPooling1D layers follow one after each other.
We repeat these three layers by only reducing
their filter length and pooling size. Finally, after
flattening we use a dense layer with 100 neurons
and ReLU activation. We use the dot layer to
combine the two products from the Siamese input
and compute their similarity. By normalizing the
input given to the dot layer we compute the cosine
proximity between the products.

LSTM Architecture. The LSTM network has
seven layers in total. Like the CNN architecture,
the embedding layer is the first layer with the
output dimension of 300. The LSTM layer with
150 neurons and ReLU activation is the core
part of this pipeline that learns the sequential
characteristics of the words in the product titles
or descriptions. After the flatten layer, for the
same reasons as in the CNN architecture we use
dot layer to merge the two inputs and obtain their
similarity score. Then, we have a dense layer,
which is a fully-connected layer with 100 neurons.

In both CNN and LSTM models, we use the Sig-
moid activation in the output layer for the binary
classification problem. Figure 4 illustrates the dif-

Figure 5: The place where we save the weights in the
SNN architecture.

ference between IM and LM in our implementation.
In IM, we apply the dot layer right after the flatten
layer, meaning that one dense layer is available
after the merging and before the final output layer.
LM represents the architecture when the dot layer
is implemented right before the final output layer.
For comparing both Siamese architectures (IM and
LM), we apply exactly the same layers just in a
different order.

In both CNN or LSTM implementations, the
Siamese approach can efficiently find the top K
most complementary products for a given product
over massive data (Martin et al., 2017). For a target
product q and a candidate add-on product c from
the sets of Q and C, we first generate their vector
representations. However, we are only interested
in the weights that the network produces before
applying the dot product. The Siamese setup treats
each product separately until the merge point in the
model, thus for each of the products in sets Q and
C, we can get the weights as shown on Figure 5.
This means that the embeddings part is done only
once for each product separately.

Once we have the vector representations XQ and
XC for each product from Q and C, respectively,
we can compute the similarity. From this point on,
we have a KNN problem. Then, we save those
weights in the forms of matrices and apply the
normalized dot product between the two matrices
having the weights for each target and candidate
product (we calculate the cosine similarity), repre-
senting their complementarity.

4 Experiments

In this section, we first explain the dataset and the
preprocessing step to make it ready to be given to



68

the models, and then present the experiments.

4.1 Dataset

To train the models, we use manually labeled data
points from an e-commerce company2. We con-
sider the product title, description, and brand as the
attributes for each product. We get pairs of posi-
tive matches for each product, which has at least
one add-on, meaning that if a product has mul-
tiple add-ons, it will appear multiple times as the
MainProduct in the dataset. Also, a product might
be an add-on for multiple different main products.

Initially, there are 18346 pairs of complemen-
tary products. We assume that two products are
non-complementary if they were never bought to-
gether and are not included in our initial dataset.
Moreover, we want each product to have the same
number of positive and negative samples, so that
the model is able to generalize well. We achieve
this by iterating through the add-ons list, and for
each add-on, we make sure that we generate as
many negative samples as there are positive.

For example, given Product5, which is an add-
on to 10 different products, we find another 10
products for which product Product5 will not be
an add-on. After making sure that we have 50− 50
ratio in terms of the labels for each add-on in our
dataset, we repeat the same process for the main
products. In the end, we end up having 60442 total
pairs of products, out of which 35978 are unique
products.

Before giving the data to the models we: lower-
case all letters, remove punctuation signs, digits,
measurements (e.g., cm, m), and stop words. We
observe that excluding the digits from the products
in the dataset improves the performance by 10%.
We consider 80% of the dataset for training the
models and the rest for testing them. We also use
10% of the training data for validation during train-
ing. To make sure that the model’s performance
is calculated on new unseen data, we use Group
Shuffle Split so that each product that will appear as
an add-on in the train set will not appear as an add-
on in the test set. We train the embeddings using
Word2Vec (Mikolov et al., 2013) before the embed-
ding layer in the models. Word2vec was trained
using the whole corpus of titles in the category of
interest. Once we have the embeddings for each of

2Due to the company’s policy we do not reveal the com-
pany’s name. It is an e-commerce company that offers various
products in multiple categories.

Table 1: Comparative results showing the performance
of Siamese CNN and Siamese LSTM based on the
place of merging the two product outputs.

Siamese model AUC Accuracy

CNN - IM 72% 65%
CNN - LM 82% 78%
LSTM - IM 93% 85%
LSTM - LM 80% 75%

the words in the corpus, we add those weights to
the weights parameter in the embedding layer.

4.2 Results

Before conducting the experiments, we measure the
impact of the merging location in the two Siamese
models. Table 1 shows that Siamese CNN performs
better with LM. However, Siamese LSTM performs
better with IM and outperforms all other models’
architectures, thus that is the architecture we will
use in the rest of the experiments.

We first compare the performance of Siamese
LSTM with three frequently used methods: Ran-
dom Forest (RF), Single LSTM network, and
Vanilla NN. The RF baseline, which is used in Mar-
tin et al. (2017), combines the inputs from each
sample in the dataset and tokenizes the product ti-
tles using Bag of Words representation. The single
LSTM is the second baseline we consider.

The main difference between the single and the
Siamese LSTM is in the way the input is processed.
In the single LSTM model’s input, we concate-
nate the two products’ attributes in the form of
MainProductTitle AddonProductTitle. On
the other hand, in the Siamese approach the two in-
put products are treated separately until the moment
of merging the two vector outputs. This enables us
to later transform the Siamese approach to a KNN
model. Lastly, we also implement and test a vanilla
NN with six layers: input, emedding, flatten, dense,
dropout and output layer. The dense layer has 100
neurons and ReLU activation.

Figure 6 shows the accuracy and AUC score for
each of these models. Although Siamese LSTM
and the Single LSTM perform with the same ac-
curacy, Siamese LSTM can be transformed to a
KNN model and used with massive data. To pair
13000 unique products from the test dataset with
each other, we would get roughly 170M pairs of
products for which we want to know their comple-
mentary relationship. However, in this work, due
to the hardware limitations, we only take 1M pairs



69

Figure 6: Comparative results showing the accuracy
and AUC for Siamese LSTM, Single LSTM, Vanilla
NN and Random Forest.

Table 2: Comparing the time needed for predicting
complementarity among 1M pairs of products and the
time complexity for creating the embeddings in the
NN.

Model Prediction
time

Time
complexity

Single LSTM 11min O(N2)
Siamese LSTM 8min O(N2)

Transformed Siamese LSTM 10sec O(N)

of products in the following experiments. Both, the
single and Siamese LSTM network are traversed
1M times, once for creating the embeddings for
each pair of products.

The Siamese LSTM has a slightly better time
performance due to the ability to learn faster. In
the transformed Siamese LSTM, we calculate the
embeddings for each product only once by using
the Siamese LSTM model and we save those em-
beddings before the dot layer. This means that the
Siamese LSTM will be traversed only 13000 times,
once for each product. Once we have these em-
beddings for each of the 13000 products, the com-
plementarity score for the 1M pairs is calculated
very fast, as we do simple matrix multiplication
operation using cosine similarity.

Here we use cosine similarity as it is basically
a normalized dot product. If we were using single
LSTM approach, we would not have been able to
achieve this because in that setup we cannot get
embeddings for a single product, but only for a pair
of products. Table 2 shows the time analysis for the
three approaches, where N represents the number
of unique products.

Using the transformed Siamese LSTM (the KNN
approach), we compute the complementarity score
between all possible products from the test set
within seconds. Table 3 shows the complementar-
ity score (cosine similarity) of the top five add-ons

Table 3: Complementarity score for five add-on sugges-
tions using the the initial Siamese LSTM model and the
transformed Siamese LSTM.

Table 4: Comparing accuracy, AUC score and train-
ing time for Siamese LSTM using different product at-
tributes when the training was done on 10 epochs.

Product
attribute(s) Accuracy AUC Training

time
Title 85% 93% 13min

Title +
Description 89% 95% 58min

Description 72% 81% 58min
Title + Brand 80% 83% 14min

suggested by the KNN approach for a randomly
selected product. The third and fifth products from
Table 3 are newly detected add-ons, while the sec-
ond product is a correctly detected add-on already
present in the ground truth. The first and fourth
products are substitutes to the target product, hence
false positives. Our KNN approach suggests substi-
tute products because, in some cases, in the ground
truth, the add-on products can be similar/substitute
products to the target product. Ideally, we would
not want to have this in our training set.

Table 4 shows the results from including differ-
ent textual attributes (e.g., the title, the description,
and the brand) in the Siamese LSTM. Although the
description, as an addition to the title, increases the
accuracy and AUC score, we conclude that speed-
accuracy trade-off needs to be made since including
the description slows down the training process for
about four times.

5 Related Work

We split the available methods for measuring simi-
larity and complementarity into two groups: unsu-
pervised and supervised learning approaches.

One of the most common unsupervised learn-
ing methods using co-purchase history is the Fre-
quent Pattern (FP) Growth (Han et al., 2004) algo-
rithm. Other groups of research focus on using the
paradigm of Word2Vec (Mikolov et al., 2013). Gr-
bovic et al. (2015) propose a Prod2Vec model that
learns product representations from sequences of
past orders by considering the purchase sequence



70

as a sentence and products within the sequence as
words. The Meta-Prod2Vec model by Vasile et al.
(2016) extends the Prod2Vec model by taking into
account products’ metadata. The BB2Vec model
(Trofimov, 2018) eliminates the cold-start problem
by using browsing and purchase session data, and
is a combination of several Prod2Vec models.

Zhao et al. (2017) introduce the Siamese CNN
approach, which this work is based on. Other super-
vised learning approaches focus on image data, text
attributes, or both. SCEPTRE is a model introduced
by McAuley et al. (2015), and its main goal is topic
modeling using Latent Dirichlet Allocation (LDA)
(Blei et al., 2003) and edge detection of related
topics. Zhang et al. (2018) suggest ENCORE, a
three-step algorithm: (i) detecting the complemen-
tarity among products based on their embedding
distances of image and text attributes, (ii) taking
into account user preferences for detecting validity
of each complementarity distance, and (iii) training
a NN with the outcomes of the previous two steps
(Yu et al., 2019). Kalchbrenner et al. (2014) explore
Dynamic CNN (DCNN) for semantic modeling of
sentences using CNNs.

6 Conclusion

In this paper, we present a supervised learning ap-
proach for complementary product recommenda-
tions. We take manually labelled pairs of com-
plementary products from an e-commerce com-
pany and propose a scalable solution. To this
end, we design and compare Siamese CNN and
Siamese LSTM architectures to create embeddings
for products’ features and compute a complemen-
tarity score for a given pair of products. We con-
clude that Siamese LSTM outperforms Siamese
CNN and its baselines. We show that the product
title is the most valuable attribute. Lastly, we show
that our model can be transformed into a KNN
solution to handle big data scenarios.

This work can be extended by introducing user
click history to include items that have been viewed
in the same session (items which are very similar)
in the negative training sample, thus teaching the
model the difference between substitute and com-
plementary relationships. Furthermore, including
more product attributes (such as the price or sub-
category) could improve the model’s performance.

References
D. Blei et al. 2003. Latent dirichlet allocation. the

Journal of machine Learning research, 3:993–1022.

F. Vasile et al. 2016. Meta-prod2vec: Product embed-
dings using side-information for recommendation.
In Proceedings of the 10th ACM Conference on Rec-
ommender Systems, pages 225–232.

H. Yu et al. 2019. Complementary recommendations:
A brief survey. In 2019 International Conference on
High Performance Big Data and Intelligent Systems
(HPBD&IS), pages 73–78. IEEE.

J. Han et al. 2004. Mining frequent patterns with-
out candidate generation: A frequent-pattern tree
approach. Data mining and knowledge discovery,
8(1):53–87.

J. McAuley et al. 2015. Inferring networks of substi-
tutable and complementary products. In Proceed-
ings of the 21th ACM SIGKDD international con-
ference on knowledge discovery and data mining,
pages 785–794.

K. Martin et al. 2017. A convolutional siamese network
for developing similarity knowledge in the selfback
dataset. CEUR Workshop Proceedings.

K. Zhao et al. 2017. Deep style match for complemen-
tary recommendation. In AAAI Workshops.

M. Grbovic et al. 2015. E-commerce in your inbox:
Product recommendations at scale. In Proceedings
of the 21th ACM SIGKDD international conference
on knowledge discovery and data mining, pages
1809–1818.

M. Fiaz et al. 2019. Deep siamese networks toward ro-
bust visual tracking. In Visual Object Tracking with
Deep Neural Networks. IntechOpen.

N. Kalchbrenner et al. 2014. A convolutional neural
network for modelling sentences. In 52nd Annual
Meeting of the Association for Computational Lin-
guistics. Association for Computational Linguistics.

T. Mikolov et al. 2013. Efficient estimation of word
representations in vector space. pages 1–12.

Y. Zhang et al. 2018. Quality-aware neural comple-
mentary item recommendation. In Proceedings of
the 12th ACM Conference on Recommender Systems,
pages 77–85.

Davide Chicco. 2021. Siamese neural networks: An
overview. Artificial Neural Networks, pages 73–94.

I. Trofimov. 2018. Inferring complementary products
from baskets and browsing sessions. arXiv preprint
arXiv:1809.09621.


