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Abstract

Recently, it has been found that monolin-
gual English language models can be used as
knowledge bases. Instead of structural knowl-
edge base queries, masked sentences such as
“Paris is the capital of [MASK]” are used as
probes. We translate the established bench-
marks TREx and GoogleRE into 53 languages.
Working with mBERT, we investigate three
questions. (i) Can mBERT be used as a multi-
lingual knowledge base? Most prior work only
considers English. Extending research to mul-
tiple languages is important for diversity and
accessibility. (ii) Is mBERT’s performance
as knowledge base language-independent or
does it vary from language to language? (iii)
A multilingual model is trained on more text,
e.g., mBERT is trained on 104 Wikipedias.
Can mBERT leverage this for better perfor-
mance? We find that using mBERT as a knowl-
edge base yields varying performance across
languages and pooling predictions across lan-
guages improves performance. Conversely,
mBERT exhibits a language bias; e.g., when
queried in Italian, it tends to predict Italy as
the country of origin.

1 Introduction

Pretrained language models (LMs) (Peters et al.,
2018; Howard and Ruder, 2018; Devlin et al., 2019)
can be finetuned to a variety of natural language
processing (NLP) tasks and generally yield high
performance. Increasingly, these models and their
generative variants are used to solve tasks by sim-
ple text generation, without any finetuning (Brown
et al., 2020). This motivated research on how
much knowledge is contained in LMs: Petroni et al.
(2019) used models pretrained with masked lan-
guage to answer fill-in-the-blank templates such as
“Paris is the capital of [MASK].”

∗ Equal contribution - random order.

Query Two most frequent predictions

en X was created in MASK. [Japan (170), Italy (56), . . . ]
de X wurde in MASK erstellt. [Deutschland (217), Japan (70), . . . ]
it X è stato creato in MASK. [Italia (167), Giappone (92), . . . ]
nl X is gemaakt in MASK. [Nederland (172), Italië (50), . . . ]

en X has the position of MASK. [bishop (468), God (68), ...]
de X hat die Position MASK. [WW (261), Ratsherr (108), ...]
it X ha la posizione di MASK. [pastore ( 289), papa (138), ...]
nl X heeft de positie van MASK. [burgemeester (400), bisschop (276) , ...]

Table 1: Language bias when querying (TyQ) mBERT.
Top: For an Italian cloze question, Italy is favored as
country of origin. Bottom: There is no overlap be-
tween the top-ranked predictions, demonstrating the in-
fluence of language – even though the facts are the
same: the same set of triples is evaluated across lan-
guages. Table 3 shows that pooling predictions across
languages addresses bias and improves performance.
WW = “Wirtschaftswissenschaftler”.

This research so far has been exclusively on En-
glish. In this paper, we focus on using multilingual
pretrained LMs as knowledge bases. Working with
mBERT, we investigate three questions. (i) Can
mBERT be used as a multilingual knowledge base?
Most prior work only considers English. Extend-
ing research to multiple languages is important for
diversity and accessibility. (ii) Is mBERT’s perfor-
mance as knowledge base language-independent or
does it vary from language to language? To answer
these questions, we translate English datasets and
analyze mBERT for 53 languages. (iii) A multilin-
gual model is trained on more text, e.g., BERT’s
training data contains the English Wikipedia, but
mBERT is trained on 104 Wikipedias. Can mBERT
leverage this fact? Indeed, we show that pooling
across languages helps performance.

In summary our contributions are: i) We auto-
matically create a multilingual version of TREx
and GoogleRE covering 53 languages. ii) We use
an alternative to fill-in-the-blank querying – rank-
ing entities of the type required by the template
(e.g., cities) – and show that it is a better tool
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to investigate knowledge captured by pretrained
LMs. iii) We show that mBERT answers queries
across languages with varying performance: it
works reasonably for 21 and worse for 32 lan-
guages. iv) We give evidence that the query lan-
guage affects results: a query formulated in Italian
is more likely to produce Italian entities (see Ta-
ble 1). v) Pooling predictions across languages
improves performance by large margins and even
outperforms monolingual English BERT. Code and
data are available online (https://github.com/
norakassner/mlama).

2 Data

2.1 LAMA
We follow the LAMA setup introduced by Petroni
et al. (2019). More specifically, we use data from
TREx (Elsahar et al., 2018) and GoogleRE.1 Both
consist of triples of the form (object, relation, sub-
ject). The underlying idea of LAMA is to query
knowledge from pretrained LMs using templates
without any finetuning: the triple (Paris, capital-of,
France) is queried with the template “Paris is the
capital of [MASK].” In LAMA, TREx has 34,039
triples across 41 relations, GoogleRE 5528 triples
and 3 relations. Templates for each relation have
been manually created by Petroni et al. (2019). We
call all triples from TREx and GoogleRE together
LAMA.

LAMA has been found to contain many “easy-
to-guess” triples; e.g., it is easy to guess that a
person with an Italian sounding name is born in
Italy. LAMA-UHN is a subset of triples that are
hard to guess introduced by Poerner et al. (2020).

2.2 Translation
We translate both entities and templates. We use
Google Translate to translate templates in the form
“[X] is the capital of [Y]”. After translation, all
templates were checked for validity (i.e., whether
they contain “[X]”, “[Y]” exactly once) and cor-
rected if necessary. In addition, German, Hindi and
Japanese templates were checked by native speak-
ers to assess translation quality (see Table 2). To
translate the entity names, we used Wikidata and
Google knowledge graphs.

mBERT covers 104 languages. Google Translate
covers 77 of these. Wikidata and Google Knowl-
edge Graph do not provide entity translations for all

1code.google.com/archive/p/
relation-extraction-corpus/

Figure 1: x-axis is the number of translated triples, y-
axis the number of languages. There are 39,567 triples
in the original LAMA (TREx and GoogleRE).

languages and not all entities are contained in the
knowledge graphs. For English we can find a total
of 37,498 triples which we use from now on. On
average, 34% of triples could be translated (macro
average over languages). We only consider lan-
guages with a coverage above 20%, resulting in the
final number of languages we include in our study:
53. The macro average of translated triples in these
53 languages is 43%. Figure 1 gives statistics. We
call the translated dataset mLAMA.

3 Experiments

3.1 Model
We work with mBERT (Devlin et al., 2019), a
model pretrained on the 104 largest Wikipedias.
We denote mBERT queried in language x as
mBERT[x]. As comparison we use the English
BERT-Base model and refer to it as BERT. In initial
experiments with XLM-R (Conneau et al., 2020)
we observed worse performance, similar to Jiang
et al. (2020a). Thus, for simplicity we only report
results on mBERT.

3.2 Typed and Untyped Querying
Petroni et al. (2019) use templates like “Paris is the
capital of [MASK]” and give argmaxw∈V p(w|t)
as answer where V is the vocabulary of the LM
and p(w|t) is the (log-)probability that word w
gets predicted in the template t. Thus the object
of a triple must be contained in the vocabulary of
the language model. This has two drawbacks: it
reduces the number of triples that can be considered
drastically and hinders performance comparisons
across LMs with different vocabularies. We refer
to this procedure as UnTyQ.

We propose to use typed querying, TyQ: for each
relation a candidate set C is created and the pre-
diction becomes argmaxc∈C p(c|t). For templates
like “[X] was born in [MASK]”, we know which
entity type to expect, in this case cities. We ob-
served that (English-only) BERT-base predicts city

https://github.com/norakassner/mlama
https://github.com/norakassner/mlama
code.google.com/archive/p/relation-extraction-corpus/
code.google.com/archive/p/relation-extraction-corpus/
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names for MASK whereas mBERT predicts years
for the same template. TyQ prevents this.

We choose as C the set of objects across all
triples for a single relation. The candidate set could
also be obtained from an entity typing system (e.g.,
(Yaghoobzadeh and Schütze, 2016)), but this is be-
yond the scope of this paper. Variants of TyQ have
been used before (Xiong et al., 2020).

3.3 Singletoken vs. Multitoken Objects
Assuming that objects are in the vocabulary
(Petroni et al., 2019) is a restrictive assumption,
even more in the multilingual case as e.g., “Ham-
burg” is in the mBERT vocabulary, but French
“Hambourg” is tokenized to [“Ham”, “##bourg”].
We consider multitoken objects by including multi-
ple [MASK] tokens in the templates. For both TyQ
and UnTyQ we compute the score that a multitoken
object is predicted by taking the average of the log
probabilities for its individual tokens.

Given a template t (e.g., “[X] was born in [Y].”)
let t1 be the template with one mask token, (i.e.,
“[X] was born in [MASK].”) and tk be the template
with k mask tokens (i.e., “[X] was born in [MASK]
[MASK] . . . [MASK].”). We denote the log proba-
bility that the token w ∈ V is predicted at ith mask
token as p(mi = w|tk), where V is the vocabulary
of the LM. To compute p(e|t) for an entity e that
is tokenized into l tokens ε1, ε2, . . . , εl we simply
average the log probabilities across tokens:

p(e|t) = 1

l

l∑
i=1

p(mi = εi|tl).

If k is the maximum number of tokens of any entity
e ∈ C gets split into, we consider all templates
t1, . . . , tk, with C being the candidate set. The
prediction is then the word with the highest average
log probability across all templates t1, . . . , tk.

Note that for UnTyQ the space of possible pre-
dictions is V × V × · · · × V whereas for TyQ it is
the candidate set C.

3.4 Evaluation
We compute precision at one for each relation, i.e.,
1/|T |

∑
t∈T 1{t̂object = tobject} where T is the

set of all triples and t̂object is the object predicted
by TyQ or UnTyQ. Note that T is different for
each language. Our final measure (p1) is then the
precision at one averaged over relations (i.e., macro
average). Results for multiple languages are the
macro average p1 across languages.

untyped typed
single

0.1

0.2

0.3

0.4

p1

untyped typed
multi

0.0

0.1

0.2

p1

Figure 2: Distribution of p1 scores for 53 languages in
UnTyQ vs. TyQ. Left: singletoken (object = 1 token).
Right: multitoken (object > 1 token).

4 Results and Discussion

We first investigate TyQ and UnTyQ and find that
TyQ is better suited for investigating knowledge
in LMs. After exploring the translation quality,
we use TyQ on mLAMA and observe rather sta-
ble performance for 21 and poor performance for
32 languages. When investigating the languages
more closely, we find that prediction results highly
depend on the language. Finally, we validate our
initial hypothesis that mBERT can leverage its mul-
tilinguality by pooling predictions: pooling indeed
performs better.

4.1 UnTyQ vs. TyQ

Figure 2 shows the distribution of p1 scores for
single and multitoken objects. As expected, TyQ
works better, both for single and multitoken ob-
jects. With UnTyQ, performance not only depends
on the model’s knowledge, but on at least three
extraneous factors: (i) Does the model understand
the type constraints of the template (e.g., in “X is
the capital of Y”, Y must be a country)? (ii) How
“fluent” a substitution is an object under linguistic
constraints (e.g., morphology) that can be viewed
as orthogonal to knowledge? Many English tem-
plates cannot be translated into a single template
in many languages, e.g., “in X” (with X a country)
has different translations in French: “à Chypre”,
“au Mexique”, “en Inde”. But the LAMA setup
requires a single template. By enforcing the type,
we reduce the number of errors that are due to sur-
face fluency. (iii) The inadequacy of the original
LAMA setup for multitoken answers. Figure 2
(right) shows that the original UnTyQ struggles
with multitokens (mean p1 .03 vs. .17 for TyQ).

Overall, TyQ allows us to focus the evaluation
on the core question: what knowledge is contained
in LMs? From now on, we report numbers in the
TyQ setting.

Manual template tuning or automatic template
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machine manually manually
translated corrected paraphrased

de 18.1 19.4 (6) 20.9 (18)
hi 5.4 6.2 (14) 6.2 (1)
ja 0.4 0.4 (14) 0.7 (5)

Table 2: Effect of manual template modification on Un-
TyQ. Shown is p1, number of templates modified (in
brackets). Templates are modified to correct mistakes
from machine translation and paraphrased to achieve
the correct object type. Manual template correction has
a small effect on UnTyQ.

mining (Jiang et al., 2020b) has been investigated
in the literature to approach the typing problem.
We had native speakers check templates for Ger-
man, Hindi and Japanese, correct mistakes in the
automatic translation and paraphrase the template
to obtain predictions with the correct type. Table 2
shows that corrections do not yield strong improve-
ments. We conclude that template modifications
are not an effective solution for the typing problem.

4.2 Translation Quality

Contemporaneous work by Jiang et al. (2020a) pro-
vides manual translations of LAMA templates for
23 languages respecting grammatical gender and
inflection constraints. We evaluate our machine
translated templates by comparing performance on
a common subset of 14 languages using TyQ query-
ing on the TREx subset. Surprisingly, we find a per-
formance difference of 1 percentage points (0.23
vs. 0.24, p1 averaged over languages) in favor of
the machine translated templates. This indicates
that the machine translated templates in combina-
tion with TyQ exhibit comparable performance but
come with the benefit of larger language coverage
(53 vs. 23 languages).

4.3 Multilingual Performance

In mLAMA, not all triples are available in all lan-
guages. Thus absolute numbers are not compara-
ble across languages and we adopt a relative per-
formance comparison: we report p1 of a model-
language combination divided by p1 of mBERT’s
performance in English (mBERT[en]) on the ex-
act same set of triples and call this rel-p1. A rel-
p1 score of 0.5 for mBERT[fi] means that p1 of
mBERT on Finnish is half of mBERT[en]’s per-
formance on the same triples. rel-p1 of English
BERT is usually greater than 1 as monolingual
BERT tends to outperform mBERT[en].

Figure 3 shows that mBERT performs reason-
ably well for 21 languages, but for 32 languages

LAMA LAMA-UHN
BERT 38.5 29.0
mBERT[en] 35.0 25.7
mBERT[pooled] 41.1 32.1

Table 3: p1 for BERT, mBERT queried in English,
mBERT pooled on LAMA and LAMA-UHN.

rel-p1 is less than 0.6 (i.e., their p1 is 60% of En-
glish’s p1). We conclude that mBERT does not
exhibit a stable performance across languages. The
variable performance (from 20% to almost 100%
rel-p1) indicates that mBERT has no common rep-
resentation for, say, “Paris” across languages, i.e.,
mBERT representations are language-dependent.

4.4 Bias

If mBERT captured knowledge independent of lan-
guage, we should get similar answers across lan-
guages for the same relation. However, Table 1
shows that mBERT exhibits language-specific bi-
ases; e.g., when queried in Italian, it tends to predict
Italy as the country of origin. This effect occurs
for several relations: Table 4 in the supplementary
presents data for ten relations and four languages.

4.5 Pooling

We investigate pooling of predictions across lan-
guages by picking the object predicted by the ma-
jority of languages. Table 3 shows that pooled
mBERT outperforms mBERT[en] by 6 percent-
age points on LAMA, presumably in part be-
cause the language-specific bias is eliminated.
mBERT[pooled] even outperforms BERT by 3 per-
centage points on LAMA-UHN. This indicates that
mBERT can leverage the fact that it is trained on
104 Wikipedias vs. just one and even outperforms
the much stronger model BERT.

5 Related Work

Petroni et al. (2019) first asked the question: can
pretrained LMs function as knowledge bases? Sub-
sequent analyses focused on different aspects, such
as negation (Kassner and Schütze, 2020), easy to
guess names (Poerner et al., 2020), integrating
adapters (Wang et al., 2020) or finding alterna-
tives to a “fill-in-the-blank” approach with single-
token answers (Bouraoui et al., 2020; Heinzerling
and Inui, 2020; Jiang et al., 2020b). Other work
combines pretrained LM with information retrieval
(Guu et al., 2020; Lewis et al., 2020a; Izacard and
Grave, 2020; Kassner and Schütze, 2020; Petroni
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en id m
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Figure 3: p1 of BERT (red) vs mBERT[x] (blue) divided by p1 of mBERT[en] on the same set of triples in
each language x. mBERT captures less factual knowledge than monolingual English BERT. While performance is
reasonable for 21 languages, it is below 60% for 32 languages. Dashed line is rel-p1 of mBERT[en] (by definition
equal to 1.0). Performance of BERT varies slightly as the set of triples is different for each language. Note that the
Wikipedia of Cebuano (ceb) consists mostly of machine translated articles.

et al., 2020). None of this work addresses lan-
guages other than English.

Multilingual models like mBERT (Devlin et al.,
2019) and XLM-R (Conneau et al., 2020) perform
well for zero-shot crosslingual transfer (Hu et al.,
2020). However, we are not aware of any prior
work that analyzed to what degree pretrained mul-
tilingual models can be used as knowledge bases.
There are many multilingual question answering
datasets such as XQuAD (Artetxe et al., 2020),
TiDy (Clark et al., 2020), MKQA (Longpre et al.,
2020) and MLQA (Lewis et al., 2020b). Usually,
multilingual models are finetuned to solve such
tasks. Our goal is not to improve question answer-
ing or create an alternative multilingual question
answering dataset, but instead to investigate which
knowledge is contained in pretrained multilingual
LMs without any kind of supervised finetuning.

There is a range of alternative multilingual
knowledge bases that could be used for evaluation.
Those include ConceptNet (Speer et al., 2017) or
BabelNet (Navigli and Ponzetto, 2010). We de-
cided to provide a translated versions of TREx and
GoogleRE for the sake of comparability across lan-
guages. By translating manually created templates
and entities we can ensure comparability across
languages. This is not possible for crowd-sourced
databases like ConceptNet.

In contemporaneous work, Jiang et al. (2020a)
create and investigate a multilingual version of
LAMA. They provide human template translations
for 23 languages, propose several methods for mul-
titoken decoding and code-switching, and experi-
ment with a number of PLMs. In contrast to their
work, we investigate typed querying, focus on com-
parabiliy and pooling across languages, and explore
language biases.

6 Conclusion

We presented mLAMA, a dataset to investigate
knowledge in language models (LMs) in a multi-
lingual setting covering 53 languages. While our
results suggest that correct entities can be retrieved
for many languages, there is a clear performance
gap between English and, e.g., Japanese and Thai.
This suggests that mBERT is not storing entity
knowledge in a language-independent way. Ex-
periments investigating language bias confirm this
finding. We hope that this paper and the dataset
we publish will stimulate research on investigating
knowledge in LMs multilingually rather than just
in English.
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A Language Bias

Table 4 shows the language bias for 10 relations.
For each relation we aggregated the predictions
across all triples and show the most common two
predicted entities together with its count (in brack-
ets). The querying language clearly affects results.
The effect is drastic for relations that ask for a coun-
try (e.g., P495 or P1001). P39 yields very different
results without exhibiting a clear pattern. Other
relations such as P463 or P178 are rather stable.

B Data Samples

Table 4 and Table 5 show randomly sampled entries
from the data.

C Pretraining Data

We investigate whether performance across lan-
guages is correlated with the amount of pretraining
data for each language. To this end we investigate
the number of articles per language as of January
2021 2 and p1 for TyQ in Figure 6. We do not have
access to the original pretraining data of mBERT.
Thus, the number of articles we consider in the
analysis might be different to the actual data used
to train mBERT.

2https://meta.wikimedia.org/wiki/List_
of_Wikipedias
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Figure 4: Three randomly sampled data entries from
mLAMA per language. Due to the automatic genera-
tion of the dataset not all of them are fully correct.
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en de nl it
P495: “[X] was created in [Y]” Japan (170), Italy (56) Deutschland (217), Japan (70) Nederland (172), Italië (50) Italia (167), Giappone (92)
P101: “[X] works in the field of [Y]” art (205), science (135) Kunst (384), Film (64) psychologie (263), kunst (120) fisiologia (168), caccia (135)
P106: “[X] is [Y] by profession” politician (423), composer (80) Politiker (323), Journalist (128) politicus (339), acteur (247) giornalista (420), giurista (257)
P1001: “[X] is a legal term in [Y]” India (12), Germany (11) Deutschland (36), Russland (9) Nederland (22), België (12) Italia (31), Germania (16)
P39: “[X] has the position of [Y]” bishop (468), God (68) WW (261), Ratsherr (108) burgemeester (400), bisschop (276) pastore ( 289), papa (138)
P527 “[X] consists of [Y]” sodium (125), carbon (88) Wasserstof (398), C (49) vet (216), aluminium (130) calcio (165), atomo (96)
P1303 “[X] plays [Y]” guitar (431), piano (165) Gitarre (312), Klavier (204) piano (581), harp (42) arpa (188), pianoforte (139)
P178 “[X] is developed by [Y]” Microsoft (177), IBM (55) Microsoft (153), Apple (99) Microsoft (200), Nintendo (69) Microsoft (217), Apple (49)
P264 “[X] is represented by music label [Y]” EMI (267), Swan (32) EMI (202), Paramount Records (59) EMI (225), Swan (50) EMI (217), Swan (99)
P463 “[X] is a member of [Y]” FIFA (126), NATO (33) FIFA (118), NATO (38) FIFA (157), WWE (16) FIFA (121), NATO (36)

Table 4: Most frequent object predictions (TyQ) in different languages. Some relations exhibit language specific
biases. WW = “Wirtschaftswissenschaftler”.
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Figure 5: Data samples continued.
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Figure 6: Scatter plot of p1 TyQ and number of articles
in the corresponding Wikipedia. There is no clear trend
visible.


