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Abstract

Image captioning has focused on generalizing
to images drawn from the same distribution
as the training set, and not to the more chal-
lenging problem of generalizing to different
distributions of images. Recently, Nikolaus
etal. (2019) introduced a dataset to assess com-
positional generalization in image captioning,
where models are evaluated on their ability to
describe images with unseen adjective—noun
and noun—verb compositions. In this work, we
investigate different methods to improve com-
positional generalization by planning the syn-
tactic structure of a caption. Our experiments
show that jointly modeling tokens and syntac-
tic tags enhances generalization in both RNN-
and Transformer-based models, while also im-
proving performance on standard metrics.

1 Introduction

Image captioning is a core task in multimodal NLP,
where the aim is to automatically describe the con-
tent of an image in natural language. To succeed in
this task, a model first needs to recognize and un-
derstand the properties of the image. Then, it needs
to generate well-formed sentences, requiring both a
syntactic and a semantic knowledge of the language
(Hossain et al., 2019). Deep learning techniques
are the standard approach to tackling this problem:
images are represented by visual features extracted
from Convolutional Neural Networks (e.g. He et al.
2016), and sentences are generated by condition-
ing Recurrent Neural Networks (e.g. Hochreiter
and Schmidhuber 1997), or Transformers (Vaswani
et al., 2017) on the extracted visual features.
While deep neural networks achieve impressive
performance in a variety of applications, including
image captioning, their ability to demonstrate com-
positionality, defined as the algebraic potential to
understand and produce novel combinations from
known components (Loula et al., 2018), has been

questioned. Semantic compositionality of language
in neural networks has attracted interest in the com-
munity (Irsoy and Cardie, 2014; Lake and Baroni,
2018; Baroni, 2019) as compositionality is conjec-
tured to be a core feature not only of language but
also of human thought (Fodor and Lepore, 2002).

In image captioning, improving compositional
generalization is a fundamental step towards gen-
eralizable systems that can be employed in daily
life. To this end, Nikolaus et al. (2019) recently
introduced a compositional generalization dataset
where models need to describe images that depict
unseen compositions of primitive concepts. For ex-
ample, models are trained to describe images with
“white” entities and all types of “dog” concepts but
never the adjective—noun composition of “white
dog.” In their dataset, models are evaluated on their
ability to caption images depicting the unseen com-
position of held out concepts. Their study suggests
that RNN-based captioning models do not com-
positionally generalize, and that this is primarily
attributable to the language generation component.

In this paper, we study the potential for syntax
to improve compositional generalization in image
captioning by combining syntactic planning and
language generation in a single model. Our study
is inspired by the traditional Natural Language Gen-
eration (NLG) framework (Reiter and Dale, 1997),
where NLG is split into three distinct steps: text
planning, sentence planning, and linguistic real-
ization. While state-of-the-art captioning models
typically proceed directly from visual features to
sentence generation, we hypothesize that a model
that plans the structure of a sentence as an inter-
mediate step will improve compositional general-
ization. A model with a planning step can learn
the high-level structure of sentences, making it less
prone to overfitting the training data.

Specifically, we explore three methods for inte-
grating syntactic planning into captioning in our
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experiments: (a) pre-generation of syntactic tags
from the image, (b) interleaved generation of syn-
tactic tags and words (Nadejde et al., 2017), and (c)
multi-task learning with a shared encoder that pre-
dicts syntactic tags or words (Currey and Heafield,
2019). We do so while also empirically investigat-
ing four different levels of syntactic granularity.
The main findings of our experiments are that:
e jointly modeling syntactic tags and tokens
leads to improvements in Transformer-based
(Cornia et al., 2020) and RNN-based (Ander-
son et al., 2018) image captioning models;

e although the effectiveness of each syntactic
tag set varies across our explored approaches,
the widely-used chunking tag set never outper-
forms syntactic tags with finer granularity;

e compositional generalization is affected by
directly mapping from image representation to
tokens because performance can be improved
by interleaving a dummy tag with no meaning;

e interleaving syntactic tags with tokens leads

to a loss in performance for retrieval systems.

Finally, we also propose an attention-driven image—

sentence ranking model, which makes it possible to

adaptively combine syntax within the re-scoring ap-

proach of Nikolaus et al. (2019) to further improve
compositional generalization in image captioning.

2 Planning Image Captions

Natural language generation has traditionally been
framed in terms of six basic sub-tasks: content de-
termination, discourse planning, sentence aggrega-
tion, lexicalization, referring expression generation
and linguistic realization (Reiter and Dale, 1997).
Within this framework, a three-stage pipeline has
emerged (Reiter, 1994):

e Text Planning: combining content determi-
nation and discourse planning.

e Sentence Planning: combining sentence ag-
gregation, lexicalization and referring expres-
sion generation to determine the structure of
the selected input to be included in the output.

o Linguistic Realization: this stage involves
syntactic, morphological and orthographic
processing to produce the final sentence.

Early methods for image captioning drew in-

spiration from this framework; for example, the
MIDGE system (Mitchell et al., 2012) features ex-
plicit steps for content determination, given de-
tected objects, and sentence aggregation based on

local and full phrase-structure tree construction,
and TREETALK composes tree fragments using in-
teger linear programming (Kuznetsova et al., 2014).
More recently, Wang et al. (2017) propose a two-
stage algorithm where the skeleton sentence of the
caption (main objects and their relationships) is
first generated, and then the attributes for each ob-
ject are generated if they are worth mentioning.
In contrast, the majority of neural network mod-
els are based on the encoder-decoder framework
(Sutskever et al., 2014) of learning a direct map-
ping from different granularities of visual repre-
sentations (Vinyals et al., 2015; Xu et al., 2015;
Anderson et al., 2018) to language model decoders
based on RNNs (Vinyals et al., 2015) or Transform-
ers (Guo et al., 2020; Cornia et al., 2020).

2.1 Motivation

In this paper, we explore whether image captioning
models can be improved by explicitly modeling
sentence planning as an intermediate step between
content determination and linguistic realization. In
particular, we study the use of syntactic tags in
enriching the sentence planning step to improve
compositional generalization. In the compositional
image captioning task, models are tasked with de-
scribing images that depict unseen combinations of
adjective—noun and noun—verb constructions (see
Nikolaus et al. 2019 for a more detailed description
of this task). Nikolaus et al. (2019) presented a
model that improves generalization with a jointly
trained discriminative re-ranker, whereas here, we
investigate the role of sentence planning via syntax.
From a psycholinguistic perspective (Griffin and
Bock, 2000; Coco and Keller, 2012), there is ev-
idence that humans make plans about how to de-
scribe the visual world: they first decide what to
talk about (analogous to content determination),
then they decide what they will say (a sentence
planning phase), and finally, they produce an utter-
ance (linguistic realization). We hypothesize that,
analogously to humans, neural network decoders
will also find it useful to make such sentence plans.
From a machine learning perspective, the use of
syntactic structure can mitigate the bias introduced
by the maximum likelihood training of neural net-
work image captioning models. Recall that in the
context of image captioning, the optimization ob-
jective consists of maximizing the likelihood:

T
L= T]Pwly<s,v), (1)

t=1
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<S> adog licks it s lips while riding in a car <e> }
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<T> a dog licks it s lips while riding in a car <e>
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‘ "DECODER

<S> adog licks it s lips while riding in a car <e> W

Figure 1: Approaches to syntactically plan image captioning (with POS tags). STANDARD captioning systems
directly generate a sequence of surface forms (i.e. words). SEQUENTIAL generates a sequence of syntactic tags,
followed by a sequence of surface forms. INTERLEAVE alternates syntactic tags and surface forms. MULTI-TASK
generates either a sequence of syntactic tags or a sequence of surface forms from a shared decoder.

where v denotes the visual features (either a single
vector or a set of vectors extracted from an image).
In a standard generation task, a model learns to
predict the next token based on what it has observed
so far. This is especially limiting when it is evalu-
ated on unseen combinations of adjective—noun and
noun-verb constructions in the compositional gen-
eralization task (i.e. data points that fall outside the
training distribution). In fact, models are not explic-
itly asked to learn word classes nor how to connect
them to form novel combinations. Whereas, if a
system also models syntax, it can assign higher
probability to “white dog” if it expects to generate
a sequence with an adjective followed by a noun.

2.2 Planning Approaches

We investigate three approaches to jointly model-
ing tokens and syntactic tags: syntax-driven se-
quential caption planning (SEQUENTIAL), syntax-
interleaved caption generation (INTERLEAVE), and
syntax and caption generation via multi-task learn-
ing (MULTI-TASK). See Figure 1 for an overview.

SEQUENTIAL: Our first approach closely fol-
lows the traditional NLG pipeline and it is related
to the text planning stage defined above, although
limited to sentence-level rather than to a full dis-
course. Here, a model plans, through syntactic tags,
the order of the information to be presented. Specif-
ically, the model is required to generate a sequence
whose first 7" outputs represent the underlying syn-
tactic structure of the sentence before subsequently
generating the corresponding 7' surface forms.

INTERLEAVE: Our second approach consists of
interleaving syntactic tags and tokens during gener-
ation, which means a syntactic tag and its realiza-
tion are next to each other, removing the pressure
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for a model to successfully track long-range de-
pendencies between tags and tokens. Moreover,
this allows for a more flexible planning, where the
model can adapt the sentence structure based on
the previously generated tags and tokens. In par-
ticular, a model can break bi-gram dependencies
and learn narrower distributions over the next word
based on the current syntactic tag. For instance, if
we consider part-of-speech tags, the model learns
that only a subset of the vocabulary corresponds to
nouns, and another subset to adjectives, and so on.

MULTI-TASK: Our last approach is based on
multi-task learning, where a model produces ei-
ther a sequence of tokens (main task) or syntactic
tags (secondary task). We draw on the simple and
effective approach of Currey and Heafield (2019),
proposed for neural machine translation (NMT).
In the NMT framework, the source sentence was
prepended a task-specific tag, which led the de-
coder to either predict the translation of the source
sentence or the syntactic tags of the source sentence.
We adapt this to image captioning by setting the
first token to either a start-of-syntax token (<T>) or
start-of-sentence token (<S>) and then generating
tags or tokens, respectively. Compared to the other
approaches, MULTI-TASK allows the model to learn
both types of forms at the same position. While this
approach does not double sequence length, it dou-
bles the number of sequences per training epoch.

2.3 Syntactic Granularity

In addition to the three approaches of realizing sen-
tence planning, we investigate the effects of differ-
ent syntactic tags from a coarse to fine granularity.
We experiment with the following tags:
e CHUNK: Also known as shallow parsing,
chunks are syntactic tags that model phrasal



structure in a sentence, such as noun phrases
(NP) and verb phrases (VP).

e POS: Part-of-speech tags are specific lexical
categories to which words are assigned, based
on their syntactic context and role, such as
nouns (N) and adjectives (ADJ).

e DEP: Dependency-based grammars model the
structure as well as the semantic dependencies
and relationships between words in a sentence.
In this study, we consider the dependency la-
bels assigned to each word, such as adjectival
modifiers (amod), which denote any adjective
that modifies the meaning of a noun.

e CCG: Combinatory categorial grammar
(Steedman and Baldridge, 2006) is based on
combinatory logic and provides a transparent
interface between surface syntax and the un-
derlying semantic representation. For exam-
ple, the syntactic category assigned to “sees”
is “(S\NP)/NP”, denoting it as a transitive verb
that will be followed by a noun phrase.

We also study the merit of breaking bi-gram depen-
dencies for the INTERLEAVE approach by tagging
each word with a synthetic tag <IDLE>. We hy-
pothesize this approach would not give any benefits
in any metric, as attention-based models can simply
learn to ignore these pseudo-tags.

3 Experimental Setup

Data We use training and evaluation sets such
that paradigmatic gaps exist in the training set. That
is, for a concept pair {c¢;, ¢;}, the validation D,
and test Dy sets only contain images in which at
least one of the captions contains the pair of con-
cepts, while the complementary set — where con-
cepts ¢; and ¢; can only be observed independently
— is used for training Dy;q4n. Following Nikolaus
et al. (2019), we select the same 24 adjective—noun
and verb—noun concept pairs, and split the English
COCO dataset (Lin et al., 2014) into four sets, each
containing six held out concept pairs.

Pre-processing We first lower-case and strip
away punctuation from the captions. We then use
StanfordNLP (Qi et al., 2018) to tokenize and lem-
matize the captions, and to extract universal POS
tags and syntactic dependency relations. For IOB-
based chunking, we train a classifier-based tagger
on CoNLL2000 data (Tjong Kim Sang and Buch-
holz, 2000) using NLTK (Bird et al., 2009). Finally,
we use the A* CCG parsing model by Yoshikawa
et al. (2017) with ELMo embeddings (Peters et al.,

2018) to extract CCG tags. Visual features are ex-
tracted from 36 regions of interest in each image
using Bottom-Up attention (Anderson et al., 2018)
trained on Visual Genome (Krishna et al., 2017).

Evaluation Following Nikolaus et al. (2019),
we evaluate compositional generalization with
Recall@K. Given K generated captions for
each of the M images in an evaluation set,
{(sh sk (M, 00 sM)), the recall of
the concept pairs is given by:

[{{s") 3k : 3" € CH

Recall@K =
eca i )

2

where s denotes the k-th generated caption for
image m and C is the set of captions which con-
tain the expected concept pair and in which the
adjective or the verb is a dependent of the noun.
In addition, we use pycocoeval to score mod-
els on the common image captioning metrics: ME-
TEOR (M; Denkowski and Lavie 2014), SPICE
(S; Anderson et al. 2016), CIDER (C; Vedantam
et al. 2015), and BLEU (B; Papineni et al. 2002);
and the recent multi-reference BERTSCORE (BS;
Yi et al. 2020). In particular, we report the average
recall across all concept pairs, the average across
the four splits for each score in pycocoeval, and
the average across all captions for BERTSCORE.

Models We evaluate three models:

e BUTD: Bottom-Up and Top-Down attention
(Anderson et al., 2018), a strong and widely-
employed RNN-based captioning system.

e BUTR: Bottom-Up and Top-Down attention
with Ranking (Nikolaus et al., 2019), an RNN-
based, multi-task model trained for image
captioning and image—sentence ranking that
achieves state-of-the-art performance in the
compositional generalization task.'

e M2.TRM: Meshed-Memory Transformer
(Cornia et al., 2020), a recently proposed
Transformer-based architecture that achieves
state-of-the-art performance in image caption-
ing on the COCO dataset.

Implementation details We follow Nikolaus
et al. (2019) and Cornia et al. (2020) to train their
systems. Model selection is performed using early
stopping, which is determined when the BLEU
score of the generated captions in the validation set

'We denote as BUTR the model that uses the re-ranking
module (BUTR+RR in Nikolaus et al. 2019) as it was shown
to be essential to improve compositional generalization.
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Model R@5 M S C B BS
BUTD 9.5 252 186 927 323 417
2: +IDLE 87 237 178 87.6 30.0 388
£ | +CHUNK 109 247 182 89.2 312 412
Z | +pPos 95 241 175 86.1 30.1 40.7
8 +DEP 11.1 246 17.8 89.7 308 41.0
2 | +CccG 106 245 18.0 884 304 41.0
@ +IDLE 10.5 253 18.8 943 323 417
5 +CHUNK 9.7 252 187 934 325 41.7
2 | +POS 11.8 254 188 944 327 41.7
@ | +DEP 108 252 18.7 93.0 319 4l1.6
z | +CCG 105 254 19.0 94.6 327 419
& | +IDLE 9.8 255 187 945 327 418
2 +CHUNK 103 255 19.0 94.5 324 419
. | +POS 10.3 254 18.8 93.8 326 418
5| +DEP 114 255 189 939 32.7 419
§ +CCG 10.8 25.7 19.0 95.6 32.7 42.0

Table 1: Average validation results for our approaches
to integrating syntactic planning into image captioning
evaluated across four types of syntactic forms.

does not increase for five consecutive epochs.” We
use the default hyperparameters and do not fine-
tune them when tasking the models with syntax
generation. For full experimental details, refer to
App. A. Our code and data are publicly available.?

4 Syntax Awareness

In Table 1, we first report the performance of BUTD
when jointly modeling different types of syntactic
tags and each approach to sentence planning.

Syntax helps compositional image captioning
Table 1 clearly shows that, regardless of the level
of granularity, syntactic planning enhances compo-
sitional generalization in image captioning (R@5).
Moreover, CHUNK — one of the most widely-used
tag sets for syntax-aware image captioning (e.g.
Kuznetsova et al. 2012; Yang and Liu 2020) — is
outperformed by tag sets with finer granularity (e.g.
DEP) in every approach, motivating further research
into incorporating them in image captioning.
Looking at the results for the SEQUENTIAL ap-
proach, we see that, with the exception of POS
tags, syntactic planning increases the ability of the
model to recall novel concept pairs, with gains of at
least +1.1 R@5 points. We then hypothesize that
syntax-based sequential planning is effective if the
tags convey information about words in relation to
each other, e.g. CCG tags as opposed to POS tags.

2Whenever present, syntactic tags are stripped away when
computing evaluation metrics such as BLEU scores.
Shttps://github.com/e-bug/syncap.

597

When the model INTERLEAVES syntactic tags
and words, there is an improvement of at least +1.0
R @5, except for CHUNK. Moreover, POS tags lead
to the highest gain of +-2.3 R@5.

Finally, the MULTI-TASK approach also leads to
significant gains in compositional generalization,
with DEP (original setup of Currey and Heafield
2019) giving the highest R@5, corroborating the
effectiveness of our porting into image captioning.

Generalization across categories We further in-
vestigate the role of syntactic planning for the dif-
ferent unseen composition categories defined by
Nikolaus et al. (2019). Figure 2 illustrates how
our different combinations of approaches and syn-
tactic tags deal with color and size, type of the
objects (animate and inanimate) and type of the
verbs (transitive and intransitive). We see that DEP
tags consistently improve upon BUTD for color and
size concept pairs, regardless of the planning ap-
proach, making them a robust tag set for future
research. INTERLEAVE+POS also leads to gains for
all color and size categories, with up to +10 R@5
for colors of inanimate objects. Conversely, all the
variants perform worse than the baseline for the
sizes of animate objects. However, this drop is not
substantial because BUTD already performs poorly.

Towards neural NLG pipelines While the SE-
QUENTIAL approach closely follows the tradi-
tional NLG pipeline, it consistently degrades per-
formance in standard metrics for image caption-
ing. On the other hand, both INTERLEAVE and
MULTI-TASK lead to higher performance in compo-
sitional generalization and other metrics. In partic-
ular, when BUTD is trained to predict either words
or CCG tags in the MULTI-TASK approach, the gen-
erated captions achieve the highest average scores,
including a substantial gain of +-2.9 CIDER points.
These results indicate that neural models require
novel ways of sentence planning; and that effec-
tively doing so consistently leads to the same or
better performance in every considered metric.

Grounding the need for planning Overall, Ta-
ble 1 provides empirical support that an explicit
planning step improves compositional generaliza-
tion in image captioning. In fact, even breaking
bi-grams with the <IDLE> tag in the INTERLEAVE
approach improves performance: the standard ap-
proach of directly mapping image representations
to tokens is sub-optimal because the model learns
to generate n-grams seen during training.
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Figure 2: R@5 of unseen compositions by planning approaches (columns) and composition categories (rows).

Captioning Evaluation

Text Retrieval Image Retrieval

Model R@5 M S C B BS R@1 R@5 R@10 R@1 R@5 R@10
BUTR 150 262 199 886 289 418 213 454 578 147 351 47.0
+POS 120 257 194 854 274 414 174 393 506 124 31.0 420
BUTRmean +POS 142 259 19.7 874 283 429 233 477  60.0 171 38.6 502
BUTRwyeight 149 264 202 888 285 432 26.0 517 63.6 18.6 409 528
+POS 164 264 20.0 89.8 29.1 43.1 245 486  60.6 18.0 402 520

Table 2: Average validation results when interleaving syntactic and lexical forms in BUTR and our variants.

Given its superior performance in the recall of
novel compositions of concepts, we adopt INTER-
LEAVE+POS throughout the remainder of this paper
to jointly model syntactic tags and words. For clar-
ity of exposition, we refer to this approach as POS.

4.1 Adaptive Re-Ranking for Syntax

Recall that the best-performing model for composi-
tional image captioning re-ranks its generated cap-
tions given the image (BUTR; Nikolaus et al. 2019).
Here, we study how to combine the benefits of
syntactic planning and their re-ranking approach.
The BUTD model, investigated above, is a two-
layer LSTM (Hochreiter and Schmidhuber, 1997)
in which the first LSTM encodes the sequence of
words, and the second LSTM integrates visual fea-
tures through an attention mechanism to generate
the output sequence (Anderson et al., 2018). The
state-of-the-art BUTR model extends this with an
image—sentence ranking network that projects im-
ages and captions into a joint visual-semantic em-
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bedding. The sentence representation used by the
ranking network is a learned projection of the final
hidden state of the first LSTM: s = Wth.

Ranking performance Table 2 shows that the
image—sentence retrieval performance of BUTR de-
creases when interleaving POS tags with words.
Given the previous formulation of BUTR and its
connection to BUTD, we conclude that jointly mod-
eling syntactic tags and words leads to decreased
performance in the generation and ranking tasks.

Adaptively attending to tags We explore two
approaches to combining the improvements of in-
terleaved syntactic tagging with ranking:
e mean: The model creates a mean representa-
tion over the hidden states of the first LSTM.
e weight: The model forms a weighted pool-
ing of the hidden states of the first LSTM
layer, whose weights are learned through a
linear layer. This is a simple form of attention
mechanism and it is equivalent to the one used



Model Re@es M S C B BS Model Re@es M S C B BS
BUTD 9.5 252 186 927 323 417 BUTD 92 254 18.6 944 324 418
+POS 11.8 254 188 944 327 417 +POS 11.1 254 187 963 329 418
BUTRweight 149 264 202 888 285 432 BUTRweight  13.5 264 20.1 91.0 28.6 433
+POS 164 264 200 89.8 29.1 43.1 +POS 154 263 200 910 28.7 432
M2-TRM 10,6 279 21.6 1140 372 444 M2-TRM 10.1 27.8 21.5 1157 36.5 445
+POS 132 28.0 21.7 1138 354 449 +POS 121 28.0 21.6 1157 350 449

Table 3: Average validation (left) and test (right) results when interleaving syntactic (POS) and lexical forms.

by Nikolaus et al. (2019) to represent image
features in the shared embedding space:

l
wr = Wohy,

a = softmax (w) ,

T
s=W)> ahi.
t=1

Table 2 shows that the weighting mechanism
in the ranking model effectively disentangles syn-
tactic tags and tokens, resulting in +1.5 RECALL
points over BUTR, with small improvements to the
other metrics. Compared to BUTR, BUTR yeight
also improves the retrieval performance of the rank-
ing module. Adding POS tags still decreases re-
trieval performance but, compared to BUTR+POS,
the difference is now halved for text retrieval and
only 0.7 points for image retrieval. Overall, our
BUTReight 18 @ more general and robust approach
to jointly training a captioning system and a dis-
criminative image—sentence ranker.

3)

5 Results and Discussion

We now report the final performance of three image
captioning models that integrate the syntactic plan-
ning (INTERLEAVE+POS) with word generation.

Model-agnostic improvements We start by in-
vestigating whether the compositionality given by
syntactic planning generalizes across architectures.
Table 3 reports average validation and test scores
for the BUTD, BUTRyeight and M2-TRM mod-
els. We find that interleaving POS tags and tokens
consistently leads to +2 RECALL points in each
model without affecting the performance on other
metrics, with the exception of decreased BLEU
score of M2-TRM. In this case, M2-TRM +POS
generates captions that are abnormally truncated,
ending with bi-grams such as “of a,” “on a” and “to
a”.* Furthermore, we can clearly see that despite

“This is known as reward hacking (Amodei et al., 2016)
which arises in models with a reinforcement learning-based op-

Color Size Verb

Model A I A I T I
BUTD 69 104 09 02 218 16.7

+POS 78 202 04 03 241 182
BUTRuweight 150 249 08 1.6 262 20.8

+POS 16.2 304 09 25 268 219
MZ-TRM 52 119 02 02 29.1 16.6

+POS 79 179 0.1 02 323 20.6

Table 4: Average validation R@5 scores for different
categories of held out pairs. Color and size adjectives
are split into Animate or Inanimate objects; Verbs are
split into Transitive and Intransitive verbs.

M?2-TRM outperforming the RNN-based models
in every standard metric, it is only +1 RECALL
point better than BUTD at compositional general-
ization. Hence, syntactic planning is an effective
strategy to compositional generalization, regard-
less of the language model used.

Generalization across categories Table 4 lists
the R@5 scores for different categories of held
out pairs. Differently from the results reported by
Nikolaus et al. (2019), we find the performance
of BUTD for noun—verb concept pairs to be much
higher thanks to a larger beam size (equal to the one
used for BUTR in our experiments). Moreover, the
performance from interleaving POS across different
categories of held out pairs shows that improve-
ments are consistent across categories and models,
with the exception of size modifiers of animate ob-
jects, where all models perform poorly. This was
also found by Nikolaus et al. (2019) and it is likely
due to the need for real-world knowledge (i.e. does
this image depict a “big dog” compared to all other
“dogs”?). For a full breakdown of the R@5 general-
ization performance for each held out pair by each
model, see Table 9 in App. B.

timization phase. Investigating whether proposed approaches
to mitigate this problem (Liu et al., 2017; Li et al., 2019, inter
alia) are also effective in our setup is left as future work.
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Figure 3: Average test R@5 as a function of the mini-
mum importance of a concept pair for each model.

Performance by minimum importance Given
that annotators of the COCO dataset were given
a relatively open task to describe images, caption-
ing systems should exhibit higher recall of concept
pairs when more annotators use them in the descrip-
tions. As shown in Figure 3, this behavior is seen in
each model, with increasing gains given by jointly
modeling lexical and syntactic forms. In particu-
lar, we observe that the M2-TRM model recalls
fewer pairs than BUTD when they are considered
more relevant (more annotators use them in de-
scribing an image), and that interleaving POS tags
partially solves its limitations. Moreover, as agree-
ment among annotators increases, we also see that
BUTD+POS is as effective a8 BUTR ¢ight, COIrobo-
rating the effectiveness of our model-agnostic ap-
proach against a more complex, multi-task model.

Captions diversity Table 5 reports the average
scores for caption diversity (van Miltenburg et al.,
2018) in the validation data. Comparing BUTD
(RNN-based) and M?2-TRM (Transformer-based)
models, we see that the output vocabulary of the
M?-TRM-based model spans many more word
types, resulting in +11% novel captions. However,
M?2-TRM has lower mean segmented type-token
ratios (TTRs), contrasting the conclusion of van
Miltenburg et al. (2018) that the number of novel
descriptions is strongly correlated with the TTR
(while this correlation is maintained with the num-
ber word types). The models that jointly model
syntactic tags and tokens lead to a higher number
of types in both models and a substantial +8% in
novel captions for M2-TRM, without affecting
other metrics. Clearly, BUTR ¢ignt l€ads to longer
sentences, more types, higher TTRs and the highest
percentage of novel captions. We can also see that
BUTReight achieves the highest coverage (defined

Model ASL Types TTR; TTR2 %Novel Cov Locs
BUTD 8.6 463 0.16 0.37 69.2 0.12 0.74
+POS 8.6 466 0.16 0.37 70.3 0.12 0.75
BUTRweight 10.3 783  0.20 0.49 97.2 0.20 0.78
+POS 103 778 0.20 0.49 96.7 0.20 0.78
M2TRM 9.1 580 0.14 0.33 80.1 0.15 0.83
+POS 9.5 601 0.13 0.33 88.4 0.15 0.83
Table 5: Average validation set scores for diversity

metrics as defined in van Miltenburg et al. (2018).

as the percentage of learnable words it can recall),
while M?2-TRM has the highest local recall score,
being able to better recall the content words that
are important to describe a given image.

Accuracy of syntactic forms We verify that the
models can correctly predict syntactic tags, regard-
less of their granularity and the approach used to
jointly modeling them with tokens. Indeed, the
accuracy of the generated syntactic tags, measured
as the ratio of sequences matching the annotations
from StanfordNLP, by BUTD is high, ranging be-
tween 95% and 99%. See App. B for details.

Qualitative examples Figure 4 shows generated
captions. Compared to standard BUTD, all syntax-
aware approaches allow the model to recall more
unseen concept pairs, while also improving the
overall quality of the captions. In addition, when
looking at the captions generated by all three mod-
els, both with and without interleaving POS tags,
we find the integration of syntactic tags to clearly
improve the quality of the generated caption. See
Figure 5 in App. B for more examples.

6 Related Work

Compositional image captioning Nikolaus
et al. (2019) studies compositional generalization
in image captioning with combinations of unseen
adjective—noun and verb—noun pairs, whose con-
stituents are observed at training time but not their
combination, thus introducing a paradigmatic gap
in the training data. Nikolaus et al. (2019) showed
how to improve compositional generalization by
jointly training an image—sentence ranking model
with a captioning model. Other work has also
investigated generalization to unseen combinations
of visual concepts as a classification task (Misra
et al., 2017; Kato et al., 2018), triplet prediction
(Atzmon et al., 2016), or unseen objects (Lu et al.,
2018). Here, we improve generalization by jointly
modeling syntactic tags and tokens, and we show
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BUTD: there is a woman that is on the floor

BUTD + SEQUENTIAL: a woman doing a trick on a bicycle

BUTD + INTERLEAVE: a woman riding a bike on a wooden floor
BUTD + MULTI-TASK: a woman riding a bike on a wooden surface

BUTD: a woman with a child sitting on a bench
BUTD + POS: a girl that is standing on a skateboard

BUTRweignt: a girl and child playing with a toy in a backyard
BUTRweight + POS: a girl doing a trick on a skateboard on a brick walkway

M?Z-TRM: a girl doing a trick on a skateboard with
MZ-TRM + POs: a little girl standing on a skateboard in the

Figure 4: Top: Captions generated by BUTD with different approaches to integrating syntactic tags (based on best
R@5). Bottom: Captions generated by BUTD, BUTRyeight, and MZ2-TRM, and each model when interleaving
POS tags. Syntax-aware approaches generate higher quality captions with more unseen concept pairs.

how to combine this with the improvements gained
from a jointly-trained ranking model.

Joint syntactic and semantic representations
While little work has investigated the interaction
of jointly modeling semantics and various syn-
tactic forms in captioning models, a few studies
have exploited syntax in image and video caption-
ing. Zhao et al. (2018) propose a multi-task sys-
tem to jointly train the task of image captioning
with two additional tasks: multi-object classifica-
tion and syntax generation. The same LSTM de-
coder is used to generate captions and CCG tags
by mapping the hidden representations to either
word or tag vocabularies through two different
output layers. Dai et al. (2018) propose a two-
stage sequential pipeline where a sequence of noun-
phrases is first selected from a fixed pool, which
are then patched together via predetermined con-
necting phrases. This method, however, is unlikely
to realize any benefits for compositional general-
ization because it uses the top-50 noun-phrases
and 1, 000 connecting phrases from the training set.
Our INTERLEAVE approach can be used to address
these limitations in their “phrase pool” and “con-
necting” modules to produce unseen compositions.
Deshpande et al. (2019) rely on sequences of POS
tags to produce diverse captions. Similarly to our
SEQUENTIAL approach, their model first predicts a
sequence of POS tags conditioned on the input im-
age. However, the authors limit the POS sequences
to 1, 024 templates obtained through quantization
of the training set. During inference, the model
samples k POS tag sequences and uses them to
condition a greedy decoder for captions genera-
tion. Hou et al. (2019) take yet another approach
to jointly learn POS tags and surface forms in the
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framework of video captioning. They introduce a
model that resembles our INTERLEAVE approach
but with two main differences: (i) the ¢-th tag is not
conditioned on previous tags, and (ii) the ¢-th word
is only conditioned on the ¢-th tag and the video.

7 Conclusion

We investigated a variety of approaches along with
the use of syntactic tag sets to achieve composi-
tional generalization in image captioning via sen-
tence planning. Our results support the claim that
combining syntactic planning and language gen-
eration consistently improves the generalization
capability of RNN- and Transformer-based image
captioning models, especially for inanimate color—
noun combinations. While this approach penal-
izes image—sentence ranking models, we showed
that this can be overcome with an adaptive mecha-
nism, resulting in state-of-the-art performance on
the compositional generalization task. We believe
our results will lead to further exploration of syntax-
aware captioning models given their potential to
better generalize, both in terms of under-researched
syntactic granularity (e.g. CCG) and more expres-
sive alternatives to modeling syntactic structure.
Another direction for future work is to focus on
size—noun compositions, which rely on the success-
ful integration of real-world knowledge.
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A Experimental Setup

Data In order to evaluate the compositional gen-
eralization of a model, we use training and eval-
uation sets such that paradigmatic gaps are ob-
served in the training set. That is, for a concept
pair {¢;, ¢; }, the validation D,; and test Dy, sets
only contain images in which at least one of the
captions contains the pair of concepts, while the
complementary set — where concepts ¢; and c;
can only be observed independently — is used for
training Dyyq:n. Specifically, following Nikolaus
et al. (2019), we select the same 24 adjective—noun
and verb—noun concept pairs, and split the English
COCO dataset (Lin et al., 2014) into four sets, each
containing six held out concept pairs (training and
validation instances are drawn from train2014,
while test instances from val2014). Table 6 lists
the sizes (in number of images) of each split.’ For
more details, we refer the reader to Nikolaus et al.
(2019).

Training details Following Nikolaus et al.
(2019) and Cornia et al. (2020), each system is
trained with teacher forcing. Model selection is per-
formed using early stopping, which is determined
when the BLEU score of the generated captions
in the validation set does not increase for five con-
secutive epochs.® All models are trained using the
Adam optimizer (Kingma and Ba, 2014): BUTD
and BUTR use an initial learning rate of le — 4,
B1 = 0.9 and By = 0.999, and gradients are
clipped when they exceed 10.0. For the GradNorm
optimizer (Chen et al., 2018) used in BUTR, the
initial learning rate is 0.01 and the asymmetry is
2.5, although we find it beneficial to tune the latter
when generating syntax.” Moreover, we find that
taking the absolute value of the GradNorm weights
for each loss in the renormalization step (given that
our loss functions are by definition positive) leads
to more stable multi-task training. M?2-TRM first
uses an initial learning rate of 1, ; = 0.9 and
B2 = 0.98, with a warm-up equal to 10, 000 iter-
ations (Vaswani et al., 2017), and it is then fixed
to be — 6 during CIDER-D optimization. A batch
size of 50 is used when training M?-TRM, while

5Note that the size of each set is slightly different from the
one in Nikolaus et al. (2019) as they used different tools for
tokenizing and parsing, while we use a single framework to
maximize its performance when parsing the captions (used to
identify concept pair candidates).

SWhen present, syntactic forms are stripped away when
computing evaluation metrics such as BLEU scores.

Searched over the minimal grid: o € {1.5,2.0,2.5,4.0}.
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Figure 6: Validation accuracy of syntactic tags gener-
ated by BUTD using SEQUENTIAL and INTERLEAVE.

BUTD and BUTR are trained with batch sizes of
100. When adding syntactic forms, due to mem-
ory limitations, a batch size of 50 is always used
(see Table 7 for a comparison of the planning ap-
proaches). All models are trained on one NVIDIA
TitanX GPU in a shared cluster. See Table 8 for
running times on the second held out dataset.

Inference At evaluation time, a maximum cap-
tion length of 20 is used when generating lexical
forms only, and of 40 when also syntactic tags are
generated. Notably, we use the default hyperpa-
rameters provided by the respective authors and do
not fine-tune them when tasking the models with
syntax generation. Differently from Nikolaus et al.
(2019), rather than using a beam of 100 for BUTR
only, we let all systems generate captions using
such beam size as we found it to significantly im-
prove compositional generalization of BUTD in our
validation sets.®

B Further Analysis

Accuracy of syntactic forms We verify that a
model can correctly predict syntactic forms, regard-
less of their granularity and the approach used to
jointly modeling them with lexical forms. Figure 6
shows that, indeed, the accuracy of the generated
syntactic tags, measured as the ratio of sequences
matching the annotations from StanfordNLP, by
BUTD is high, ranging between 95% and 99%.
Note that we only evaluate accuracy of the SE-
QUENTIAL and INTERLEAVE approaches as there
is no close relationship between syntactic and lexi-
cal sequences in the MULTI-TASK approach.

Qualitative examples Figure 5 shows more gen-
erated captions for images in the validation sets.

8gUTD R@5: 7.8 (beam size 5), 9.5 (beam size 100).
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Held out pairs Dirain Dyar  Drest
1 black cat, big bird, red bus, small plane, eat man, lie woman 79,847 2,936 1,349
2 brown dog, small cat, white truck, big plane, ride woman, fly bird 79,823 2,960 1,355
3 white horse, big cat, blue bus, small table, hold child, stand bird 79,922 2,861 1,459
4 black bird, small dog, white boat, big truck, eat horse, stand child 79,627 3,156 1,501

Table 6: Held out word pairs in each dataset split. Dataset sizes are measured in number of images.

Approach T diS:, W:) N
SEQUENTIAL  2X T 1x
INTERLEAVE ~ 2X 1 1x
MULTI-TASK  1Xx - 2%

Table 7: Comparison of the planning approaches studied
in this paper in terms of the sequence lengths used to train
the captioning models (T), the distance between the syn-
tactic tag and its corresponding word d(S;, W;), and the
number of training examples per epoch (N).

Model Training time [hour]
BUTD
+POS
BUTRweight 18
+POS 17
M2-TRM 383
+POS 414

Concept pair | BUTD +POS | BUTRyjgnt  +POS | M2-TRM +POS
black cat 16.1 15.3 26.0 29.1 5.0 10.9
eat man 19.0 245 26.5 26.5 23.8 29.1
small plane 0.2 0.0 0.0 0.4 0.6 0.0
red bus 16.1 240 51.8 54.2 13.3 249
big bird 24 0.9 0.9 0.9 0.5 0.0
lie woman 17.5 18.5 27.1 20.8 14.9 19.8
ride woman 27.3 30.2 23.5 27.4 28.5 30.8
white truck 17.6  30.6 23.3 29.4 94 12.7
fly bird 21.8 255 26.3 32.5 29.2 35.8
small cat 1.2 04 1.2 1.6 0.4 0.0
brown dog 1.7 0.5 4.8 7.8 0.9 1.2
big plane 0.5 0.6 3.7 8.7 0.3 0.0
stand bird 184  18.6 16.9 24.0 16.8 19.5
white horse 4.9 10.9 16.9 21.3 10.1 10.1
small table 0.0 0.0 0.0 0.0 0.0 0.0
big cat 0.0 0.0 0.0 0.0 0.0 0.0
blue bus 6.5 22.7 21.3 33.2 23.5 32.1
hold child 17.8  19.8 10.3 13.8 14.8 13.0
big truck 0.0 0.7 2.9 0.7 0.0 1.0
white boat 1.6 3.5 33 4.9 1.6 1.9
small dog 0.0 0.1 1.2 0.9 0.0 0.3
eat horse 23.0 22.1 44.6 394 49.3 56.3
stand child 9.1 10.4 13.0 10.3 5.7 7.4
black bird 4.9 44 12.3 6.4 4.9 9.3

Table 9: R@S5 for each of the held out concept pairs in the validation sets.
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Table 8: Training times on held out dataset 2.



BUTD: a man standing in front of a pizza

BUTD + SEQUENTIAL: a couple of people that are standing around a
pizza

BUTD + INTERLEAVE: a man sitting at a table with a pizza

BUTD + MULTI-TASK: a man sifting at a table with a pizza

BUTD: a baby laying on a bed with a teddy bear

BUTD + SEQUENTIAL: a couple of kids sitting on a bed

BUTD + INTERLEAVE: a large teddy bear sitting on top of a bed
BUTD + MULTI-TASK: two children sitting on a bed with a laptop

BUTD: a man sitting on a bed using a laptop computer
BUTD + POS: a person sitting on a bed with a laptop

BUTReight: @ WOman sitting on a bed and using a laptop
BUTReight + POS: @ woman sitting on a bed with a laptop and a laptop

M?-TRM: a man sitting on a couch using a laptop computer
M?2-TRM + POS: a woman sitting on a bed using a laptop computer

BUTD: a plane sitting on top of a lush green field
BUTD + POS: ared and white plane in an open field

BUTRyeight: a red and white plane taking off on a field
BUTReight + POS: ared and white plane on a lush green field

MZ2-TRM: an airplane is on the runway in a field
MZ2-TRM + POS: ared and white plane sitting on a runway

BUTD: a couple of sheep standing on top of a lush green field
BUTD + POS: a couple of animals standing in the grass

BUTReight: two small lambs standing in a green field
BUTRyeight + POS: two baby bears standing in a grassy field

M?Z?-TRM: a mother sheep and a baby sheep in a field
MZ2-TRM + POS: a baby sheep standing next to an adult sheep in

Figure 5: More examples of generated captions from the validation sets. While syntax-aware approaches generate
more accurate captions overall, they are sometimes worse than the standard system (second example). Moreover,
the last example shows how most systems confuse a kitty and a puppy with two sheep, lambs or bears.
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