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Abstract

Latent variable models for text, when trained
successfully, accurately model the data distri-
bution and capture global semantic and syntac-
tic features of sentences. The prominent ap-
proach to train such models is variational au-
toencoders (VAE). It is nevertheless challeng-
ing to train and often results in a trivial local
optimum where the latent variable is ignored
and its posterior collapses into the prior, an is-
sue known as posterior collapse. Various tech-
niques have been proposed to mitigate this is-
sue. Most of them focus on improving the in-
ference model to yield latent codes of higher
quality. The present work proposes a short
run dynamics for inference. It is initialized
from the prior distribution of the latent vari-
able and then runs a small number (e.g., 20)
of Langevin dynamics steps guided by its pos-
terior distribution. The major advantage of our
method is that it does not require a separate
inference model or assume simple geometry
of the posterior distribution, thus rendering an
automatic, natural and flexible inference en-
gine. We show that the models trained with
short run dynamics more accurately model the
data, compared to strong language model and
VAE baselines, and exhibit no sign of posterior
collapse. Analyses of the latent space show
that interpolation in the latent space is able
to generate coherent sentences with smooth
transition and demonstrate improved classifi-
cation over strong baselines with latent fea-
tures from unsupervised pretraining. These re-
sults together expose a well-structured latent
space of our generative model.

1 Introduction

The state-of-the-art language models (LM) are of-
ten modeled with recurrent neural networks (RNN)
(Mikolov et al., 2010) or attention-based models
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(Dong et al., 2019; Vaswani et al., 2017). They
are optimized by making a series of next-step pre-
dictions, encouraging the models to capture local
dependency rather than global semantic features
or high-level syntactic properties. A seminal work
by Bowman et al. (2016) extends the standard LM
to incorporate a continuous latent space which is
aimed to explicitly capture global features. They
formulate and train the model as a varational au-
toencoder (VAE) (Kingma and Welling, 2014). In-
deed, the model is able to generate coherent and di-
verse sentences through continuous sampling, and
provide smooth interpolation between sentences,
uncovering a well-formed latent space.

However, training VAE for text is challenging and
often leads to a trivial local optimum, posterior col-
lapse. Specifically, the training objective of VAE
can be decomposed into a reconstruction term and
a KL term that regularizes the distance between the
posterior and prior of the latent variable. Due to
the autoregressive nature of the decoder, it is able
to reconstruct the data well by simply relying on
the one-step-ahead groud-truth and evolving model
state while completely ignoring the latent codes.
The posterior hence collapses into the prior, carry-
ing no information. This is an important open ques-
tion in this field. As pointed out in Fu et al. (2019),
two paths work together to generate sentences in
VAE. One path (Path A) is through the latent codes,
while the other (Path B) is conditioned on the prior
ground-truth or previously generated tokens. The
posterior collapse describes an easy solution, that
is, relying on Path B and ignoring Path A. Prior
efforts made to address this issue by and large are
along the two paths. One can control the informa-
tion available from Path B to force the decoder to
employ more Path A information. Bowman et al.
(2016) dropout the input words to the decoder and
Yang et al. (2017) utilize a dilated CNN to con-
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trol the size of context from previously generated
words. Along Path A, various techniques have been
developed to improve the latent code quality. Bow-
man et al. (2016) anneal the weight of the KL term
from a small number to reduce the regularization in
the beginning of the training (Anneal-VAE), while
Fu et al. (2019) further propose to adopt a cycli-
cal annealing schedule (Cyclical-VAE). He et al.
(2019) update the encoder multiple times before
one decoder update (Lagging-VAE). Li et al. (2019)
initialize the VAE with an autoencoder (AE) and
adopt a hinge loss for the KL term such that KL is
not driven down below a target rate (FBP-VAE and
FB-VAE). These techniques fall under the frame-
work of amortized variational inference. Despite
its fast inference, Cremer et al. (2018) observes
that an amortization gap, the gap between the log-
likelihood and the ELBO, can be large. Thus Kim
et al. (2018) proposes semi-amortized variational
autoencoders (SA-VAE) in which initial variational
parameters are obtained from an encoder as in VAE,
and the ELBO is then optimized with respect to the
variational parameters to refine them.

An alternative to variational inference is Markov
chain Monte Carlo (MCMC) sampling. MCMC
posterior sampling may be in the form of Langevin
dynamics (Langevin, 1908) or Hamiltonian Monte
Carlo (HMC) (Neal, 2011; Chen et al., 2014). Tra-
ditional MCMC can be time-consuming as the
Markov chains require a long running time, each
iteration involving a gradient computation through
the decoder.

In this article, we propose to apply a short
run inference (SRI) dynamics, such as finite step
Langevin dynamics, guided by the posterior dis-
tribution of the latent variable as an approximate
inference engine. For each training example, we
initialize such a short run dynamics from the prior
distribution such as Gaussian noise distribution,
and run a finite number (e.g., 20) of steps of up-
dates. This amounts to a residual network which
transforms the initial noise distribution to an ap-
proximate posterior distribution.

One major advantage of the SRI is that it is natu-
ral and automatic. Designing and tuning a separate
inference model is not a trivial task. In prior work,
the inference model requires careful tuning to avoid
posterior collapse in VAESs for text modeling. For
instance, the inference model needs to be aggres-
sively trained (He et al., 2019), pre-trained with

an autoencoder (Li et al., 2019), or refined with
gradient descent guided by the ELBO (Kim et al.,
2018). In contrast, the short run dynamics guided
by the log-posterior of the latent variable can be
automatically obtained on modern deep learning
platforms. In addition, our method does not as-
sume a closed-form density for the posterior, like
a Gaussian with diagonal covariance matrix, and
hence are possible to have a good approximate pos-
terior and provide good latent code. Lastly, we
optimize the hyper-parameter of the short run dy-
namics by minimizing the KL divergence between
the short-run-dynamics-induced posterior and the
true posterior, to further improve the approximate
posterior.

Empirically, we show that the model trained with
the SRI is able to outperform a standard LSTM
language model by employing an LSTM genera-
tive model, while exhibiting active utilization of
the latent space, improving over models trained
with VAE-based approaches. Moreover, we find
the learned latent space is smooth, allowing for co-
herent and smooth interpolation and reconstruction
from noisy samples, and captures sufficient global
information, enabling enhanced classification accu-
racy over state-of-the-art baselines.

In summary, the following are contributions of
our paper. (1) We propose to use short run infer-
ence dynamics to train generative models for sen-
tences without the need for an auxiliary inference
network. (2) We demonstrate that the generative
model trained with the SRI is able to accurately
model the data distribution and make active use
of the latent space, exhibiting no sign of posterior
collapse. (3) We show that the learned latent space
is smooth and captures rich global representations
of sentences.

2 Model and learning algorithm

2.1 Generative model

Let x be the observed example, such as a sentence.
Let z be the latent variable. We may consider z as
forming an interpretation or explanation of z, such
as the global semantics and/or high-level syntactic
properties of sentences. Consider the following
generative model for x,

z~p(z) x~ pa(x]2). (1)
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where p(z) is the prior and py(z|z) is given by
a generative model parameterized with . The
marginal distribution of x is pg(x) = [ pg(z, z)dz.
Given z, the inference of z can be based on the pos-
terior distribution py(z|z) = pg(x, 2)/pe(x).

2.2 Learning and inference

Let pgata(z) be the data distribution that generates
the example z. The learning of parameters 6 of
po(x) can be based on ming KL (pgata(x)||pe(x)),
where KL(pllq) = Epllog(p(z)/q(x))] is the
Kullback-Leibler divergence between p and ¢ (or
from p to ¢ since KL(p||q) is asymmetric). If we
observe training examples {z;,i = 1,...n} ~
Pdata (), the above minimization can be approxi-
mated by maximizing the log-likelihood

1 n
=~ logpy(ws), )
i=1

which leads to the maximum likelihood estimate
(MLE).

The gradient of the log-likelihood, L' (#), can be
computed according to the following identity:

8

9 1
1

= po() /aep”z

_ po(z,2)
_/%logpg(:c,z)pe(x> dz

0
= Bpy (alo) L% 10gpe(w,z)] . (3)

While the marginal distribution
= [p(z|z)p(z)dz is intractable due to
the latent Varlables z being integrated out, the
above expectation can be approximated by
Monte Carlo average with samples drawn from
po(z|z). Such samples from py(z|z) can be
obtained by MCMC in the form of Langevin
dynamics (Langevin, 1908), which iterates

0
et = 26+ 5o logpy(axlz) + V2ser,  (4)
where ¢, ~ N(0,I), ¢t denotes the time step
of Langevin dynamics, and s is the discretiza-
tion step size. The gradient term is tractable
since % log pg(zi|x) = % log pg(zk, x) and thus
does not depend on the intractable pg(z). The
Langevin dynamics (4) involves a gradient and a

diffusion term. The first term is gradient descent
2oy = 2+ s% log pg(zk|z) on log pg(zx|x). If
2k, ~ po(zx|z), then the distribution of 2 will be
shifted towards basins of high log-posterior. We
may recover py(zi|z) by smoothing with the sec-
ond term \/Eek, which amounts to white noise
diffusion and induces randomness for sampling
from pg(zx|x).

For small step size s, the marginal distribution of
2 will converge to pg(z|z) as k — oo regard-
less of the initial distribution of zy (Cover and
Thomas, 2006). More specifically, let gx(z) be
the marginal distribution of z; of the Langevin dy-
namics, then KL (g (2)||pg(z|z)) decreases mono-
tonically to 0, that is, by increasing k, we reduce

KL(qr(2)lpo(z|2))-

Finally, the MLE learning can be accomplished by
gradient descent. Each learning iteration updates
by

1 & 0
Orer = O+~ Z;Epgt(zim) [80 log po (i, zi) |o=g, | »

)

where 7; is the step size or learning rate, and
Ep(?t(zi|$i) can be approximated by Monte Carlo
sampling from py, (2;|x;).

2.3 Learning with short run inference
dynamics

It is computationally impractical to run long
Markov chains from py(z|x) as the gradient term
in (4) requires back-propagation through the model
underlying py(z|z). Earlier work (Han et al., 2017)
recruits persistent Markov chains (Tieleman, 2008)
{(zi,x;),i = 1,...,n} such that for each ob-
served example x; a latent code z; is updated for a
few steps in each learning iteration and the chains
are maintained throughout the learning procedure.
This method leads to inconsistent sampling pro-
cedures while training and evaluating the model,
since persistent Markov chains for evaluation data
are not available. Moreover, estimation of the log-
likelihood has to resort to means such as annealed
importance sampling (Neal, 2001).

Instead, we adopt short run MCMC (Nijkamp
et al., 2019) in which we approximately sample
from the posterior distribution of the latent vari-
able. We thus propose the following short run infer-
ence dynamics, with a fixed small number of steps
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K (e.g., K = 20),

20 p(z), (6)
+V2se, (7)

0
Zk+1 = 2k + 887 log pg(2x|z) +

where k = 1, ..., K and p(z) is the prior distribu-
tion of z. Initializing 29 ~ p(z) = N(0,1), we
perform K steps of Langevin with step size s.

Finally, the learning procedure updates 6 by

9t+1 = et (8)

n

1 0
+”ﬁ;ZEqs,at(znxi) [89 log po (i, 2i) lo=0, | »
=1
)

where 7, is the learning rate, qu (2]a;) can be ap-
proximated by samples drawn from o, (#i|x;) us-
ing (7). Compared to MLE learning algorithm (5),
we replace py, (z|x) by ¢s ¢, (z|x). Moreover, we
may update the step size s of (7), which we will
elaborate in the following.

2.4 Theoretical understanding

Given 6;, the updating equation (9) is a one step
gradient ascent on

n

1
= By, (sl 08 Po(2i, 2:)] . (10)

n <
=1

QS(G) =

Compared to the log-likelihood in MLE learning,
L(0) = % >, logpe(x), we have

1 n
" Z Eq. o, (zi]z:) [log po (23] x:)]
=1

= 1(6) ~ 3" KL{gug, il lIpo(zl)
i=1

1 n
E Z ds,0, (Zzlxz log ds 0t (Zl|wl)]

Qs(e) = L(H) +

(1)

Since the last term has nothing to do with 6, gradi-
ent ascent on Qs (6) is equivalent to gradient ascent
of

i=1
(12)

which is a perturbation or a variational lower bound
of log-likelihood ().

Qs(6) = L(6) ~ - > KL{gus, ziler) o (zilz:)),

The fixed point of the learning algorithm (9)
solves the following estimating equation:

1 < P
ﬁZEqs,e(mxi) [(‘39 10gp9($i,zi)] =0. (13)

i=1

If we approximate Eq, ¢, (z:]z;) by Monte Carlo
samples from qs,gt(zi|azi3, then the learning al-
gorithm becomes Robbins-Monro algorithm for
stochastic approximation (Robbins and Monro,
1951), whose convergence to the fixed point fol-
lows from regular conditions of Robbins-Monro.
The estimating equation (9) is a perturbation
of the maximum likelihood estimating equation

% > i Epg(zile:) [% log pg(s, ZZ)] =0.
2.5 Optimizing step size

We can optimize the step size s by maximizing
Qs (0) defined in equation (12), which is equiva-
lent to minimizing the KL divergence between the
short-run-dynamics-induced posterior and the true
posterior since the first term L(6) does not involve
s. QS(Q) involves the entropy of g g, (zi|x;). We
provide the details of its computation in the sup-
plementary materials. The step size optimization
can be done by grid search or stochastic gradient
descent. In this work, we optimize the step size s
with grid search guided by maximizing Q(6).

2.6 Algorithm

The learning procedure is summarized in Algo-
rithm 1. Note that we only optimize s every 75
iterations, so that computational cost is negligible.

Algorithm 1: Learning with SRI.
input

:Learning iterations 7', step size
interval T, learning rate 7, initial
weights 6, observed
examples {z;}!" |, batch size m,
number of steps K, initial step size
s.

output : Weights 07 1.

fort =0:T7do

1. Draw observed examples {x;}!" ;.

2. Draw latent vectors {z; 0 ~ p(z)}™ .

3. Infer {z; i} by K-steps of
dynamics (7) with step size s.

4. Update 8 according to (9).

5. Every T iterations, update s.
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2.7 Log-likelihood computation

Unlike traditional MCMC, short run inference
enables the computation of the marginal log-
likelihood log p(z)!,

logpg(z) = log/pg(x,z)dz

zlog/pe ac];z)])) )qk(z)dz

(xIZ)p(z)]
=log E 14
5 Fale) [ qr(2) (1
Then
4 Po x’Zz
pddtd log ; qk zz‘x ]

= Epy,.. |log Z exp [log py ()

i=1

data

+logp(zi) — log gx(zi|x)] — log M]- (15)

While most terms in (15) are readily available,
log qx(zi|z) requires special treatment. We may
rewrite the dynamics (7) in the form of

2, = Ry(20) (16)

20 ~ p(Z),

where Ry, is defined by a k-step Langevin dynam-
ics. Let the distribution of zj be denoted g (z).
Then, by change of variable theorem,

17)
(18)

2k~ Qk(z)»

ar(2) = p(R; ' (2))ldet (AR (2) /dz)].

Instead of inverting Ry, we draw zp ~ p(z)
and compute the log determinant of the Jacobian
dRy(20)/dzg. See more details in the supplemen-
tary.

3 Related Work

Variational inference. VAE (Kingma and Welling,
2014; Bowman et al., 2016) is a prominent method
for learning generative models. Due to the autore-
gressive nature of the decoder, a naive application
of VAE to text data results in posterior collapse.
Following work makes extensive efforts to allevi-
ate this issue (Fu et al., 2019; Yang et al., 2017;

"Note that its Monte Carlo estimator is biased but the bias
is diminishing with a large sample size.

He et al., 2019; Li et al., 2019; Kim et al., 2018;
Pelsmaeker and Aziz, 2020; Dieng and Paisley,
2019). Among them SA-VAE developed by Kim
et al. (2018) is mostly related to our work. They
propose SA-VAE where initial variational parame-
ters obtained from the inference model are further
refined by running a small number of gradient up-
dates (e.g., 20) guided by the ELBO. In our work,
instead of relying on a parameteric varational dis-
tribution, we run a few gradient updates on the log-
posterior of the latent variable with initialization
from the prior distribution to draw samples directly.
Thus, there is no need to design and tune an extra
inference model, which is highly non-trivial consid-
ering that posterior collapse occurs easily in VAE
training.

Alternating back-propagation. Han et al. (2017)
propose to learn generative models for images by
maximum likelihood, where the learning algorithm
iterates over two steps: (i) inferring the latent vari-
able by sampling from its posterior distribution
with Langevin dynamics; (ii) updating the model
parameters based on the inferred latent codes. In
the training stage, in step (i), the Langevin dynam-
ics is initialized from the latent codes inferred in
the last epoch, which is called persistent chain in
the literature (Tieleman, 2008). In contrast, the
short run dynamics always initializes the gradient
descent updates from the prior noise distribution.
Data-independent initialization renders the dynam-
ics in training and testing consistent.

Short run MCMC. Nijkamp et al. (2019) intro-
duces short run MCMC as a learned sampling dy-
namics guided by an energy-based model. It shares
the same theoretical underpinning as early work
of using stochastic gradient Langevin dynamics
to learn mixture of Gaussians and logistic regres-
sion for large-scale data (Welling and Teh, 2011).
Our short run inference method for learning latent
variable models for text is inspired by these works.

4 Experiments

We apply our method to train latent variable mod-
els on text datasets. The dimension of the latent
variable is 32 in all experiments. The generator
is implemented with a one-layer uni-directional
LSTM (Hochreiter and Schmidhuber, 1997). The
number of hidden units and word embedding size
of the LSTM vary among datasets to closely follow
the experimental setup in recent work (Fu et al.,
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PPL Recon AU KL
PTB
LSTM-LM 10047 - - -
Anneal-VAE  101.40 101.28 0 0.00
Cyclical-VAE 108.97 101.85 5 1.37
Lagging-VAE 99.83 10026 4 0.93
SA-VAE 100.39  100.97 5 1.86
FBP-VAE 99.62 98.52 3 2.95
FB-VAE 96.35 94.52 32 8.15
Ours 94.26 91.14 32 10.13
SNLI
LSTM-LM 21.44 - - -
Anneal-VAE  21.50 31.66 2 1.42
Cyclical-VAE  21.62 30.89 4 2.36
Lagging-VAE 21.16  31.53 5 1.42
SA-VAE 21.49 30.12 5 2.34
FBP-VAE 21.46 31.04 3 2.12
FB-VAE 22.00 23.36 32 848
Ours 21.21 22.24 32 10.02
Yahoo
LSTM-LM 60.75 - - -
Anneal-VAE  61.52  329.10 0 0.00
Cyclical-VAE 6693 33380 O 2.83
Lagging-VAE  59.77 32270 15 5.70
SA-VAE 6392 32727 17 723
FBP-VAE 62.88  328.13 2 3.06
FB-VAE 59.51 31531 32 15.02
Ours 57.05 311.23 32 16.19

Table 1: Language modeling results on PTB, SNLI, and
Yahoo test set.

2019; Li et al., 2019). The number steps of the
short run dynamics is 20 for all experiments 2. The
sample from the short run dynamics is used to pre-
dict the initial hidden state of the LSTM. It is also
concatenated with the word embeddings and then
fed to the LSTM as input at each time step.

The short run inference is more computationally
costly than the vanilla VAE and has comparable
training cost as some improved versions of VAE.
The number of inner steps of SRI (20 steps) is about
the same as that of SA-VAE and Lagging-VAE. In
training, SRI has faster convergence than SA-VAE
and comparable convergence as Lagging-VAE in
our experiments. In inference, our sampling-based
approach is slower than amortized inference. Our

2K = 10 steps led to posterior collapse. We observed a
slight improvement in model performance if KX was increased
from 20 to 40 and no improvement from 40 to 60.

FB-VAE
a man with a cane is walking down the street .
a man with a cane is walking down the street .
a man in a blue shirt is eating food .
people are eating food .
people walk in a city .
people are outside in a city .

Ours

there is a boy skating down a small street .
there is a child walking in the snow .
the man is riding a horse through the snow .
the man is riding a boat .
the biker is looking at the lake .
the person is looking at a country .

Table 2: Comparison on interpolation. Sentence sam-
ples greedily decoded from linear interpolation be-
tween samples from the Gaussian prior with FB-VAE
(Top) and SRI-trained generative model (Bottom).

method trades a feasible computational cost for
accurate inference whose empirical performance is
presented in the following experiments.

4.1 Language Modeling

We evaluate our method on language modeling
with the Penn Tree Bank (PTB) (Marcus et al.,
1993), Yahoo (Yang et al., 2017), and a down-
sampled version of the Stanford Natural Language
Inference (SNLI) corpus (Bowman et al., 2015)
as preprocessed in (Li et al., 2019). Ideally, a
language model with latent variable would be ex-
pected to make use of the latent space and accu-
rately model the data distribution. To measure
the utilization of the latent space, three quantita-
tively metrics are often considered in prior work
(Bowman et al., 2016; Li et al., 2019; Fu et al.,
2019; Kim et al., 2018): reconstruction error (Re-
con), number of active units (AU), the magnitude
of KL. Reconstruction error is the negative log-
likelihood of the observed data evaluated under the
posterior, Ey ;) [~ log pg(z|z)]. A latent dimen-
sion is considered active if its distribution changes
depending on the observations. Following Burda
et al. (2016), a latent dimension is defined to be
active if Covy(E,g(22)[2]) > 1072 Perplexity
(PPL) based on the marginal log-likelihood of =
is adopted to measure how accurately the model
captures the data. The marginal log-likelihood is
estimated with importance sampling with z sam-
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there is a crowd of people in the city .
a man rubbing a dirty face .

a couple was waiting to cross the street in a grocery store .

the little girl is drinking water .
a group of boys are playing in the fountain

five asian teenagers are peforming a dance routine for a volunteer organization .
a white-haired man is in front of a building playing music .

construction workers sit at a african courtyard .

a jewish man wearing white garb , playing a guitar , with a lazy look on him .
a young man in a brown checkered shirt sings down on the floor while playing with the on a hot day .

Table 3: Comparison on the generated sentences. Sentence samples generated from the Gaussian prior by FB-VAE

(Top) and SRI-trained generative model (Bottom).

k 1 2 3 4

AE 26.05 40.46 52.77 63.07
Anneal-VAE  32.20 32.65 33.12 33.39
Cyclical-VAE 31.83 32.87 33.73 34.38
Lagging-VAE 31.78 31.99 32.21 32.32
SA-VAE 31.63 31.82 32.15 32.46
FBP-VAE 29.93 3259 34.90 36.77
FB-VAE 2792 29.12 30.03 30.85
Ours 27.12 28.66 30.21 30.46

Table 4: Noisy reconstruction loss on SNLI. k is the
number of word swaps performed on the original sen-
tences.

Number of Labels 0 100 1k 10k

AE 53.1 78.8 83.7 84.1
Anneal-VAE 56.3 59.2 62.3 65.8
Cyclical-VAE 59.9 78.6 82.7 83.2
Lagging-VAE 63.6 65.8 74.2 80.5

SA-VAE 62.6 69.3 788 814
FBP-VAE 60.9 748 769 81.1
FB-VAE 67.5 84.9 89.5 90.6

Ours 733 858 89.6 90.8

Table 5: Accuracy on Yelp of unsupervised and semi-
supervised classification as a function of the number of
labeled example during training.

ples from trained short run dynamics as importance
samples.

Besides the standard LM and the vanilla VAE
with KL weight annealing, VAEs with recent state-
of-the-art training techniques, Cyclical-VAE (Fu
et al., 2019), Lagging-VAE (He et al., 2019), SA-
VAE (Kim et al., 2018), FBP-VAE and FB-VAE
(Li et al., 2019) are also included for comparison.
The results are displayed in Table 1. In terms of
PPL, our method outperforms all the baselines on
the PTB and Yahoo datasets, while does slightly
worse than Lagging-VAE and performs better than
other baselines on the SNLI. This indicates the
model trained with our method is able to accurately
model the data distribution. On the other hand, our
method yields the lowest reconstruction error and
the highest KL. with all latent dimension active on
all three datasets, exposing the active use of the
latent space. Taken together, these results suggest
that the model trained with short run dynamics are
balanced on modeling the data and utilizing the
latent space.

Figure 1 displays a t-SNE plot of the SRI-induced
aggregate posterior E,,, . ¢(z|z) and its marginal
density of each dimension. The t-SNE plot demon-
strates the SRI-induced aggregate posterior is multi-
modal and the marginal densities are uni-modal but
clearly deviates from the zero-centered standard
Gaussian prior. These visualizations demonstrate
that the aggregate posterior in our model is clearly
different the isotropic Gaussian prior® and thus our

*Ideally E,,,, q(z|z) = p(z) since [, Paata()q(z]x) =
/., p(2)po(x|z). However the generative model might not be
able to induce such a model posterior. The mismatch might
indicate some form of under-regularization, similar to other
approaches for mitigating posterior collapse such as FB-VAE.
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model does not show a posterior collapse issue,
consistent with our analysis above.

30
20
10

-10

-20

Figure 1: t-SNE plot (upper) and marginal density plot
(bottom) of the SRI-induced aggregate posterior on the PTB
dataset.

4.2 Latent Space Analysis

The quality of the latent space with SNLI is exam-
ined through interpolation, generation, and noisy
reconstruction.

4.2.1 Interpolation

Interpolation allows us to appraise the smoothness
of the latent space. In particular, two samples 21
and z9 are drawn from the prior. We linearly inter-
polate between them and then decode the interpo-
lated points. FB-VAE (Li et al., 2019) is considered
as the SOTA text VAE that mitigates posterior col-
lapse. Due to space limit, we only include this
method for comparison in interpolation and gen-
eration experiments. Table 2 shows the decoded
samples. Although the interpolated sentences by
FB-VAE appears smooth, the first two sentences are
repetitive. In comparison, the decoded sentences
from our model transition more smoothly. While
the interpolated sentences from our model are di-
verse, their syntactic properties and topic informa-
tion remain consistent in neighborhoods along the
path, exposing a smooth latent space.

4.2.2 Generation

We sample from the prior distribution and decode
the sentences in a greedy manner. Table 3 dis-
plays the samples from our model and FB-VAE. It

appears that samples from both models are gram-
matically correct and semantically meaningful in
general. FB-VAE samples nevertheless show more
local grammar errors. More generated samples are
given in the supplementary.

4.2.3 Noisy reconstruction

Zhao et al. (2018) reasons that a latent variable
model’s capacity on reconstructing from noisy data
reveals the smoothness of the latent space. We im-
pose discrete noise to the data by swapping tokens
in a sentence for k times, where k = 1,2,3,4 in
this experiment. The reconstruction error (negative
log-likelihood) under each condition is reported in
Table 4. Notice that even the AE yields the lowest
reconstruction when the noise is low (k = 1), but
its performance deteriorates quickly as the noise
level increases, implying that the latent space of AE
is not smooth. In contrast, other models with regu-
larization on the latent space do not exhibit drastic
decline in reconstruction performance with increas-
ing noise level. Furthermore, the model trained
with our method demonstrates reconstruction ei-
ther outperforming other methods or comparable
to the best, revealing that the model trained with
SRI has a smooth latent space.

4.3 Classification

The latent space of a well-learned latent variable
model should capture highly informative features
such that data points cluster into meaningful groups
in the latent space. We hence further probe the
latent space structure by investigating the clus-
tering and classification performance of the SRI-
inferred latent codes. Following prior work (Fu
etal., 2019; Li et al., 2019), we utilize the Yelp sen-
timent dataset as preprocessed in Shen et al. (2017).
We train a Gaussian mixture for clustering (zero
labels) and a SVM with 100, 1000, or 10,000 num-
ber of labels. The results are displayed in Table
5. Our method consistently improves over VAE
approaches and AE. The improvement is especially
clear in the zero-shot setting and small data regime
(0 and 100 labels), revealing a well-structured la-
tent space learned by SRI.

5 Conclusion

This work proposes to use short run inference dy-
namics to infer latent variables in text generative
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models. SRI dynamics is always initialized from
the prior distribution of the latent variable and then
performs a small number (e.g., 20) of Langevin
dynamics updates guided by the posterior distribu-
tion. This simple and automatic inference method
induces a good approximate posterior and provides
good latent code.

The model trained with SRI accurately models
the text data compared to strong language model
and generative model baselines and shows no sign
of posterior collapse, which is non-trivial to avoid
and several remedies have been proposed for in
prior art. Moreover, the learned space is smooth
and captures rich representations of the sentences.
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