
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics, pages 783–794
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

783

Multiple Tasks Integration:
Tagging, Syntactic and Semantic Parsing as a Single Task

Timothée Bernard∗
LLF, Université de Paris, France

timothee.bernard@ens-lyon.org

Abstract

Departing from both sequential pipelines and
monotask systems, we propose Multiple Tasks
Integration (MTI), a multitask paradigm or-
thogonal to weight sharing. The essence of
MTI is to process the input iteratively but con-
currently at multiple levels of analysis, where
each decision is based on all of the struc-
tures that are already inferred and free from
usual ordering constraints. We illustrate MTI
with a system that performs part-of-speech tag-
ging, syntactic dependency parsing and seman-
tic dependency parsing. We observe that both
the use of reinforcement learning and the re-
lease from sequential constraints are benefi-
cial to the quality of the syntactic and seman-
tic parses. We also observe that our model
adopts an easy-first strategy that consists, on
average, of predicting shorter dependencies be-
fore longer ones, but that syntax is not always
tackled before semantics.

1 Introduction

Historically, Natural Language Processing (NLP)
systems have generally been built as sequential
pipelines, where each module adds another layer of
annotation, in order of (supposed) increasing com-
plexity. Progress in neural networks has, however,
led to the development of state-of-the-art systems
that completely bypass intermediate levels of anal-
ysis that were previously considered essential. For
example, the system of Zhou and Xu (2015) per-
form Semantic Role Labeling (SRL; Carreras and
Màrquez, 2005) without referring to any explicit
(morpho)syntactic information.

A well known problem of sequential systems is
error propagation, which happens when an incor-
rect prediction at some point in the process leads to
more incorrect predictions at a later stage. In tradi-
tional pipelines, one of the roots of error propaga-

∗Work done while at AIST (Japan).

tion lies in the fact that they feature a unidirectional
flow of annotation between their different stages.

End-to-end systems with no intermediate level
of analysis, in contrast, are protected against one
form of error propagation. Since such systems are
not contingent on possibly faulty levels of analy-
sis, they are free from the interference they could
cause. However, the absence of any intermediate
decisions — symbolic traces of the system’s com-
putation — raises questions about generalisation
ability and interpretability (Lipton, 2018). What is
more, by reducing the information in the prediction
and training signals at their disposal, they might
not leverage the full power of the neural networks
they are usually based on. Indeed, in their reintro-
duction of syntactic dependencies to the training
process, Strubell et al. (2018) managed to develop
a state-of-the-art system for SRL that at the same
time computes good-quality syntactic parses.

Departing from these two kinds of architectures,
we propose Multiple Tasks Integration (MTI). The
principles of MTI are (i) to let the system take ac-
tions pertaining to different levels of analysis with-
out constraining their order, and (ii), at any given
point of the process, to feed all layers of annota-
tion as input for the next predictions. The different
tasks can therefore fully interact with each other
as if they were a single task. Our main contribu-
tion lies in an illustration of these principles with
a system that performs part-of-speech (POS) tag-
ging, syntactic dependency parsing and semantic
dependency parsing (SDP), on English data. We
have chosen these specific tasks not only for their
strong interdependence but also for their generality:
many other tasks in NLP (e.g. SRL, coreference
resolution, relation extraction) can be reduced to
labelling or bi-lexical dependencies creation prob-
lems. We show that in this specific case, letting
the system order freely its actions across all three
tasks leads to better performance, and that this im-

784

provement concerns the syntactic layer as well as
the semantic one, although to a lesser extent.

2 Related work

Fighting error propagation Lê and Fokkens
(2017) identify two kinds of error propagation.
First, error propagation happens when an incorrect
action makes a subsequent correct action unavail-
able, because the two are logically inconsistent.
Second, it also happens when an action leads to an
unusual state (unseen during the training process),
thus disrupting the system in such a way that a
subsequent correct action is not taken even though
both are logically compatible.

Since its apparition for speech recognition (Low-
erre, 1976), beam search has become ubiquitous in
NLP and artificial intelligence. Exploring multiple
paths of actions in parallel instead of a single one
mitigates the risk of error propagation of both kinds.
An orthogonal approach consists in designing sys-
tems able to attain the gold annotation via multiple
paths (usually involving different orderings of sub-
sequences of actions) and training them to infer an
easy-first strategy. Such a strategy corresponds to
performing easy actions first so as to maximise the
amount of reliable information available when hav-
ing to tackle harder decisions. This idea has been
applied to various NLP problems (Shen et al., 2007;
Goldberg and Elhadad, 2010; Stoyanov and Eisner,
2012; Xie et al., 2015), but, to the extent of our
knowledge, only in single-task contexts. Another
promising research direction is the one of iterative
refinement. The idea here is to use a baseline sys-
tem in order to produce an initial output and to then
correct it, possibly multiple times, with a refine-
ment system that has access to both the previous
output and the input of the problem. Iterative re-
finement techniques have been used for tasks such
as machine translation (Lee et al., 2018) and SRL
(Lyu et al., 2019).

Other techniques are designed to help to fight
error propagation of the second kind, which focus
on the training of the system to make it robust to its
own mistakes. One possibility consists in training
the system to predict the next best action in any
state it find itself in, instead of simply staying on
the (errorless) gold path. Doing so requires the
possibility for a next best action to be determined,
which, while trivial in some cases such as POS tag-
ging, is not in others, in particular for structured
prediction. Hence the introduction of the notion of

dynamic oracle by Goldberg and Nivre (2012) for
syntactic parsing. An alternative is reinforcement
learning (RL; Sutton and Barto, 2018), which also
trains the system from its actual trajectories, but
depends instead on rewards defined for each action
in the particular state it is taken. Note that in ad-
equate settings, RL has been shown to lead to the
emergence of easy-first strategies. This is the case
in semantic parsing, as shown in the work of Ku-
rita and Søgaard (2019), which we extend here to
both POS tagging and syntactic parsing following
our proposed Multiple Tasks Integration principles
rather than implementing a traditional MultiTask
Learning scheme.

MultiTask Learning (MTL) The main idea be-
hind MTL is that one can often increase the perfor-
mance of a given neural-based system by sharing
some of its weights with other systems trained to
perform other tasks (Caruana, 1997). Doing so
tends to strengthen the training signal of the shared
parts and to drive the model to develop richer and
more relevant distributional representations. Refer
to the texts of Ruder (2017) and Zhang and Yang
(2018) for reviews of the wide NLP literature on
the subject.

While MTL deals with tasks usually done rather
independently, an alternative approach — which
does not require weight sharing — is explored by
Peng et al. (2018a). They work with pipelines
where intermediate layers are expressed as solv-
ing a constrained maximisation problem, a setting
for which they develop a technique, SPIGOT, to
backpropagate gradient through argmax operations
(which are discrete, hence non-differentiable). This
allows for a lower module to be trained to predict
structures used by a higher module so as to opti-
mise the predictions of the latter. Note that the gain
in performance obtained by introducing SPIGOT
in a pipeline cannot necessarily be attributed to a re-
duction in error propagation: a lower module might
end up generating less accurate yet more helpful
predictions.

Joint syntactic-semantic parsing In 2008 and
2009, the CoNLL shared tasks were focused on
the joint parsing of syntactic and SRL-based se-
mantic dependencies (Surdeanu et al., 2008; Hajič
et al., 2009). Most participants developed sequen-
tial systems that parse syntax before semantics, one
notable exception being the proposal of Henderson
et al. (2008), further developed by Henderson et al.

785

(2013) and on which the work of Swayamdipta et al.
(2016) is based. These joint parsers are transition-
based systems that alternate between sequences of
syntactic actions and semantic ones. Both types of
actions share the same symbolic structure, mean-
ing that these systems allow for a strong interaction
between syntax and semantics. While they exhibit
no sequentiality globally over the two subtasks, the
alternation of actions still enforces a strict order-
ing locally: once a new token is shifted from the
input queue, it is processed syntactically before
being processed semantically. This contrasts with
the method adopted by Constant and Nivre (2016)
for joint syntactic parsing and multiword expres-
sion detection, who compute, at each time step, a
distribution of probability over actions pertaining
to both tasks — as in our system. However, their
linear (left-to-right) processing still imposes strong
constraints on possible action orders.

More recently, Strubell et al. (2018) designed
a model for SRL on the basis of the transformer
architecture (Vaswani et al., 2017) in which one
attention head is trained to attend to the syntactic
head of the corresponding tokens. At inference
time, the model is able to recover good-quality syn-
tactic parses after (argmax) discretisation of the
attention vectors. In this system and in stark con-
trast with our approach, the interaction between
the two tasks can only take place during the single
pass within the transformer network, where SRL
and syntactic dependencies are only present under
distributional forms (what we could call the “dis-
tributional soup of information”), before they are
independently discretised into symbolic structures.

Semantic Dependency Parsing (SDP) The
SDP task, introduced for the SemEval workshop
(Oepen et al., 2014, 2015), represents semantic
analysis as a directed acyclic graph (DAG) the
nodes of which are tokens of the sentence. This
means that each token may have zero or more par-
ents. In addition, zero or more tokens in each sen-
tence may be annotated as top predicates.

A wide range of techniques has been applied
in the literature in order to tackle SDP. Peng et al.
(2017, 2018b,a) propose graph-based constrained
maximisation systems based on the AD3 decoding
algorithm (Martins et al., 2011). Dozat and Man-
ning (2018) adapt a graph-based syntactic parser
to DAG parsing while Wang et al. (2018) adapt a
transition-based one. Zhang et al. (2019) present
a very general sequence to graph transduction sys-

tem. Wang et al. (2019) obtain excellent results
by scoring not only the potential dependencies but
also some of the potential pairs of dependencies. A
second-order parser is thus defined, which relies on
a (differentiable) mean field variational inference
layer (or, alternatively, a loopy belief propagation
one). The model closest to ours is the one of Kurita
and Søgaard (2019), who see SDP as an iterated
head-selection problem. They take inspiration from
Zhang et al. (2017)’s system, which builds a syn-
tactic tree by selecting a head for each token and
correcting the corresponding dependencies with
well-formedness heuristics. In this work, we see
both syntactic and semantic parsing head-selection
problems, that we tackle jointly with POS tagging.

3 Model

3.1 Overview
We define six types of actions. Relative to a to-
ken i, TAG-t corresponds to tagging i with POS
tag t, SYN-j-l to creating a syntactic dependency
labelled l from token j to i, ROOT to setting i as the
(syntactic) root, SEM-j-l to creating a semantic de-
pendency labelled l from token j to i, TOP PRED to
setting i as a (semantic) top predicate and, finally,
HALT to doing nothing.

The inference process is summarised in Algo-
rithm 1. At each time step s, the system first en-
codes the current state of the analysis into a se-
quence of one vector per token. These encodings
contain information from the three different layers
of annotation being built. Then, for each token i
independently, its policy — a distribution of prob-
ability over all possible actions (TAG-t, SYN-j-l,
etc.) —, πi,s, is computed. From each policy πi,s,
an action ai,s is then selected and performed, thus
enriching the annotation structure.1 This means
that, at any given step, one action per token is ap-
plied, as opposed to a single action for (typical)
transition systems. At that point, either the next
step starts, or, in case all tokens selected the HALT

action, the analysis (or episode) stops.2

The system is designed to perform one action per
token at each time step for computational reasons.
Indeed, doing so allows to drastically reduce the
number of steps required to analyse a sentence.

1During training, we sample from the distribution. At
inference time, we take the argmax.

2 If s reaches a limit smax, HALT is imposed to all tokens,
leading to the end of the episode. smax is set to 1.5 times the
minimum number of steps required to correctly analyse any
training instance (namely, 12).

786

Algorithm 1: Inference algorithm
input: A sentence x.
Initialise empty POS tag, syntactic and

semantic annotation structures:
(stag, ssyn, ssem);
s←− 0;
continue ←− True;
while continue = True do

l←− encode(x, stag, ssyn, ssem);
for i ∈ shuffle(J1, |x|K) do

if s < smax then
πi ←− policy(li);
ai ←− select(πi);

else
ai ←− HALT;

apply ai on (stag, ssyn, ssem);

if ∀i, ai = HALT then
continue ←− False;

s←− s+ 1;
return (stag, ssyn, ssem)

Note that this does not entail that analyses are three
steps long, as (i) tokens can have more than a single
semantic head and (ii) any token can decide to wait
with a HALT action.

We do not ensure that the syntactic (resp. seman-
tics) structure computed is a tree (resp. DAG); we
leave the implementation of relevant heuristics as
a subject of future work. We do impose several
constraints, however: (i) a token can be annotated
with only one POS tag, (ii) there can be at most
one root, (iii) there can be no incoming syntactic
dependency on a root, (iv) there can be at most
one syntactic (resp. semantic) dependency from
token j to i. Our strategy is to always perform the
selected action, overwriting possible incompatible
previous annotations.3

While POS tags, syntactic and semantic depen-
dencies are used during training (see Section 4),
only the raw tokens are required at inference time.

3This is also ensured within the actions selected for the dif-
ferent tokens of the sentence during a given time step, which,
strictly speaking, we do not perform “in parallel”, but in ran-
dom order, as can be seen in Algorithm 1. As a result, if ROOT
is selected for two tokens, one of them is set first as the root
(deleting any incoming syntactic dependencies) — informa-
tion that is immediately overwritten by setting the other one
as the root.

3.2 Training
We typically train our model with a supervised pre-
training phase followed by a reinforcement learning
(RL) phase. During the pre-training phase, the log-
likelihood of the model on goldish sequences of
actions is maximised: for each token of a sentence,
we generate a sequence of actions of minimum
length leading to the gold annotation, randomly
permute it (each time with a different permutation)
and pad it with HALT so as to match the length of
the longest sequence (over the sentence), before
a final HALT is added. For example, for a token
tagged with the POS tag of id 7, syntactically de-
pendent (label of id 12) on the token 3, and that is
neither a top predicate nor semantically dependent
on any token, one of the two goldish sequences is

[SYN-3-12, TAG-7, HALT, HALT, HALT]

(if all tokens in the sentence can be fully annotated
with a maximum of four actions). Using such se-
quences intuitively teaches the system to predict
all annotations as quickly as possible, with no or-
dering preference. When the performance of the
model on the SDP task saturates (early stopping on
the development set), we switch to the RL phase,
during which we expect the model to infer a good
strategy as to how to order the different actions.

In relation to the reinforcement process, each
action ai,s is associated with a reward r(ai,s, i, s).
The role of RL is to train the model to maximise
the expected sum of rewards J = E(R), where
R =

∑
sRs and Rs =

∑
i r(ai,s, i, s). We com-

pute the rewards in the following way. Let #pos be
the number of POS annotations (which is also the
number of tokens) in the training set, whileN is the
number of sentences. We then define rpos = N

#pos .
The creation of a correct POS annotation and the
suppression of an incorrect one (which can hap-
pen by overwriting) both correspond to a reward
of rpos, while the creation of an incorrect POS
annotation and the suppression of a correct one
correspond to a reward of −rpos. Syntactic and
semantic dependencies are treated similarly, with
syntactic root (resp. semantic top predicate) annota-
tions counted as a virtual syntactic (resp. semantic)
dependencies. As a consequence, the construction
of the full gold structure corresponds on average to
a reward of 3 per sentence, equally balanced across
the three layers. The reward associated to a given
action is then computed as the sum of the reward of
its effects, minus a small constant negative penalty

787

in the case of non HALT actions (set at a tenth of
the average reward per token in the training set)
aimed at discouraging the model from loitering.

The RL algorithm we use to optimise our model
is a modification of REINFORCE (Williams, 1992).
We adapt it to take into account the fact that multi-
ple actions (one per token) are performed at each
time step. To do so, we simply distribute future
rewards to each token’s discounted reward equally.
More formally, given the discount factor γ, the dis-
counted reward for token i at time step s is defined
as

Gi,s = r(ai,s, i, s) +
∑
s′≥1

γs
′Rs+s′

n
,

where n is the length of the sentence.4 The direc-
tion of the parameters update for a given episode is
then the one obtained from REINFORCE summed
over all tokens:

∇θLp =
∑
s≥0,i

(Gi,s − bi,s)∇θ log πi,s(ai,s)

where bi,s is the baseline term.5 We use a state
value baseline, which is trained by minimising its
squared error with the observed return:

∇θLb =
∑
s≥0,i

2 (∇θbi,s −Gi,s).

The policy and baseline parameters updates are
weighted with coefficients 0.67 and 0.33 respec-
tively. Note that we update the baseline term also
during the pre-training phase, using the rewards ob-
tained following the goldish sequences. Finally, we
additionally maximise the entropy of each policy
with a coefficient 0.002.

Optimisation is done using Adam (Kingma and
Ba, 2015). The search for learning rates has been
done manually, optimising the semantic F1 on the
development set using the DM formalism.6 We
first found that a learning rate of 5.10−4 during pre-
training gave satisfying results (the other optimiser
parameters are left as set by default in TensorFlow,
i.e. β1 = 0.9, β2 = 0.999 and ε = 10−8), then
that using a learning rate of 5.10−5 during the sub-
sequent RL phase was a reasonable choice.

4Kurita and Søgaard (2019) do not discuss the definition
of the discounted rewards and only use the immediate local
reward (corresponding to a discounting factor γ = 0). We use
here the fairly standard value γ = 0.99.

5The baseline term is not strictly necessary: its goal is to
reduce the variance of the estimate of the gradient in order to
speed the learning process (Sutton and Barto, 2018, §13).

6See Section 4 about the different formalisms.

3.3 Token representations

We first define a base encoding for each token,
composed of a 100-dimensional pre-trained GloVe
word embedding (Pennington et al., 2014) concate-
nated to a POS tag embedding7, a sum of prefix
embeddings, a sum of suffix embeddings, a few
other tagging features and two binary features in-
dicating whether the token is currently predicted
as the root or a semantic top predicate. (More de-
tail is given in appendix A.) These base encodings
are first sent through a dense ReLU layer before
serving as input to the token representation module,
which is composed of two layers of the architecture
depicted in Figure 1. These layers contain a syntax
encoder and a semantics encoder, the role of which
are to linearise the partial syntactic and semantic
structures respectively. These graph encoders are
inspired by the work of Kurita and Søgaard (2019);
the main difference lies in the use here of sum-
mation instead of a more powerful but also more
expensive recurrent neural network.

Given a labelled graph — defining a set of par-
ents parents(i) and of children children(i) for each
token i along with l(j, i), the label of the arc from
j to i when it exists — and noting ui for the in-
put corresponding to token i and vl for the embed-
ding of label l, we define the downward encoding
of i as wdi =

∑
j∈children(i) Dense([uj , vl(i,j)])

(where Dense represents a dense ReLU layer).
Similarly, the upward encoding of i is defined
as wui =

∑
j∈parents(i) Dense([uj , vl(j,i)]) (where

Dense represents another dense ReLU layer). Fi-
nally, the bothward encoding of i is defined as
the concatenation of the two previous vectors:
wi = [wdi , w

u
i]. For the output of the syntax en-

coder, we use the bothward encodings of the syn-
tactic graph while for the output of the semantic
encoder we use only the upward encodings of the
semantic graph.

The output of the second layer of the token repre-
sentation module is sent (i) to a multilayer percep-
tron (MLP) that computes the state value bi,t (the
baseline term) and (ii) to different sub-networks
that compute the logits of the actions (i.e. the val-
ues from which the probabilities are obtained by
applying softmax), which are described in the next
section.8

7The corresponding vocabulary includes a “not tagged yet”
embedding.

8All BiLSTMs that we use are actually 2-layer BiLSTMs,
and all MLPs have two hidden layers.

788

Figure 1: One layer of the token representation module. Each sequence is composed of one vector per token. Each
of the circles directly linked to the output of the BiLSTM is a gate parametrised by a scalar α and represents the
function (v1, v2) 7→ σ(α)v1 + (1− σ(α))v2. See the text for the definition of the syntax and semantics encoder.

3.4 Action logits

The logit of each action is computed by one of three
sub-networks. The first one is an MLP that returns
the logits for TAG-t actions, ROOT, TOP PRED and
HALT. The second returns the logits for SYN-j-l
actions: the logit, for token i, to select token j
as governor, for all possible dependency labels is
given by MLP([vi, vj , v

′
i,j]) ∈ R|L|, where |L| is

the number of dependency labels and v′i,j ∈ B|L|+1

is a one-hot vector indicating whether j is currently
governor of i and if so, what is the label of the
corresponding dependency. The last sub-network
returns the logits for SEM-j-l actions in exactly the
same way. The policy is then obtained by applying
the softmax function to the concatenation of the
output of these different sub-networks.

4 Experiments

To test whether MTI is a viable paradigm and deter-
mine the impact of RL, in this section we test the
model described above along with three variants.
These four models can be seen as combinations of
two binary traits. The first trait pertains to the order-
ing of the actions: sequential models simulate se-
quential pipelines, while for free models, as above,
no particular constraint is imposed. A sequential
model can only select TAG-t actions during the first
step of an episode, only SYN-j-l and ROOT during
the second and only SEM-j-l, TOP PRED and HALT

afterwards. This is ensured by using as policy for
each token the vector obtained by normalising a
masked version of its usual policy.9 The second
trait pertains to the learning process: supervised
models are only trained in the pre-training phase

9The goldish sequences used during pre-training are modi-
fied accordingly. The ordering of the selection of the possibly
multiple semantic parents of any given token is still random.

while RL models, as above, are further trained us-
ing reinforcement learning.

4.1 Data

We use data from the SemEval 2015 Task 18
(Oepen et al., 2015), which provides POS tags,
lemmas, syntactic parses and semantic parses for
English, Chinese and Czech texts. Concerning En-
glish, the same data is annotated with three distinct
formalisms: DELPH-IN MRS-Derived Bi-Lexical
Dependencies (DM), Enju Predicate–Argument
Structures (PAS) and Prague Semantic Dependen-
cies (PSD). They all represent a semantic analysis
as a bi-lexical dependency DAG. We use here the
standard split of the English data. The train set is
composed of 33,964 sentences from sections 0–19
of the WSJ corpus, the development set of 1,692
from section 20 and the (in-domain) test set of
1,410 from section 21. During training, for sim-
plicity, we always use the gold (morpho)syntax
annotation provided under the form of Stanford Ba-
sic dependencies derived from the PTB, even when
working with the DM formalism (which comes
with different annotations).10

4.2 Semantics

Table 1 shows the average F1 for labelled semantic
dependencies over the three formalisms in each set-
ting. Three randomly initialised runs are used for
each formalism, with each performance computed
using the script provided by the shared task. Every-
where in this text, F1 are micro-F1 (i.e. computed
over the whole dataset instead of at the sentence
level). We first observe that RL models perform
better than their supervised-only counterparts, a

10All data and evaluation scripts can be found on
the shared task’s website: http://alt.qcri.org/
semeval2015/task18/.

http://alt.qcri.org/semeval2015/task18/
http://alt.qcri.org/semeval2015/task18/

789

(sem.) sequential free ∆

supervised 84.9 (86.4) 85.7 (87.2) 0.8 (0.8)
RL 86.5 (87.9) 87.3 (88.5) 0.8 (0.6)
∆ 1.6 (1.5) 1.6 (1.3)

Table 1: Average of the F1 over the three semantic for-
malism on the in-domain test set. Scores on the devel-
opment set are given in brackets.

result consistent with the findings of Kurita and
Søgaard (2019). This indicates that RL allows the
model to infer a good ordering strategy (limited to
the ordering of the semantic actions in the sequen-
tial regime) and/or trains it to be more robust to its
own mistakes (an effect similar to that of dynamic
oracles). Second, we observe that free models per-
form better than their sequential counterparts. This
indicates, as we had hypothesised, that a strict or-
dering of actions following a traditional hierarchy
of levels of analysis is not optimal and that MTI
is a potentially powerful form of MTL (note that
the sequential models here implement a relatively
traditional form of MTL). Finally, we see that these
two effects are additive.

4.3 Syntax and POS tagging

Let us turn to the performance of our model on the
syntactic parsing and POS tagging tasks in the four
settings. Table 2 shows the F1 for labelled syntactic
dependencies11, averaged over all nine correspond-
ing runs. Following Chen and Manning (2014)’s
recommendation, punctuation is excluded from the
evaluation. What we observe is that while the use
of RL and (more particularly) non-sequentiality
have a small impact on syntactic parsing, it is still
noticeable. All scores on the test set are statisti-
cally different according to Pitman’s permutation
test, with a p-value under 10−3.12 The combina-
tion of RL with free-ordering appears a particularly
good combination.

As shown in Table 3, the use of RL also has
a statistically significant impact on POS tagging,

11As we do not constrain the model to produce complete
syntactic trees, the natural measure here is indeed F1. In
practice, however, the parsing rate (the ratio of tokens that
either have an incoming dependency or are predicted to be
the root) is always higher that 99%, meaning that recall and
precision are almost equal and that F1 is very similar to a
labelled attachment score (LAS). A similar remark applies to
POS tagging.

12We use the permutation test to check whether the distri-
butions of the scores in each setting (nine runs) are distinct
from each other. See the work of Dror et al. (2018) for an
NLP-oriented discussion of statistical significance.

(synt.) sequential free ∆

supervised 91.0 (91.1) 91.1 (91.4) 0.2 (0.3)
RL 91.8 (91.9) 92.3 (92.2) 0.5 (0.4)
∆ 0.8 (0.8) 1.2 (0.8)

Table 2: Average syntactic F1 on the in-domain test set.
Scores on the development set are given in brackets.

(tag.) sequential free ∆

supervised 96.9 (97.1) 96.9 (97.1) 0.0 (0.0)
RL 97.1 (97.2) 97.2 (97.2) 0.0 (0.0)
∆ 0.2 (0.1) 0.2 (0.1)

Table 3: Average tagging F1 on the in-domain test set.
Scores on the development set are given in brackets.

although of very low magnitude. Free-ordering,
however, has no perceptible effect (the correspond-
ing deltas are in fact positive but strictly smaller
than 0.05 and the distributions they compare are
not distinguishable).

Note that while we do not use the same split of
the WSJ Corpus as them, a comparison with the
91.87 LAS on syntax and 96.92 accuracy on POS
tagging obtained by the model of Strubell et al.
(2018) — which is also trained to perform these
tasks jointly with a form of semantic parsing —
indicates that our free+RL model, with 92.3 F1 on
syntax and 97.2 on POS tagging, performs at least
reasonably well.

4.4 Inferred strategies

In order to better understand why our MTI
paradigm leads to better performance not only on
the syntactic task but also on the semantic one, we
now perform a brief study of the ordering strategy
inferred by our free+RL model. We focus here on
the SYN-j-l and SEM-j-l actions and look at the
average time step at which they are created as a
function of their length.13 Figure 2 shows that for
the PAS formalism, on average, the system creates
(i) syntactic dependencies before semantic ones and
(ii) short dependencies before long ones.14 This
tends to indicate that the model follows an easy-first
strategy and that, as often assumed, it is preferable

13Sometimes, though rarely, does the model select the
same action multiple times (for the same token) over a single
episode. We filter out useless actions, that is to say, the ones
that do not modify the structure when they are applied.

14Each figure mentioned in this paragraph corresponds to a
randomly picked run. The behaviour observed is very consis-
tent across the different runs for a given semantic formalism.

790

0 2 4 6 8 10 12 14 16

1

2

3

4

dependency length

av
er

ag
e

tim
e

st
ep

Syntax Syn. avg. Semantics Sem. avg.

Figure 2: PAS semantic formalism: average time step
(from 0) at which syntactic and semantic dependencies
are created as a function of their length. Error bars in-
dicate the standard error of the mean.

to perform syntactic before semantic parsing15, at
least when dealing with this specific semantic for-
malism. Indeed, figure 3 shows that the strategy
inferred when training on the DM formalism is rad-
ically different: short dependencies are still created
before long ones (note that the number of depen-
dencies decreases very rapidly with their length),
but the syntactic and the semantic structures are
built much more concurrently, with semantic struc-
tures being, on average, generated before syntactic
ones of the same length. The strategy inferred for
the PSD formalism, not depicted here, is qualita-
tively similar to the one for DM. In light of these
observations, we can better understand why both
tasks benefit from MTI: it is not true, in general,
that syntactic parsing should be performed (even
on average) before semantic parsing.

4.5 Comparison with other parsers

Finally, table 4 compares the performance of our
free+RL model with state-of-the-art SDP parsers
that, for fairer comparison, do not use ELMo
or BERT embeddings, nor rely on lemma input:
Peng et al. (2017)’s FREDA3, Peng et al. (2018a)’s
SPIGOT, Wang et al. (2019)’s MF model and a
model by Kurita and Søgaard (2019).16 Note that

15On average only, as some semantic dependencies are still
created before syntactic ones.

16Dozat and Manning (2018) report very high scores, but
as indicated in the Q&A session of their ACL 2018 talk
(https://vimeo.com/285804230) — a fact pointed
out by Kurita and Søgaard (2019) —, these scores correspond
to a macro-F1 instead of the micro-F1 computed by the shared
task tool, thus giving more relative weight to shorter sentences.

0 2 4 6 8 10 12 14 16
0.5

1

1.5

2

dependency length

av
er

ag
e

tim
e

st
ep

Syntax Syn. avg. Semantics Sem. avg.

Figure 3: DM semantic formalism: average time step
(from 0) at which syntactic and semantic dependencies
are created as a function of their length. Error bars in-
dicate the standard error of the mean.

Model DM PAS PSD all avg.

FREDA3 90.4 92.7 78.5 88.0 87.2
K&S (-lem.) 91.2 92.9 78.8 88.5 87.6
SPIGOT 91.6 78.9
MF 93.0 94.3 80.9 89.4

free+RL 91.1 91.7 79.0 88.1 87.3

Table 4: Semantic F1 on the in-domain test set for each
of the three formalisms, along with the F1 over all for-
malisms (all) and the average of the F1 over all for-
malisms (avg.). All tends to be higher than avg. be-
cause PAS happens to be both the most simple formal-
ism and the one introducing the highest number of de-
pendencies, while the opposite is true of PSD.

our model is the only one that does not rely on the
provided POS tags at inference time.17

Wang et al. (2019)’s second-order model, based
on mean field variational inference, is clearly ahead
in terms of performance. Among the other four,
our model achieves competitive performance on
the DM and PSD formalisms. It is, however, some-
what behind when it comes to the PAS formalism.
Understanding why this is so is left as a subject of
future research.

5 Conclusion and future work

We have defined Multiple Tasks Integration as a
set of principles for joint processing, orthogonal to
weight sharing. The essence of MTI is to process
the input iteratively but concurrently on multiple

17In the English data, the PAS and PSD graphs come with
the tags of the PTB (Marcus et al., 1993) while the DM ones
come with the tags of DeepBank (Flickinger et al., 2012).

https://vimeo.com/285804230

791

levels of analysis, basing each decision on all of
the structures already inferred and free from usual
ordering constraints. This way, the different tasks
can interact in the full sense of the term. To train
such a system, we propose using reinforcement
learning algorithms, thus allowing it to infer its
own ordering strategy.

In practice, we have trained a system to perform
part-of-speech tagging, syntactic dependency pars-
ing and semantic dependency parsing. We have
observed that both the use of reinforcement learn-
ing and the release from sequential constraints are
beneficial, not only to the (seemingly) highest level
task (i.e. semantic parsing), but also to some in-
termediate ones (i.e. syntactic parsing). If the in-
ferred strategies are interpreted as being easy-first
— which is supported by the fact that shorter de-
pendencies have a strong tendency to be generated
before longer ones —, then we have observed that
syntactic parsing is not necessarily simpler than
semantic parsing and that both benefit from being
executed concurrently.

While our model is not yet as effective as today’s
most complex systems, it is still competitive with
most of the parsers presented in the recent litera-
ture, even though it uses a poorer input signal for
inference (consisting of the raw tokens only). Fur-
thermore, several aspects of the current system are
open to developments that seem likely to improve
performance. For instance, we do not use here the
full potential of reinforcement learning, as what we
optimise (the expected sum of rewards) is not the
metric we are interested in (which would be either
an average of the three F1 or the semantic one). For
each of the three tasks, the sum of the rewards we
have defined approaches, up to a multiplicative con-
stant, the corresponding F1 of the system when the
latter approaches 100%, but a better approximation
might prove more successful. In a similar vein, Ku-
rita and Søgaard (2019), who work with a similar
architecture as far as SDP is concerned, penalise
HALT actions when relevant dependencies are still
missing, which intuitively boosts recall. Note also
that our network is still rather simple, in that it
does not use any form of regularisation nor any
advanced technique to handle out-of-vocabulary
words.

We would also be interested in applying MTI to
other tasks and in studying how well it can learn
from incomplete annotations. Our architecture can
be straightforwardly adapted to any labelling or

graph building task, as long as all nodes are tokens
of the input sentence. In contrast, work remains to
be done in order to handle formalisms such as Ab-
stract Meaning Representation (AMR, Banarescu
et al., 2013) or on how to integrate a generation
component with, for example, the goal of translat-
ing the sentence being analysed.

Acknowledgments

The author thanks Marie Candito for discussion on
this paper.

This paper is based on results obtained from
project JPNP15009, commissioned by the New En-
ergy and Industrial Technology Development Or-
ganization (NEDO). The computational resources
of the AI Bridging Cloud Infrastructure (ABCI),
provided by the National Institute of Advanced In-
dustrial Science and Technology (AIST), Japan,
were used for this work.

References

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract Meaning Representation
for Sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse, pages 178–186. Association for Compu-
tational Linguistics. Event-place: Sofia, Bulgaria.

Xavier Carreras and Lluı́s Màrquez. 2005. Introduc-
tion to the CoNLL-2005 Shared Task: Semantic
Role Labeling. In Proceedings of the Ninth Confer-
ence on Computational Natural Language Learning,
pages 152–164, Ann Arbor, Michigan. Association
for Computational Linguistics.

Rich Caruana. 1997. Multitask Learning. Machine
Learning, 28(1):41–75.

Danqi Chen and Christopher Manning. 2014. A Fast
and Accurate Dependency Parser using Neural Net-
works. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 740–750, Doha, Qatar. Association
for Computational Linguistics.

Matthieu Constant and Joakim Nivre. 2016. A
transition-based system for joint lexical and syntac-
tic analysis. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 161–171. Associa-
tion for Computational Linguistics.

Timothy Dozat and Christopher D. Manning. 2018.
Simpler but More Accurate Semantic Dependency

http://aclweb.org/anthology/W13-2322
http://aclweb.org/anthology/W13-2322
https://www.aclweb.org/anthology/W05-0620/
https://www.aclweb.org/anthology/W05-0620/
https://www.aclweb.org/anthology/W05-0620/
https://doi.org/10.1023/A:1007379606734
http://www.aclweb.org/anthology/D14-1082
http://www.aclweb.org/anthology/D14-1082
http://www.aclweb.org/anthology/D14-1082
https://doi.org/10.18653/v1/P16-1016
https://doi.org/10.18653/v1/P16-1016
https://doi.org/10.18653/v1/P16-1016
https://doi.org/10.18653/v1/P18-2077

792

Parsing. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 2: Short Papers), pages 484–490, Mel-
bourne, Australia. Association for Computational
Linguistics.

Rotem Dror, Gili Baumer, Segev Shlomov, and Roi Re-
ichart. 2018. The Hitchhiker’s Guide to Testing Sta-
tistical Significance in Natural Language Processing.
In Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1383–1392, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Dan Flickinger, Yi Zhang, and Valia Kordoni. 2012.
DeepBank. A dynamically annotated treebank of the
Wall Street Journal. In Proceedings of the 11th In-
ternational Workshop on Treebanks and Linguistic
Theories, pages 85–96.

Yoav Goldberg and Michael Elhadad. 2010. An Effi-
cient Algorithm for Easy-First Non-Directional De-
pendency Parsing. In Human Language Technolo-
gies: The 2010 Annual Conference of the North
American Chapter of the Association for Computa-
tional Linguistics, pages 742–750, Los Angeles, Cal-
ifornia. Association for Computational Linguistics.

Yoav Goldberg and Joakim Nivre. 2012. A Dynamic
Oracle for Arc-Eager Dependency Parsing. In Pro-
ceedings of COLING 2012, pages 959–976, Mum-
bai, India. The COLING 2012 Organizing Commit-
tee.

Jan Hajič, Massimiliano Ciaramita, Richard Johans-
son, Daisuke Kawahara, Maria Antònia Martı́, Lluı́s
Màrquez, Adam Meyers, Joakim Nivre, Sebastian
Padó, Jan Štěpánek, Pavel Straňák, Mihai Surdeanu,
Nianwen Xue, and Yi Zhang. 2009. The CoNLL-
2009 Shared Task: Syntactic and Semantic Depen-
dencies in Multiple Languages. In Proceedings of
the Thirteenth Conference on Computational Nat-
ural Language Learning (CoNLL 2009): Shared
Task, pages 1–18, Boulder, Colorado. Association
for Computational Linguistics.

James Henderson, Paola Merlo, Gabriele Musillo, and
Ivan Titov. 2008. A Latent Variable Model of Syn-
chronous Parsing for Syntactic and Semantic De-
pendencies. In CoNLL 2008: Proceedings of the
Twelfth Conference on Computational Natural Lan-
guage Learning, pages 178–182, Manchester, Eng-
land. Coling 2008 Organizing Committee.

James Henderson, Paola Merlo, Ivan Titov, and
Gabriele Musillo. 2013. Multilingual Joint Pars-
ing of Syntactic and Semantic Dependencies with a
Latent Variable Model. Computational Linguistics,
39(4):949–998.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
Method for Stochastic Optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Shuhei Kurita and Anders Søgaard. 2019. Multi-Task
Semantic Dependency Parsing with Policy Gradient
for Learning Easy-First Strategies. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 2420–2430, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Jason Lee, Elman Mansimov, and Kyunghyun Cho.
2018. Deterministic Non-Autoregressive Neural Se-
quence Modeling by Iterative Refinement. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1173–
1182, Brussels, Belgium. Association for Computa-
tional Linguistics.

Zachary C. Lipton. 2018. The Mythos of Model Inter-
pretability. ACM Queue, 16(3):1–27.

Bruce T. Lowerre. 1976. The HARPY Speech Recogni-
tion System. Ph.D. Thesis, Carnegie Mellon Univer-
sity, Pittsburgh, PA, USA.

Chunchuan Lyu, Shay B. Cohen, and Ivan Titov. 2019.
Semantic Role Labeling with Iterative Structure Re-
finement. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
1071–1082, Hong Kong, China. Association for
Computational Linguistics.

Minh Lê and Antske Fokkens. 2017. Tackling Er-
ror Propagation through Reinforcement Learning: A
Case of Greedy Dependency Parsing. In Proceed-
ings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Volume 1, Long Papers, pages 677–687, Valencia,
Spain. Association for Computational Linguistics.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a Large Annotated
Corpus of English: The Penn Treebank. Computa-
tional Linguistics, 19(2):313–330.

André Martins, Noah Smith, Mário Figueiredo, and Pe-
dro Aguiar. 2011. Dual Decomposition with Many
Overlapping Components. In Proceedings of the
2011 Conference on Empirical Methods in Natural
Language Processing, pages 238–249, Edinburgh,
Scotland, UK. Association for Computational Lin-
guistics.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Silvie Cinkova, Dan Flickinger, Jan
Hajic, and Zdenka Uresova. 2015. SemEval 2015
Task 18: Broad-Coverage Semantic Dependency
Parsing. In Proceedings of the 9th International
Workshop on Semantic Evaluation (SemEval 2015),
pages 915–926. Association for Computational Lin-
guistics. Denver, Colorado.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Dan Flickinger, Jan Hajič, Angelina
Ivanova, and Yi Zhang. 2014. SemEval 2014 Task 8:

https://doi.org/10.18653/v1/P18-2077
https://doi.org/10.18653/v1/P18-1128
https://doi.org/10.18653/v1/P18-1128
https://www.dfki.de/fileadmin/user_upload/import/6619_DeepBank_tlt11.pdf
https://www.dfki.de/fileadmin/user_upload/import/6619_DeepBank_tlt11.pdf
https://www.aclweb.org/anthology/N10-1115/
https://www.aclweb.org/anthology/N10-1115/
https://www.aclweb.org/anthology/N10-1115/
https://www.aclweb.org/anthology/C12-1059
https://www.aclweb.org/anthology/C12-1059
https://www.aclweb.org/anthology/W09-1201
https://www.aclweb.org/anthology/W09-1201
https://www.aclweb.org/anthology/W09-1201
https://www.aclweb.org/anthology/W08-2122
https://www.aclweb.org/anthology/W08-2122
https://www.aclweb.org/anthology/W08-2122
https://doi.org/10.1162/COLI_a_00158
https://doi.org/10.1162/COLI_a_00158
https://doi.org/10.1162/COLI_a_00158
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/P19-1232
https://doi.org/10.18653/v1/P19-1232
https://doi.org/10.18653/v1/P19-1232
https://doi.org/10.18653/v1/D18-1149
https://doi.org/10.18653/v1/D18-1149
http://doi.acm.org/10.1145/3236386.3241340
http://doi.acm.org/10.1145/3236386.3241340
https://apps.dtic.mil/docs/citations/ADA035146
https://apps.dtic.mil/docs/citations/ADA035146
https://doi.org/10.18653/v1/D19-1099
https://doi.org/10.18653/v1/D19-1099
https://www.aclweb.org/anthology/E17-1064/
https://www.aclweb.org/anthology/E17-1064/
https://www.aclweb.org/anthology/E17-1064/
https://www.aclweb.org/anthology/J93-2004
https://www.aclweb.org/anthology/J93-2004
https://www.aclweb.org/anthology/D11-1022
https://www.aclweb.org/anthology/D11-1022
https://doi.org/10.18653/v1/S15-2153
https://doi.org/10.18653/v1/S15-2153
https://doi.org/10.18653/v1/S15-2153
https://doi.org/10.3115/v1/S14-2008

793

Broad-Coverage Semantic Dependency Parsing. In
Proceedings of the 8th International Workshop on
Semantic Evaluation (SemEval 2014), pages 63–72,
Dublin, Ireland. Association for Computational Lin-
guistics.

Hao Peng, Sam Thomson, and Noah A. Smith. 2017.
Deep Multitask Learning for Semantic Dependency
Parsing. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 2037–2048, Van-
couver, Canada. Association for Computational Lin-
guistics.

Hao Peng, Sam Thomson, and Noah A. Smith. 2018a.
Backpropagating through Structured Argmax using
a SPIGOT. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), volume 1, pages 1863–
1873.

Hao Peng, Sam Thomson, Swabha Swayamdipta, and
Noah A. Smith. 2018b. Learning Joint Semantic
Parsers from Disjoint Data. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long Pa-
pers), pages 1492–1502, New Orleans, Louisiana.
Association for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. GloVe: Global Vectors for Word
Representation. In Empirical Methods in Natural
Language Processing (EMNLP), pages 1532–1543.
11283.

Sebastian Ruder. 2017. An Overview of Multi-
Task Learning in Deep Neural Networks.
arXiv:1706.05098 [cs, stat].

Libin Shen, Giorgio Satta, and Aravind Joshi. 2007.
Guided Learning for Bidirectional Sequence Classi-
fication. In Proceedings of the 45th Annual Meet-
ing of the Association of Computational Linguistics,
pages 760–767, Prague, Czech Republic. Associa-
tion for Computational Linguistics.

Veselin Stoyanov and Jason Eisner. 2012. Easy-first
Coreference Resolution. In Proceedings of COL-
ING 2012, pages 2519–2534, Mumbai, India. The
COLING 2012 Organizing Committee.

Emma Strubell, Patrick Verga, Daniel Andor,
David Weiss, and Andrew McCallum. 2018.
Linguistically-Informed Self-Attention for Seman-
tic Role Labeling. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 5027–5038. Association
for Computational Linguistics. 00015 event-place:
Brussels, Belgium.

Mihai Surdeanu, Richard Johansson, Adam Meyers,
Lluı́s Màrquez, and Joakim Nivre. 2008. The
CoNLL-2008 Shared Task on Joint Parsing of Syn-
tactic and Semantic Dependencies. In CoNLL 2008:

Proceedings of the Twelfth Conference on Computa-
tional Natural Language Learning, pages 159–177,
Manchester, England. Coling 2008 Organizing Com-
mittee.

Richard S. Sutton and Andrew G. Barto. 2018. Rein-
forcement Learning: An Introduction, second edi-
tion edition. Adaptive Computation and Machine
Learning series. MIT Press.

Swabha Swayamdipta, Miguel Ballesteros, Chris Dyer,
and Noah A. Smith. 2016. Greedy, Joint Syntactic-
Semantic Parsing with Stack LSTMs. In Proceed-
ings of The 20th SIGNLL Conference on Computa-
tional Natural Language Learning, pages 187–197.
Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran Asso-
ciates, Inc.

Xinyu Wang, Jingxian Huang, and Kewei Tu. 2019.
Second-Order Semantic Dependency Parsing with
End-to-End Neural Networks. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4609–4618, Florence,
Italy. Association for Computational Linguistics.

Yuxuan Wang, Wanxiang Che, Jiang Guo, and Ting Liu.
2018. A Neural Transition-Based Approach for Se-
mantic Dependency Graph Parsing. In Proceedings
of the Thirty-Second AAAI Conference on Artificial
Intelligence, pages 5561–5568. AAAI Publications.

Ronald J. Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Machine Learning, 8(3-4):229–256.

Jun Xie, Chao Ma, Janardhan Rao Doppa, Prashanth
Mannem, Xiaoli Fern, Thomas G. Dietterich, and
Prasad Tadepalli. 2015. Learning Greedy Policies
for the Easy-First Framework. In Twenty-Ninth
AAAI Conference on Artificial Intelligence.

Sheng Zhang, Xutai Ma, Kevin Duh, and Benjamin
Van Durme. 2019. Broad-Coverage Semantic
Parsing as Transduction. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3784–3796, Hong Kong,
China. Association for Computational Linguistics.

Xingxing Zhang, Jianpeng Cheng, and Mirella Lapata.
2017. Dependency Parsing as Head Selection. In
Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Volume 1, Long Papers, pages 665–676,
Valencia, Spain. Association for Computational Lin-
guistics.

https://doi.org/10.3115/v1/S14-2008
https://doi.org/10.18653/v1/P17-1186
https://doi.org/10.18653/v1/P17-1186
https://aclanthology.info/papers/P18-1173/p18-1173
https://aclanthology.info/papers/P18-1173/p18-1173
https://doi.org/10.18653/v1/N18-1135
https://doi.org/10.18653/v1/N18-1135
http://www.aclweb.org/anthology/D14-1162/
http://www.aclweb.org/anthology/D14-1162/
http://arxiv.org/abs/1706.05098
http://arxiv.org/abs/1706.05098
https://www.aclweb.org/anthology/P07-1096/
https://www.aclweb.org/anthology/P07-1096/
https://www.aclweb.org/anthology/C12-1154
https://www.aclweb.org/anthology/C12-1154
http://aclweb.org/anthology/D18-1548/
http://aclweb.org/anthology/D18-1548/
https://www.aclweb.org/anthology/W08-2121
https://www.aclweb.org/anthology/W08-2121
https://www.aclweb.org/anthology/W08-2121
https://mitpress.mit.edu/books/reinforcement-learning-second-edition
https://mitpress.mit.edu/books/reinforcement-learning-second-edition
https://doi.org/10.18653/v1/K16-1019
https://doi.org/10.18653/v1/K16-1019
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://doi.org/10.18653/v1/P19-1454
https://doi.org/10.18653/v1/P19-1454
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16549
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16549
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9594
https://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9594
https://doi.org/10.18653/v1/D19-1392
https://doi.org/10.18653/v1/D19-1392
https://www.aclweb.org/anthology/E17-1063

794

Yu Zhang and Qiang Yang. 2018. A Survey on Multi-
Task Learning. arXiv:1707.08114 [cs].

Jie Zhou and Wei Xu. 2015. End-to-end learning of se-
mantic role labeling using recurrent neural networks.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
1127–1137, Beijing, China. Association for Compu-
tational Linguistics.

A Appendix: Base encodings

The base encoding of a given token (introduced in
Section 3.3) is composed of the concatenation of
four vectors and five binary values.

• The GloVe embeddings that we use are the
100-dimensional vectors of the 6B (uncased)
release. We do not fine-tune them. All words
present in the training set use their correspond-
ing GloVe entry. All other words are consid-
ered unknown and are assigned the average of
these embeddings.

• For POS tag embeddings, we use randomly
initialised 50-dimensional vectors.

• We use a sum of prefix embeddings. We first
consider all cased prefixes of length 1, 2 or
3 and then filter out all those that appear in
less that a thousandth of the tokens and less
that a thousandth of the word forms in the
training set. The remaining prefixes are as-
signed a randomly initialised 32-dimensional
vector. (Unknown prefixes correspond to a
zero vector.)

• We use a sum of similar suffix embeddings.

• One binary value indicates whether the token
starts with an upper case letter.

• One binary value indicates whether there is
any upper case letter in the token.

• One binary value indicates whether the token
is a number (matching the \d+(\.\d+)?
regular expression).

• One binary value indicates whether the token
is currently annotated as the (syntactic) root.

• One binary value indicates whether the token
is currently annotated as a (semantic) top pred-
icate.

In future work, we plan to substitute a more gen-
eral character-level word embedding model for the
tagging features (i.e., the prefix and suffix embed-
dings and the three first binary features).

http://arxiv.org/abs/1707.08114
http://arxiv.org/abs/1707.08114
https://doi.org/10.3115/v1/P15-1109
https://doi.org/10.3115/v1/P15-1109

