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Abstract

Question answering (QA) over a knowledge
graph (KG) is a task of answering a natu-
ral language (NL) query using the informa-
tion stored in KG. In a real-world industrial
setting, this involves addressing multiple chal-
lenges including entity linking, multi-hop rea-
soning over KG, etc. Traditional approaches
handle these challenges in a modularized se-
quential manner where errors in one module
lead to the accumulation of errors in down-
stream modules. Often these challenges are
inter-related and the solutions to them can rein-
force each other when handled simultaneously
in an end-to-end learning setup. To this end,
we propose a multi-task BERT based Neural
Machine Translation (NMT) model to address
these challenges. Through experimental anal-
ysis, we demonstrate the efficacy of our pro-
posed approach on one publicly available and
one proprietary dataset.

1 Introduction

Question answering on knowledge graphs (KGQA)
has mainly been attempted on publicly available
KGs such as Freebase Bollacker et al. (2008), DB-
Pedia Lehmann et al. (2015), Yago Suchanek et al.
(2007), etc. There is also a demand for questions
answering on proprietary KGs created by large en-
terprises. For example, KGQA, on a) a KG that
contains information related to retail products, can
help the customers choose the right product for
their needs, or b) a KG containing document cata-
logs (best practices, white papers, research papers)
can help a knowledge worker find a specific piece
of information, or ¢) a KG that stores profiles of var-
ious companies can be used to do preliminary anal-
ysis before giving them a loan, etc. Our motivat-
ing use-case comes from an enterprise system (re-
ferred to as LOCA) that is expected to answer users’
questions about the R&D division of an enterprise.
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Figure 1: Example queries from a real-world dataset
LOCA. Column 6 (is SP?) represents whether the
queries can be answered via shortest path or not?, all
the other columns are self-explanatory.

Sample questions from LOCA dataset are shown
in Figure 1. The schema of the corresponding KG
is shown in Figure 2. Answering such questions
often requires a traversal of KG along multiple re-
lations which may not form a directed chain graph,
and may follow more complex topology as shown
for question 5, 7 and 8 in Figure 1. It can also be
observed that most often words of the natural lan-
guage question (NLQ) and corresponding relations
have a weak correlation. Most of the proposed ap-
proaches on the KGQA task Bollacker et al. (2008)
parse the NLQ and convert it into a structured query
and then execute the structured query on the KG to
retrieve the factoid answers. Such conversion in-
volves multiple sub-tasks: a) linking the mentioned
entity with corresponding entity-node in the KG
Blanco et al. (2015); Pappu et al. (2017), b) identifi-
cation of the type of the answer entity Ziegler et al.
(2017), c) identification of relations Dubey et al.
(2018); Weston et al. (2013); Hakkani-Tiir et al.
(2014). These tasks are most often performed in a
sequence Both et al. (2016); Dubey et al. (2016);
Singh et al. (2018), or in parallel Veyseh (2016);
Xu et al. (2014); Park et al. (2015), which results
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Figure 2: Schema of our propreitary KG LOCA.

in accumulation of errors Dubey et al. (2018). Fur-
ther, most of the KGQA tasks are not as complex
as LOCA. For example, a) All questions of Sim-
pleQA Bordes et al. (2015) can be answered using
single triple, b) NLQs for most of the datasets (e.g.,
SimpleQA, Meta QA) contain only one metioned
entity, and c) Even if multiple relations are required
for answer entity retrieval, they are organized in a
sequence, i.e., chain.

Our motivating example contains specific types
of questions that pose many challenges with re-
spect to each of the aforementioned tasks. More-
over, some of the questions can only be answered
via a model that attempts more than one sub-tasks
together. For example, the first two questions of
Figure 1 mention the same words, i.e., “deep learn-
ing” but they get associated with two different en-
tity nodes of the KG. Additionally, the prior work
could detect the set of relations when the schema
sub-graph follows a specific topology, however, in
our example, most of the questions follow a dif-
ferent topology. We demonstrate in Section 5 that
most of the prior art approaches fail to solve such
challenges. We provide a summary of such chal-
lenges in Section 2.

In this paper, we propose CQA-NMT, a novel
transformer-based, NMT (neural machine trans-
lation) model to solve the aforementioned chal-
lenges by performing four tasks jointly using a
single model, i.e., i) Detection of mentioned enti-
ties, ii) prediction of entity types of answer nodes,
iii) prediction of topology and relations involved,
and iv) question type classification such as ‘Fac-
toid’, ‘Count’, etc. CQA-NMT not only performs
the four sub-tasks but also helps downstream tasks
of mentioned entity disambiguation and subsequent
answer retrieval from the KG. The key contribu-
tions of this paper are:

(i) We propose a multi-task model that performs
all tasks for parsing of natural language ques-
tion together, rather than the traditional ap-
proach of performing these tasks in a sequen-
tial manner, which also involves candidate
generation based on upstream task and then
short-listing them to make the final predic-
tion. We also demonstrate that using such
an approach newer types of challenges of the
KGQA task can be solved, which have not
been attempted by prior work so far.

(i) We propose the use of neural machine trans-
lation based approach to retrieve the variable
number of relations involved in answering a
complex NLQ against a KG.

(iii)) We also demonstrate that every sub-task of
parsing an NLQ is complementary to other
tasks and helps the model in performing bet-
ter towards the final goal of KGQA. In Ta-
ble 3, we have demonstrated that via joint
training on more than one task, the accuracy
of individual tasks improves as compared to
training them separately. For example, when
trained separately, the best F1-score for detect-
ing mentioned entity(s) was 83.3, and the best
accuracy for the prediction of entity types of
answer nodes was 75.7. When trained jointly,
we get the corresponding metrics as 87.1 and
76.3. When trained jointly for all tasks, the
results improve even further.

(iv) CQA-NMT predicts the relations involved in
a sub-graph of KG and also helps to predict
the topology of the sub-graph, resulting in
compositional reasoning via a neural network
on the KG. However, the prior work predicts
the relations for a specific topology only'.

(v) We also demonstrate that our approach outper-
forms the state-of-the-art approaches on the
MetaQA dataset, and therefore we present a
new baseline on this dataset. Our approach
also performs better than standard approaches

"Topology is a specific arrangement of how the mentioned
entities, and answer entities are connected to each other via the
predicted relations. Sample topologies are given in Figure 1.
Our approach can be used to answer questions of any topology,
if adequate number of samples are included in the training
data. The prior works have not attempted a dataset such as
LOCA which contains many different topologies. To the best
of our efforts we could not find another such dataset, which
has led to our aforementioned belief.
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as applicable to our dataset and helps us solve
most of the real-world industrial challenges.

2 KGOQA Problem and Challenges

For answering natural language questions (NLQ),
we assume that the background knowledge is stored
in a knowledge graph GG, comprising of a set of
nodes V' (G), and edges E(G). Here, nodes repre-
sent entities, and edges represent the relationship
between a pair of entities or connect an entity to
one of its properties. An NLQ (g) is a sequence
of words w; of a natural language (e.g., English),
ie., ¢ = {wy,we,...,wy}. We also assume that
the NLQs can mention zero, one, or more entities
present in G and enquire about another entity of G,
which is connected with the mentioned entity(s).
We pose the KGQA problem as a supervised learn-
ing problem and next, describe the labels assumed
to be available for every question in the training
data and that need to be predicted for every ques-
tion in the test data.

Entity Linking Annotation Some of the n-
grams (7;) in an NLQ refer to entity(s) of KG.
Such n-grams have been underlined in Figure 1.
The entity-id (as shown in the third column of Fig-
ure 1) of the mentioned entity is also assumed to
be available as part of label annotation for every
question.

Answer Entity Type Annotation (AET), 7: We
assume that every NLQ has an entity type (¢;) for
the answer entities. These are shown in the middle
column of Figure 1. We refer 7 as a set of all entity
types in the knowledge graph G.

Relation Sequence and Topology Annotation
(path) Sequence of relations connecting the linked
entities to the answer entities can be considered
paths (path;), each of which can contain one or
more relations. These paths are connected to form
a topology, as shown in Figure 1. This topology
of the paths and relations are also assumed to be
available for an NLQ in training data. These paths
need not be the shortest paths between the linked
entities and the answer entities. For example, the
last three columns of Figure 1 indicate a) the set of
paths separated by a semicolon (;), b) whether this
is the shortest path, and c) topology of the paths
connecting the linked entities to the answer entities.

Question Type Annotation (qyp.) Some NLQs
can be answered by a single triple of the knowl-
edge graph(‘Simple’), while some of them require
traversal along with more complex topology as in-
dicated earlier(‘Factoid’), some questions require

an aggregate operation such as count (‘Count’, see
question 6, in Figure 1), and finally, some questions
perform existence check (‘Boolean’, see question
8, in Figure 1). Such information is also assumed
to be available for every NLQ in training data.

We now describe the challenges that need to be
addressed while performing the KGQA task. To
the best of our efforts we could not find any prior
work that covers all these challenges together.

1. Incomplete Entity Mention: In the NLQ
users often do not mention the complete name
of the intended entity Huang et al. (2019), e.g.,
only the first name of a person, short name of
a group, etc., e.g., question 8 in Figure 1.

2. Co-occurrence disambiguation: For situa-
tions when a mentioned entity should be
linked to KG entity with help of another men-
tioned entity in the question, e.g., in question
7 of Figure 1, there can be many people who
have the same first name (‘Libby’) but there
is only one of them who works on NLP, the
models needs to use this information to con-
clusively resolve the mentioned entities Mo-
hammed et al. (2017).

3. Avoid un-intended match: Some of the words
in a sentence coincidently match with an entity
name but are not an intended mention of an
entity, e.g., the word ‘vision’ may get matched
with ‘Computer Vision” which is not intended
in question 9 of Figure 1.

4. Duplicate KG Entity The intended entity
names may be different from the words used
in the NLQ, and there can be more than one
entity in the KG that has the same name Shen
et al. (2019), for example, “Life Sciences”
is the name of a research area, as well as a
keyword (see KG schema given in Figure 2).
The model needs to link the entity using other
words, similar to how it is shown in questions
1 and 2 of Figure 1.

5. Relation names mismatch: Often the words
of the KG relations and the words of the NLQ
do not match, Huang et al. (2019), e.g., ques-
tions 2, 4, 6, etc. in Figure 1.

6. Implicit Relations Indication: Sometimes
words of the NLQ do not even make any men-
tion of the relations involved, however, they
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need to be inferred Zhang et al. (2018). For ex-
ample, in question 4 of Figure 1, some of the
relations are not mentioned in the question.

Problem Definition: The objective of the pro-
posed approach is to output 1) the mentioned
entity(s) (s;) in the query, 2) the answer entity
type , 3) the path or set of predicates, P, =
{pé,pg,pg, ...,p(]]\[} where, each p; € F(G) and,
4) the question type. The set F; is a sequence of
predicates, such that if traversed along these edges
from the mentioned entity node(s), we can arrive
at the answer entity(s) node(s). The final answer is
then retrieved from KG and is post-processed as per
the outputs of question type and the ‘answer entity
type’ modules. We assume that we have N train-
ing samples Dryain = {(¢i, Mis ti, qti, pathy) } Y,
available to us where, ¢; € Q,s; C V(G),t; €
T,qt; € Qtypes and, path; C 2E(G).

3 Related Work

In this section, we present a view of prior work, on
the KGQA problem as an NLP task, and then on
set of techniques used for this task.

3.1 KGQA Task

Berant et al. (2013); Berant and Liang (2014);
Reddy et al. (2014); Luo et al. (2018) proposed an
approach to perform KGQA by mapping a query to
its logical form and then converting it to a formal
query to extract answers. However, these are not
joint learning tasks as proposed in our work.

Multi-Task based approaches Similar to us,
many works like Lukovnikov et al. (2019); Huang
et al. (2019); Shen et al. (2019) rely on the jointly
learning multiple sub-tasks tasks of KGQA prob-
lem. However, all these approaches focus on single-
hop relations only, and therefore we cannot take
such approaches as a baseline for our model. In a
more complex setting, Shen et al. (2019) proposed
a joint learning task for entity linking, path pre-
diction (chains topology only), and question type.
However, their model does not predict answer en-
tity type. We do not compare our approach with
Shen et al. (2019) because they focus on the im-
plicit mention of the entities in previous sentences
of dialogue, and also because they do not attempt
to predict non-chain topology or the answer entity
type.

Non-Chain Multi-Hop Relations Agarwal et al.
(2019) proposed an embedding based approach to
predict non-chain multi-hop relation prediction (for

a fixed and small set of topologies). They perform
only one task of relationship prediction.

3.2 Techniques used for KGQA

Transformers and Machine Translation: Trans-
former Vaswani et al. (2017) has proved to be
one of the most exciting approaches for NLP re-
search. They have shown dominating results in
Vaswani et al. (2017); Devlin et al. (2018), etc.
The paper Lukovnikov et al. (2019) closely resem-
bles our approach as they proposed a joint-learning
based multi-task model using Transformer. How-
ever, they handle only 1-hop questions and consider
relation prediction as a classification task. In its
current form it cannot be used to solve the vari-
able length path prediction form, as required in our
motivating example. In an extension to the work
of using logical forms for KGQA Dong and Lap-
ata (2016) proposed the usage of attention-based
seq2seq model to generate the logical form of an in-
put utterance. However, they use an LSTM model
and not Transformer.

Graph-Based Approaches GraftNet Sun et al.
(2018) and PullNet Sun et al. (2019) approached
the problem of KGQA using graph-based solutions.
The approach extracts a subgraph related to query
and then performs reasoning over it to extract the
final answer(s). KV-MEM Bordes et al. (2015)
proposed a memory network-based approach for a
single relationship prediction.

Embedding Based Approaches Approaches for
KGQA using KG embeddings (such as TransE Bor-
des et al. (2013) and TransR Lin et al. (2015)) were
used by Huang et al. (2019) when only one relation
(i.e., one RDF triple) is involved. In Bordes et al.
(2013); Socher et al. (2013); Dettmers et al. (2018)
also one-hop KG modeling approaches were pro-
posed. Recently, Saxena et al. (2020) presented an
approach, EmbedKGQA, for joint learning, again
using KG Embeddings, in the context of multi-hop
relations. However, their approach is not truly a
joint model as they perform answer candidate selec-
tion via the model, i.e., they arrive at the candidates
before executing the model.

Our proposed approach has outperformed Pull-
Net and EmbedKGQA on the MetaQA dataset, as
shown in Section 5.

4 Proposed Architecture

In this section, we describe our proposed joint
model (CQA-NMT) which is an encoder-decoder
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Figure 3: Proposed Multi-task model CQA-NMT. The query is passed through all the modules to (1) Extract the
mentioned entity and link it to a KG node. (2) Generate the sequence of predicates required for traversal. (3)
Predict the Question type and, (4) Predict AET. After extracting all the information from query, a corresponding
formal query such as, SPARQL, is generated to retrieve the final answer.

based model where, BERT Devlin et al. (2018) is
used as an Encoder and a Transformer Vaswani
et al. (2017) as a decoder. Figure 3 illustrates a
high-level view of the proposed model.

Joint Model for KGQA

In this paper, we extend BERT to generate path (or
inference chains), perform sequence labeling and
classification jointly. Details of each module are
described next.

1. Entity Mention Detection Module: To extract
the mentioned entity(s) from NL query, we per-
formed a sequence labeling task using BERT’s
hidden states (Figure 4). Sequence labeling is a
seq2seq task that tags the input word sequence
x = (wy,ws,...,wp) with the output label se-
quence Yseq = (Y1,Y2, ..., yr). In this paper, we
augmented CQA-NMT to jointly infer the type
of the mentioned entity(s) along with its(their)
‘span’. We feed the final hidden states of the tokens
ho, hs, ..., hr_1, into a softmax layer to generate
output sequence. Also, we ignore the hy and hp
i.e., [CLS] and [SEP] tokens as they can never
be a part of an entity(s) and are only required as
a preprocessing step of BERT. Since BERT uses

WordPiece tokenization, we assigned the same la-
bel to the other tokenized input corresponding to
their first sub-token. For e.g., the output of BERT’s
Wordpiece tokenizer is ‘Jim Hen ##son’ for the
input ‘Jim Henson’. We assigned the labels for the
tokenized output as ‘B-Per I-Per I-per’, i.e., the sec-
ond sub-word ‘##son’ was given the same label as
the first sub-word ‘Hen’. The output of the softmax
layer is:

yétype = s0ftmar(Wey, o -hi + be,,,.) (1)
where, h; is the hidden state corresponding to the
ith token.
2. Entity Linking: The output of the Entity Men-
tion Detection Module is a sequence of tokens
along with its type (¢;) for a candidate entity. These
mentioned entities still need to be linked to a KG
node for traversal. In our work, we do not use any
neural network for the linking process. Instead, we
rely on an ensemble of string matching algorithms?
and PageRank Page et al. (1999) to break the ties
between candidate entities.
The Entity Mention Detection Module outputs as

>We used Levenshtein Distance and SequenceMatcher
packages available in Python
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many entities as provided in a query and their as-
sociated type (t;). To link the mentioned entity
in the NL query, we extract the candidates from
V(G) of type t;. We then apply 3 string-matching
algorithms, similar to (Mohammed et al., 2017) ,
and take a majority voting to further break the ties.
Finally, we apply the PageRank algorithm to link
the mentioned entity with a KG entity. One way
to understand the usability of the PageRank algo-
rithm is to consider the notion of popularity. For
e.g., if a user queries “Where was Obama born?’,
the user here is more likely referring to the famous
Barack Obama, compared to any other. A detailed
description of the entity mention detection and the
entity linking procedure is shown in Figure 4.

3. Path prediction Module: To generate the se-
quence of predicates for an input query, we aug-
mented our architecture with a Transformer-based
Vaswani et al. (2017) decoder which is often used
in Neural Machine Translation (NMT) tasks.

We define ypqin={p1,p2, ..., pn } where each p; €
E(G). In our work, we do not constraint the num-
ber of predicates (multiple-hops) that are required
to extract the final answer. Hence, an obvious
choice was to use a decoder module which can
stop generating the predicates once it has predicted
the end-of-sentence ([EOS]) token (Figure 4).

4. Question Type and Answer Entity Type pre-
diction module: In our work, we formulate the
task of determining the question type and the AET
as a classification task since we have a discrete set
for both qype and Answer Entity Types. Using the
hidden states of the first special token from BERT,
i.e., [CLS], we predict:

Yguype = S0ftmaz(Wge.hy + byr) (2
Yr = softmar(Wigs.hy + bygt) 3)

To jointly model all the task using a single
architecture, we define our training objective as:

PYIX) = P(Yerype» Ypaths Yarype Yr1X) (4

P(Y1%) = P(Ygeype %) 27 1%)-D(Yerype [X) -2 (Ypatn |X)

)

The path and AET components of CQA-NMT are
defined as,

N
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Figure 4: Entity Mention and Entity Linking Modules.

where,

Yaqrpe € 1factoid, count, boolean, simple} (8)

yr € {entity types in KG} )
yétwe € {B, I} x {entity_types} U{O} (10)
pi € E(G). (11)

For training we maximize the conditional probabil-
ity P(Yerype » Ypaths Yaeype » Yr|X). The model is fine-
tuned end-to-end via minimizing the cross-entropy
loss.

5 Experiments and System details

In this section, we first introduce the datasets used
for our experiments. We pre-process all NLQs (of
all datasets) by downcasing and tokenizing.

5.1 Datasets, Metrices, and Baselines

LOCA Dataset: We introduce a new challenging
dataset ‘LOCA’, which consists of 5010 entities,
42 unique predicates, and a total of 45,869 facts.
The dataset has 3,275 one or multi-hop questions
that have 0, 1, or more entities mentioned in the
questions. It contains multiple question types like
count, factoid, and boolean.

For the questions with multiple entities, we used
an operator “;” as a delimiter to separate paths
corresponding to each entity (in Figure 1, query
5, 7, and 8). For the scope of this paper, we
considered queries involving the only intersection
which can be replaced with other operators like
union, set-difference, etc. without loss of any
generality. The operator “;” help us detect and
predict the different topologies involved in an NL
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Train Dev Test
MetaQA 1-hop 96,106 9,992 9947
MetaQA 2-hop 118,980 14,872 14,872
MetaQA 3-hop 114,196 14,274 14,274
LOCA 1-hop 2,000 250 250
LOCA 2-hop 400 50 50
LOCA 3[or more]-hop 220 28 28

Table 1: Statistics of MetaQA and LOCA dataset
query.

MetaQA: The dataset proposed in Zhang et al.
(2018) consists of 3 different datasets namely,
Vanilla, NTM, and, Audio Data. All the datasets
contain single and multi-hop (maximum 3-hop)
questions from the movie domain. For our experi-
ments, we used the Vanilla and the NTM version of
the datasets and the KB as provided in Zhang et al.
(2018). Since, both versions of MetaQA do not
consider the AET and question type, we assigned a
default label to both the tasks.

Metrics: We used different metrics for different
subtasks. Since a query can contain partially men-
tioned entities, we used F-score to evaluate mention
and its type detection module. For Inference Chain
(or Path prediction), question type, and, answer en-
tity type prediction we use the accuracy measure.
In Table 2, similar to prior works, we have used the
Hits@1 to evaluate the query-answer accuracy.

Baselines: We have used, KV-mem Bordes et al.
(2015), GraftNet Sun et al. (2018), PullNet Sun
et al. (2019), VRN Zhang et al. (2018), and Em-
bedKGQA Saxena et al. (2020) as the baselines.

5.2 Training Details

All the baselines and the proposed approach were
trained on DGX 32GB NVIDIA GPU using Ten-
sorFlow Abadi et al. (2015) and Texar Hu et al.
(2018) libraries. For CQA-NMT, we used the small
uncased version of pre-trained BERT Devlin et al.
(2018) model. Adam Kingma and Ba (2014) opti-
mizer was employed with a learning rate of 2e-5
for BERT and default for others. The training ob-
jective of each model was maximized using the
cross-entropy loss and the best models were se-
lected using the validation loss. Dropout values
were set to .5 and were optimized as described in
Srivastava et al. (2014). For BERT we used 10% of
total training data for the warmup phase of BERT
Vaswani et al. (2017). Finally, for the division of

dataset into train, test, and, dev, we used the same
split as provided by Zhang et al. (2018) for the
MetaQA dataset and a ratio of 80-10-10 for LOCA
dataset.

5.3 Main Results

In this section, we report the results of the experi-
ments on the MetaQA and the LOCA dataset. Next,
we provide insights into the model outputs and re-
sults of error-analysis performed on LOCA dataset.

5.3.1 LOCA

The experimental results for LOCA dataset are
shown in the last row of table 2. The results affirm
that the proposed approach outperforms the base-
lines. We observed that the baselines’ inability to
handle Duplicate KG Entity (Section 2 challenge
4) limits their performance. Additionally, the abil-
ity of the NMT Bahdanau et al. (2014) model to
effectively handle complex and un-known topolo-
gies helped us retrieve answers with better accuracy
for variable-hop (v-hop) queries.

5.3.2 MetaQA

The experimental results for MetaQA are shown in
table 2. For Vanilla MetaQA, we achieved better
answer accuracy on 1-hop and 3-hop settings. How-
ever, in a 2-hop setting, we were able to achieve
comparable results to the state-of-the-art. An incre-
ment of about 2% and 4.9% Hits@1 can be seen in
the 1-hop and 3-hop settings.

To obtain the performance of each baseline on
v-hop (variable-hop) dataset, we re-use the existing
models for 1-hop, 2-hop, and 3-hop and assume
that there is an oracle which can redirect query
to the correct model. Thus estimated accuracy of
various approaches is shown in the 4 row of Table
2, while the actual results on v-hop dataset are
shown in the 5" row. It is evident that CQA-NMT
outperforms all the baselines on MetaQA dataset
in variable hop setting.

To gauge the effectiveness and robustness of
our model, we used the same models trained on
vanilla MetaQA dataset and evaluated its perfor-
mance on NTM MetaQA, i.e., in zero-shot setting.
For this, we achieved better results on 1 and 3-hop.
The worse performance of CQA-NMT on MetaQA-
NMT(2-hop) can be because of zero shot setting.
Because, as compared to VRN, we have not trained
CQA-NMT on MetaQA-NTM dataset, we trained
it on MetaQA vanilla dataset only.
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KV-Mem | GraftNet | PullNet | EmbedKGQA | VRN | CQA-NMT
MetaQA(1-hop) 96.2 97.0 97.0 97.5 97.5 99.96
MetaQA (2-hop) 82.7 94.8 99.9 98.8 89.9 99.45
MetaQA (3-hop) 48.9 77.7 91.4 94.8 62.5 99.78
MetaQA (V-hop) Estimated 73.79 89.11 96.05 - - 99.69
MetaQA (V-hop) - 83.67* - - - 95.85
MetaQA-NTM(1-hop) - - - - 81.3 83.3
MetaQA-NTM(2-hop) - - - - 69.7 62.1
MetaQA-NTM(3-hop) - - - - 38.0 81.3
y LOCA | 5107 72.27 - - - 78.29

Table 2: Results of the baselines and CQA-NMT on MetaQA (vanilla and NTM) and LOCA dataset. Results for
MetaQA-NTM were obtained in zero-shot setting for CQA-NMT. All other baseline results are taken from Sun
et al. (2019), Zhang et al. (2018), and Saxena et al. (2020), except for * marked numbers. Note: Source code for
PullNet, VRN is not available. We were not able to replicate the same results of KV-Mem.

Mention Detection |~ AET | Inference Chains | Question Type | Answer
(Fl-score) (Accuracy) | (Accuracy) (Accuracy) | (Accuracy)

Unsupervised 67.12 533 510 - 49

BERT (mention only) 833 5322 519 - 12

BERT (AET only) 67.38 751 536 - 452
BERT (IC only) 67.8 509 80.1 - 40.1
BERT (mention and AET) 87.1 763 716 - 65.33
BERT (AET and IC) 66.3 741 718 - 60.39

BERT (Mention and IC) 873 331 79.6 513

CQA-NMT 93.66 79.89 8195 97.65 7101

Table 3: Effects for reducing the supervision from our
approach. The numbers in italics are obtained without
any supervision.

5.4 Further Results and Analysis

Advantage of Transformers: In the LSTM based
implementation of mentioned entity detection, it
could not detect different entity types for the same
phrase “deep learning” in query 1 and 2 of Figure
1. However, in BERT-based approach it was able
to. We therefore infer that such phenomenon could
occur due to key features of BERT such as multi
head attention, WordPiece embeddings, Positional
embeddings, and/ or Segment embeddings. More-
over, in a different context, it was able to assign
different types to the entities with the same men-
tions (Query 1 and 2 from Figure 1).

Effects of using less annotations: To study the
importance of annotation in our approach, we re-
moved several components from our proposed ap-
proach and studied the effects (Table 3). We first
studied CQA-NMT after removing all the supervi-
sion and used heuristics-based-approaches for AET
and Mention Detection (both the approaches were
taken from Mohammed et al. (2017)). The shortest
path, similar to Sun et al. (2018, 2019), between
the linked KG entity and AET, was then taken to
retrieve the answers. This setting (row 1) results in

the worst performance. In row 2, 3, and 4 of Table
3, we kept only one component of CQA-NMT as
supervised and applied heuristics for others as men-
tioned above. As evident from these rows, mention
detection plays a crucial role in extracting the cor-
rect answer (a jump in range of 2%-5% in answer
accuracy). A similar analysis can be found in Dong
and Lapata (2016); Guo et al. (2018); Srivastava
et al. (2020), where authors found that entity link-
ing error is one of the major errors leading to wrong
predictions in KGQA.

In summary, while testing each components of
CQA-NMT, we tried supervising different com-
ponents at a time and used heuristics based ap-
proaches for the remaining components. The
heuristics are:

a) Shortest path algorithm, similar to Sun et al.
(2018, 2019), for Path Prediction Task.

b) Candidate and Relation Pairing Score Mo-
hammed et al. (2017) for Entity Linking.

¢) LSTM based Classifier Mohammed et al. (2017)
for Answer Entity Type Prediction. [ however in
Row 1 “Unsupervised”, we identify the AET if
name of the entity-type is present in the NLQ ].
Benefits of joint training: From row 5-7 of Table
3, we infer that joint training not only improves
the scores of individual components (in range 15%-
20%) but also, the overall answer accuracy. We
observed that the challenges 5 and 6 from section 2
were handled significantly better after jointly train-
ing CQA-NMT for AET and mention detection
(row 5). We found that the context used by a men-
tioned entity for AET was different in different
queries. For e.g., in queries “Who heads Deep
Learning?’ and ‘papers in Deep Learning’, Deep
Learning, is a research area with AET ‘head’ in
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the former, and in the later, is a keyword with AET
‘paper.title’. After jointly training the mention de-
tection model with AET or IC, a jump of ~4%
can be observed for the individual components and
~11-20% in answer accuracy.

Errors with Joint Training: From table 3, it
seems that the joint-training helps. However, we
also found that the error made by a single module
produces a cascading of errors. For example, if for
a single mention span ‘deep learning and ai’ with
the gold label as ‘B-research_area I-research_area
I-research_area I-research_area’, the entity detec-
tion predicts ‘B-research_area I-research_area O
B-keyword’, the path prediction module generates
two different paths, one for each entity, leading to
wrong answer.

Similarly, if AET prediction module makes an ‘er-
ror’, it gets propagated to all the other modules
simultaneously. The frequency of such error, how-
ever, was considerably small and in range of 1-2%
of total training or test data.

Robustness against variable hops: We combined
all the 3 vanilla MetaQA datasets into a single
dataset. The results on this new dataset, MetaQA
v-hop (variable-hop) is shown in table 2. Since the
other approaches in the literature did not perform
such analysis, MetaQA v-hop is a new challenge
that we propose.

Motivation for PageRank: When we have more
than one candidate entity for a mentioned entity,
we want to choose the one with higher popularity
(Sec 4). One of the most well established mea-
sure of popularity of nodes in graphs is PageRank.
Therefore we have used it. Further, when more
than one entity are mentioned in an NLQ, there can
be more than one candidate entity for each of them.
The graph-based approach also helps us choose the
candidates that are well connected.

We also experimented using other measures such
as in-degree and out-degree of nodes. However, for
LOCA dataset, we achieved an increment of 22%
using PageRank on Entity Linking task, as com-
pared to the in-degree and out-degree measures.
PageRank also helped in reducing the challenges
1-2 from Sec. 2.

5.4.1 Retrieval of answer(s) from KG

The final objective of a KG-QA system is to re-
trieve the correct answer from KG against a query
q. To this end, we use the outputs of the different
components of CQA-NMT and feed them to com-
plete the pre-written SPARQL sketchs. We defined

a bunch of rules for different question-types and
used a simple-mapping rules to map the queries
to the sketches. For e.g., consider the query, q =
“Who is working in automated regulatory compli-
ance and has published a paper in NLP?”. The
output of CQA-NMT contains all the information
that is required to form a structured query such as
SPARQL. The outputs of CQA-NMT are:

1. Linked Entities: {e5: automated regulatory
compliance (sub-area), e6: NLP (keyword)}
2. Inference Chain: key_person; has_paper, au-

thor
3. Answer Entity Type (AET): researcher.name
4. Question Type (gype): Factoid

After using the ¢y, information, we fill a sketch
using other outputs. The generated SPARQL query
is:

SELECT DISTINCT ?uri WHERE {<e5>
<key_person> <?uri> . <e6> <has_paper>
<Ix> . <?7x> <author> <?uri>}.

Where, e5 and e6 are unique identities assigned
to ‘automated regulatory compliance’ (of type sub-
area) and NLP (of type keyword).

6 Conclusion

We presented a complex version of the KGQA prob-
lem, which involves mention of multiple entities
in the question. Multiple sequence of relationships
combined in complex topologies, are required to
answer such questions. It is evident that such ques-
tions, while required to be answered in real world
industrial setting, cannot be answered using prior
approaches. We propose a novel CQA-NMT model
to answer such questions and have performed a de-
tailed comparison of our approach with prior art on
MetaQA and Loca datasets. We have shown that
CQA-NMT not only solves more complex task, but
also performs better on MetaQA dataset as com-
pared to baseline approaches.
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