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Abstract

Recent studies treat Word Sense Disambigua-
tion (WSD) as a single-label classification
problem in which one is asked to choose only
the best-fitting sense for a target word, given
its context. However, gold data labelled by ex-
pert annotators suggest that maximizing the
probability of a single sense may not be the
most suitable training objective for WSD, es-
pecially if the sense inventory of choice is fine-
grained. In this paper, we approach WSD as
a multi-label classification problem in which
multiple senses can be assigned to each target
word. Not only does our simple method bear
a closer resemblance to how human annota-
tors disambiguate text, but it can also be ex-
tended seamlessly to exploit structured knowl-
edge from semantic networks to achieve state-
of-the-art results in English all-words WSD.

1 Introduction

Word Sense Disambiguation (WSD) is traditionally
framed as the task of associating a word in con-
text with its correct meaning from a finite set of
possible choices (Navigli, 2009). Following this
definition, recently proposed neural models were
trained to maximize the probability of the most
appropriate meaning while minimizing the proba-
bility of the other possible choices (Huang et al.,
2019; Vial et al., 2019; Blevins and Zettlemoyer,
2020; Bevilacqua and Navigli, 2020). Although
this training objective proved to be extremely ef-
fective and even led to Bevilacqua and Navigli
(2020) reaching the estimated upper bound of inter-
annotator agreement for WSD performance on the
unified evaluation framework of Raganato et al.
(2017b), adhering to it underplays a fundamental
aspect of how human annotators disambiguate text.
Indeed, past studies have observed that it is not
uncommon for a word to have multiple appropri-
ate meanings in a given context, meanings that

can be used interchangeably under some circum-
stances because their boundaries are not clear cut
(Tuggy, 1993; Kilgarriff, 1997; Hanks, 2000; Erk
and McCarthy, 2009). This is especially evident
if the underlying sense inventory is fine-grained,
as the complexity, and therefore performance, of
WSD is tightly coupled to sense granularity (Lac-
erra et al., 2020). The difficulty an annotator faces
in choosing the most appropriate meaning from a
fine-grained sense inventory becomes clear from an
analysis of gold standard datasets: a non-negligible
5% of the target words are annotated with two or
more sense labels in several gold standard datasets,
including Senseval-2 (Edmonds and Cotton, 2001),
Senseval-3 (Snyder and Palmer, 2004), SemEval-
2007 (Pradhan et al., 2007), SemEval-2013 (Nav-
igli et al., 2013), and SemEval-2015 (Moro and
Navigli, 2015). Therefore, we follow Erk and
McCarthy (2009), Jurgens (2012), and Erk et al.
(2013), and argue that forcing a system to treat
WSD as a single-label classification problem and
learn that only one sense is correct for a word in a
given context does not reflect how human beings
disambiguate text.

In contrast to recent work, we approach WSD as
a soft multi-label classification problem in which
multiple senses can be assigned to each target word.
We show that not only does this simple method
bring significant improvements at low or no addi-
tional cost in terms of training and inference times
and number of trainable parameters, but it can also
be seamlessly extended to integrate senses from
relational knowledge in structured form, e.g., sim-
ilarity, hypernymy and hyponymy relations from
semantic networks such as WordNet (Miller, 1995)
and BabelNet (Navigli and Ponzetto, 2012). While
structured knowledge has been naturally utilized
by graph-based algorithms for WSD (Agirre and
Soroa, 2009; Moro et al., 2014; Scozzafava et al.,
2020), the incorporation of such information into
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neural approaches has recently been garnering sig-
nificant attention. However, currently available
models can only take advantage of this knowl-
edge with purposely-built layers (Bevilacqua and
Navigli, 2020) that require additional complexi-
ties and/or trainable parameters. To the best of
our knowledge, the work presented in this paper
is the first to integrate structured knowledge into
a neural architecture at negligible cost in terms of
training time and number of parameters, while at
the same time attaining state-of-the-art results in
English all-words WSD.

2 Method

Single-label vs multi-label. WSD is the task of
selecting the best-fitting sense s among the possi-
ble senses Sw of a target word w in a given context
c = 〈w1, w2, . . . , wn〉, where Sw is a subset of a
predefined sense inventory S. Abstracting away
from the intricacies of any particular supervised
model for WSD, the output of a WSD system pro-
vides a probability yi for each sense si ∈ Sw. Re-
cently proposed machine learning models – Kumar
et al., 2019; Barba et al., 2020; Blevins and Zettle-
moyer, 2020; Bevilacqua and Navigli, 2020, inter
alia – are trained to maximize the probability of
the single most appropriate sense ŝ by minimizing
the cross-entropy loss LCE:

LCE(w, ŝ) = − log(yŝ) (1)

We observe that this loss function is only suitable
for single-label classification problems. In the case
of WSD, this is equivalent to assuming that there
is just a single appropriate sense ŝ ∈ Sw for the
target word w in the given context c, that is, ŝ
is clearly dissimilar from any other sense in Sw.
Indeed, minimizing the cross-entropy loss in order
to maximize the probability of two or more senses
generates conflicting training signals; at the same
time, choosing to ignore one of the correct senses
results in a loss of valuable information.

Since there is a not insignificant number of in-
stances where multiple similar senses of the target
word w fit the given context c (see Section 1), we
frame WSD as a multi-label classification problem
in which a machine learning model is trained to
predict whether a sense s ∈ Sw is appropriate for a
word w in a given context c, independently of the
other senses in Sw. This is simply equivalent to
minimizing the binary cross-entropy loss LBCE on

the probabilities of the candidate senses Sw:

LBCE(w, Ŝw) =−
∑
ŝ∈Ŝw

log(yŝ) (2)

−
∑

s∈Sw\Ŝw

log(1− ys)

where Ŝw ⊆ Sw is the set of appropriate senses
for the target word w in the given context c. We
note that this simple yet fundamental change in
paradigm does not come with an increased compu-
tational complexity as |Sw| is usually small. More-
over, it is independent of the underlying model
used to calculate the output probabilities and, there-
fore, it does not increase the number of trainable
parameters.

Knowledge integration. If our model benefits
from learning to assign multiple similar senses to a
target word in a given context, then it makes sense
that the very same model may also benefit from
learning what related senses can be assigned to
that word. For example, in the sentence “the quick
brown fox jumps over the lazy dog”, our model
may formulate a better representation of fox if it is
also trained to learn that any fox is a canine (hy-
pernymy relation) or that the fox species includes
arctic foxes, red foxes, and kit foxes (hyponymy
relations). In this way, not only would the model
learn that canines, foxes and arctic foxes are closely
related, but it would also learn that canines and
arctic foxes may have the ability to jump, and this
could act as a data augmentation strategy especially
for those senses that do not appear in the training
set.

There is a growing interest in injecting relational
information from knowledge bases into neural net-
works but, so far, recent attempts have required
purposely-designed strategies or layers. Among
others, Kumar et al. (2019) aid their model with a
gloss encoder that uses the WordNet graph struc-
ture; Vial et al. (2019) adopt a preprocessing strat-
egy aimed at clustering related senses to decrease
the number of output classes; Bevilacqua and Nav-
igli (2020) introduce a logit aggregation layer that
takes into account the neighboring meanings in the
WordNet graph.

In contrast, our multi-labeling approach to WSD
can be seamlessly extended to integrate relational
knowledge from semantic networks such as Word-
Net without any increase in architectural complex-
ity, training time, and number of trainable param-
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eters. We simply relax the definition of the set of
possible senses Sw for a word w to include all the
senses related to a sense in Sw. More formally, let
G = (S,R) be a semantic network where S is a
sense inventory and R is the set of semantic con-
nections between any two senses. Then we define
S+
w to also include every sense sj that is connected

to any sense si ∈ Sw by an edge (si, sj) ∈ R, that
is, S+

w = Sw ∪ {sj : (si, sj) ∈ R, si ∈ Sw}. The
loss function is updated accordingly to maximize
not only the probability of the correct senses, but
also the probability of their related senses:

LBCE(w, Ŝ
+
w ) =−

∑
ŝ∈Ŝ+

w

log(yŝ) (3)

−
∑

s∈S+
w\Ŝ+

w

log(1− ys)

where Ŝ+
w = Ŝw ∪ {sj : (ŝi, sj) ∈ R, ŝi ∈ Ŝw}.

We note that the increase of the number of possi-
ble choices (|S+

w | ≥ |Sw|) and correct meanings
(|Ŝ+

w | ≥ |Ŝw|) does not hinder the learning process
since each probability is computed independently
of the others. Finally, we stress that our approach
to structured knowledge integration is completely
model-agnostic, as it is independent of the architec-
ture of the underlying supervised model.

Model description. In order to assess the bene-
fits of our multi-labeling approach and avoid im-
provements that may not be related to the overall
objective of this paper, we conduct our experiments
with a simple WSD model. Similarly to Bevilacqua
and Navigli (2020), this model is simply composed
of BERT (large-cased, frozen), a non-linear layer,
and a linear classifier. Thus, given a word w in
context we build a contextualized representation
ew ∈ RdBERT of the word w as the average of the
corresponding hidden states of the last four lay-
ers of BERT, apply a non-linear transformation to
obtain hw ∈ Rdh with dh = 512, and finally a lin-
ear projection to ow ∈ R|S| to compute the sense
scores. More formally:

ew = BatchNorm

(
1

4

4∑
i=1

b−iw

)
hw = Swish(Whew + bh)

ow = Wohw + bo

where b−iw is the hidden state of the i-th layer of
BERT from the topmost one, BatchNorm(·) is the

batch normalization operation, and Swish(x) =
x ·sigmoid(x) is the Swish activation function (Ra-
machandran et al., 2017).

3 Experiments and Results

Experimental setup. We train our models in dif-
ferent configurations to assess the individual con-
tribution of several factors. First, we compare our
baseline model trained with a single-label objec-
tive (Equation 1) to the same model trained with
a multi-label objective (Equation 2). Then, we
gradually include structured knowledge in the form
of WordNet relations using Equation 3, starting
from similarity relations (similar-to, also-see, verb-
group, and derivationally-related-form), and incre-
mentally including generalization and specifica-
tion relations (hypernymy, hyponymy, instance-
hypernymy, instance-hyponymy). In order to keep
a level playing field with single-label systems, we
choose only the meaning with highest probability
for our multi-label models.

Datasets. We evaluate the models on the Unified
Evaluation Framework for English all-words WSD
proposed by Raganato et al. (2017b). This evalua-
tion includes five gold standard datasets, namely,
Senseval-2, Senseval-3, SemEval-2007, SemEval-
2013, and SemEval-2015. Following standard prac-
tice we use the smallest gold standard as our devel-
opment set, SemEval-2007, and the remaining ones
as test sets. We distinguish between two settings:
closed and open. In the former setting, we include
systems that only use SemCor (Miller et al., 1994)
as the training corpus, while in the latter we also
include those systems that use WordNet glosses
and examples and/or Wikipedia.

Hyperparameters. We use the pretrained ver-
sion of BERT-large-cased (Devlin et al., 2019)
available on HuggingFace’s Transformers library
(Wolf et al., 2020) to build our contextualized em-
beddings (Section 2). BERT is left frozen, that
is, its parameters are not updated during training.
Each model is trained for 25 epochs using Adam
(Kingma and Ba, 2015) with a learning rate of 10−4.
We avoid hyperparameter tuning and opt for values
that are close to the ones reported in the literature
so as to have a fairer comparison.

Comparison systems. In order to have a com-
prehensive comparison with the current state of the
art in WSD, we include the work of:
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Concatenation of ALL datasets

SE2 SE3 SE07 SE13 SE15 Nouns Verbs Adj Adv ALL
Se

m
C

or
on

ly
Raganato et al. (2017a) 72.0 69.1 64.8 66.9 71.5 71.5 57.5 75.0 83.8 69.9
BERTLarge 76.3 73.2 66.2 71.7 74.1 – – – – 73.5
Hadiwinoto et al. (2019) 75.5 73.6 68.1 71.1 76.2 – – – – 73.7
Peters et al. (2019) – – – – – – – – – 75.1
Vial et al. (2019) – – – – – – – – – 75.6
Vial et al. (2019) - Ensemble 77.5 77.4 69.5 76.0 78.3 79.6 65.9 79.5 85.5 76.7
This work 78.4 77.8 72.2 76.7 78.2 80.1 67.0 80.5 86.2 77.6

Se
m

C
or

+
de

fin
iti

on
s

/e
xa

m
pl

es Loureiro and Jorge (2019) 76.3 75.6 68.1 75.1 77.0 78.0 64.0 80.7 84.5 75.4
Scarlini et al. (2020a) – – – 78.7 – 80.4 – – – –
Conia and Navigli (2020) 77.1 76.4 70.3 76.2 77.2 78.7 65.6 81.1 84.7 76.4
Bevilacqua et al. (2020) 78.0 75.4 71.9 77.0 77.6 79.9 64.8 79.2 86.4 76.7
Huang et al. (2019) 77.7 75.2 72.5 76.1 80.4 – – – – 77.0
Scarlini et al. (2020b) 78.0 77.1 71.0 77.3 83.2 80.6 68.3 80.5 83.5 77.9
Blevins and Zettlemoyer (2020) 79.4 77.4 74.5 79.7 81.7 81.4 68.5 83.0 87.9 79.0
Bevilacqua and Navigli (2020) 80.8 79.0 75.2 80.7 81.8 82.9 69.4 82.9 87.6 80.1
This work 80.4 77.8 76.2 81.8 83.3 82.9 70.3 83.4 85.5 80.2

Table 1: WSD results in F1 scores on Senseval-2 (SE2), Senseval-3 (SE3), SemEval-2007 (SE07), SemEval-2013
(SE13), SemEval-2015 (SE15), and the concatenation of all the datasets (ALL). Top: closed setting (only SemCor
allowed as the training corpus without definitions and/or examples). Bottom: open setting (WordNet glosses and
examples are also used for training).

WSD Sim See Rel Vrb Hpe Hpo HpeI HpoI SE07 ALL

SL – – – – – – – – 69.0 74.7
ML – – – – – – – – 69.2 75.7
ML 4 4 4 4 – – – – 70.6 76.6
ML 4 4 4 4 4 – – – 71.0 77.0
ML 4 4 4 4 – 4 – – 72.5 77.4
ML 4 4 4 4 4 4 – – 72.2 77.6
ML 4 4 4 4 4 4 4 4 72.2 77.6

Table 2: WSD results in F1 scores on SemEval-2007
(SE07) and the concatenation of all the datasets (ALL).
SL/ML: single-label/multi-label. Sim: similar-to. See:
also-see. Rel: derivationally-related-forms. Vrb: verb-
groups. Hpe: hypernymy. Hpo: hyponymy. HpeI :
instance-hypernyms. HpoI : instance-hyponyms.

• Raganato et al. (2017a) which was one of the
first to propose a neural sequence model for
WSD based on a stack of BiLSTM layers;

• BERTlarge, a simple 1-neareast-neighbor ap-
proach based on the last hidden state of the
BERT-large-cased model (Loureiro and Jorge,
2019);

• Hadiwinoto et al. (2019) which was among
the first to exploit pretrained contextualized
models for WSD;

• Peters et al. (2019) which incorporated WSD
knowledge directly into the training process
of BERT;

• Huang et al. (2019) which tasked the model
to learn which gloss is the most appropriate
for a word in context;

• Bevilacqua et al. (2020) which tackled WSD
as a gloss generation problem;

• Loureiro and Jorge (2019) and Conia and Nav-
igli (2020) which created and enhanced sense
embeddings with relational knowledge from
WordNet and BabelNet;

• Scarlini et al. (2020a) which proposed nomi-
nal sense embeddings built by exploiting Ba-
belNet to automatically retrieve sense-specific
context;

• Scarlini et al. (2020b) which extended the
above approach to non-nominal senses and
multiple languages;

• alongside the aforementioned work of Vial
et al. (2019), Blevins and Zettlemoyer (2020),
and Bevilacqua and Navigli (2020).

The systems are divided into two groups in Ta-
ble 1: in the upper part we compare our approach
against those systems that do not take advantage of
information coming from WordNet glosses and/or
examples, while in the lower part we also include
those systems that make use of such knowledge.
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Results. The first two rows of Table 2 show the
results of switching from a single-label to a multi-
label approach for WSD: this single change already
brings a significant improvement in performance
(+1.0% in F1 score, significant with p < 0.1, χ2

test). Not only that, increasing the number and
variety of WordNet relations further increases the
performance of the model, with hyponyms being
particularly beneficial (+0.8% in F1 score). Un-
fortunately, including instance hypernyms and in-
stance hyponyms does not bring further improve-
ments; this may be due to the relatively low number
of instances that can take advantage of such rela-
tions in SemCor.

Nonetheless, the results obtained set a new state
of the art among single and ensemble systems
trained only on SemCor without the use of addi-
tional training data or resources external to Word-
Net such as Wikipedia, surpassing the previous
state-of-the-art non-ensemble system of Vial et al.
(2019) by 2.0% in F1 score (significant with p <
0.05, χ2 test), as shown in Table 1. When fur-
ther trained on the WordNet glosses and examples,
our model attains state-of-the-art results (+1.2%
and +0.1% in F1 score compared to the systems
of Blevins and Zettlemoyer (2020) and Bevilac-
qua and Navigli (2020), respectively) despite being
simpler than most of the techniques it is compared
against.

4 Conclusion

WSD is a key task in Natural Language Under-
standing with several open challenges and with
the granularity of sense inventories being undoubt-
edly the most pressing issue (Navigli, 2018). We
departed from recent work on WSD and investi-
gated the effect of tackling the task as a multi-label
classification problem. Not only is our approach
simple and model-agnostic, but it can also be seam-
lessly extended to integrate relational knowledge
in structured form from semantic networks such
as WordNet, and at no extra cost in terms of archi-
tectural complexity, training times, and number of
parameters.

Our experiments show that our method, thanks to
its more comprehensive notion of loss over equally
valid and structurally-related senses, achieves state-
of-the-art results in English all-words WSD, es-
pecially when there is a lower amount of anno-
tated text available. These results open the path
to further research in this direction, from explor-

ing more complex models and richer knowledge
bases to exploiting multiple labels in innovative
disambiguation settings which can overcome the
fine granularity of sense inventories. Not only that,
our knowledge integration approach could poten-
tially be applied to address the knowledge acquisi-
tion bottleneck in multilingual WSD (Pasini, 2020;
Pasini et al., 2021). Finally, with the rise of ever
more complex general and specialized pretrained
models, we believe that our simple model-agnostic
approach can be another step towards knowledge-
based (self-)supervision.

We release our software and model check-
points at https://github.com/SapienzaNLP/

multilabel-wsd.
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