
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics, pages 3112–3122
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

3112

Enhancing Sequence-to-Sequence Neural Lemmatization with External
Resources

Kirill Milintsevich
Institute of Computer Science

University of Tartu
Tartu, Estonia

kirill.milintsevich@ut.ee

Kairit Sirts
Institute of Computer Science

University of Tartu
Tartu, Estonia

kairit.sirts@ut.ee

Abstract

We propose a novel hybrid approach to lemma-
tization1 that enhances the seq2seq neural
model with additional lemmas extracted from
an external lexicon or a rule-based system. Dur-
ing training, the enhanced lemmatizer learns
both to generate lemmas via a sequential de-
coder and copy the lemma characters from the
external candidates supplied during run-time.
Our lemmatizer enhanced with candidates ex-
tracted from the Apertium morphological ana-
lyzer achieves statistically significant improve-
ments compared to baseline models not utiliz-
ing additional lemma information, achieves an
average accuracy of 97.25% on a set of 23
UD languages, which is 0.55% higher than
obtained with the Stanford Stanza model on
the same set of languages. We also com-
pare with other methods of integrating exter-
nal data into lemmatization and show that our
enhanced system performs considerably better
than a simple lexicon extension method based
on the Stanza system, and it achieves comple-
mentary improvements w.r.t. the data augmen-
tation method.

1 Introduction

State-of-the-art lemmatization systems are based
on attentional sequence-to-sequence neural archi-
tectures operating on characters that transform the
surface word form into its lemma (Kanerva et al.,
2018; Qi et al., 2018). Like any other supervised
learning model, these systems are dependent on
the amount and quality of the existing training data.
Attempts to develop even more accurate lemmati-
zation systems can focus on improving the model’s
architecture or obtaining additional data. While
annotating additional data is an ongoing process
for many smaller languages in the Universal Depen-
dencies (UD) collection, there are also other data

1https://github.com/501Good/
lexicon-enhanced-lemmatization

sources available that can be useful for improving
lemmatization systems. In particular, we refer to ex-
isting rule-basedmorphological analyzers, lexicons,
and other such resources.

Three potential sources for extracting additional
lemma candidates are Apertium, Unimorph, and
UD Lexicons initiatives. Apertium2 is an open-
source rule-based machine translation platform
(Forcada et al., 2011). It also includes rule-based
morphological analyzers based on finite-state trans-
ducers that cover 80 languages. Unimorph3 is a
project aimed at collecting annotatedmorphological
inflection data, including lemmas, fromWiktionary
(Kirov et al., 2016), a free open dictionary for many
languages. Currently, the Unimorph project covers
110 languages. UD Lexicons4 is a collection of
53 morphological lexicons in CoNLL-UL format
covering 38 languages. UD Lexicons mostly use
Apertium and Giellatekno systems to generate the
annotations (Sagot, 2018).
Several previous works have proposed methods

to improve lemmatization systems by augmenting
the training data with additional instances (Bergma-
nis and Goldwater, 2019; Kanerva et al., 2020). In
this paper, we propose another approach that both
modifies the model architecture and leverages addi-
tional data. Unlike previous work where the model
gains from extracting extra knowledge from the
additional data provided for training, our primary
goal is to teach the model to use external resources,
even those that may only be available later during
test time. In particular, the proposed system is a
dual-encoder model, which receives two inputs for
each word: 1) the word form itself to be lemmatized
and 2) (optionally) the lemma candidates for that
word form extracted from a lexicon or generated
by a rule-based system. Both inputs are encoded

2https://www.apertium.org
3http://unimorph.org/
4http://atoll.inria.fr/~sagot/

https://github.com/501Good/lexicon-enhanced-lemmatization
https://github.com/501Good/lexicon-enhanced-lemmatization
https://www.apertium.org
http://unimorph.org/
http://atoll.inria.fr/~sagot/


3113

with two different encoders and passed to the de-
coder. The decoder then learns via two separate
attentional mechanisms to generate the lemma via
the combination of the regular transduction and by
copying characters from the external candidates.
This way, the model is trained to use two sources of
information–the regular training set and the options
proposed by an external resource.
The experiments with several models enhanced

with external data on 23 UD languages show that
the best model using additional lemma candidates
generated by the Apertium system achieves sig-
nificantly higher results than the baseline models
trained on the UD training set only. Also, we com-
pare our method with other methods using external
data. The enhanced system performs considerably
better than a simple lexicon extension method based
on the Stanza system, and it achieves complemen-
tary improvements w.r.t. the data augmentation
method of Kanerva et al. (2020).

2 Related Works

Nowadays, state-of-the-art lemmatization systems
are typically based on a neural sequence-to-
sequence architecture, as demonstrated by the va-
riety of systems presented at the CoNLL 2018
(Zeman et al., 2018) and SIGMORPHON 2019
(McCarthy et al., 2019) shared tasks. Several sys-
tems, including the TurkuNLP pipeline, the winner
of the lemmatization track at CoNLL 2018 Shared
task, use an attention-based translation model (Kan-
erva et al., 2018; Qi et al., 2018). The input to the
system is the character sequence of a surface form
(SF), which is “translated" into the lemma by an
attention-based decoder. The input sequence can
also be extended with POS tags (Qi et al., 2018)
and morphological features (Kanerva et al., 2018).

Another approachwas used by theUDPipe Future
system, the second-best model at the CoNLL 2018
Shared Task. Straka (2018) proposed to produce a
lemma by constructing a set of rules that transform
the SF into a lemma. These rules can include
copying, moving, or deleting a character in the SF,
aswell as additional rules for changing or preserving
the casing. Thus, the lemmatization task is rendered
into a multi-class classification task of choosing
the correct transformation rule among the set of all
possible rules generated from the training set. A
year later, Straka et al. (2019) improved the result
for the lemmatization by adding BERT contextual
embeddings (Devlin et al., 2019) to the input, which

made them the best lemmatization system at the
SIGMORPHON 2019 Shared Task.
Several previous works have proposed to lever-

age additional data to improve lemmatization. In
the simplest form, training data itself can be used to
create a lexicon that maps word forms to its lemma.
This strategy has been adopted by the Stanford neu-
ral lemmatization system (Qi et al., 2018), which
creates such lexicons from the training sets and
resorts to lemma generation only when the lexicon
lookup fails. One can easily imagine extending
such a lexicon with external resources. Rosa and
Mareček (2018) adopted another simple way of
using Unimorph lexicons to post-fix the morpholog-
ical features and lemmas predicted by the UDPipe
system (Straka and Straková, 2017). The post-fix
is performed by simply looking up the SF from
the Unimorph lexicon and, if the match is found,
replacing the model prediction with the tags and
lemmas found in the lexicon.

Another line of work has used additional data to
augment the training data set. Bergmanis and Gold-
water (2019) augmented their training set by first
listing all non-ambiguous word-lemma pairs from
Unimorph lexicons and then extracted sentences
from Wikipedia that contained these words. They
then trained the context-sensitive Lematus model
(Bergmanis and Goldwater, 2018) on this extended
partially lemmatized data set. Kanerva et al. (2018)
used Apertium’s morphological analyzer module to
extend the training set for languages with tiny UD
datasets. Apertiumwas used to generate all possible
morphological analyses to 5000 sentences selected
from the Wikipedia of the respective language. For
each sentence, the most likely analysis sequence
was then obtained via a disambiguating language
model. The words that were assigned an Apertium-
generated lemma during this process were added
to the lemmatizer training set. In the subsequent
work, Kanerva et al. (2020) extended the training
data even more. They used Apertium to analyze
all words found in the CoNLL 2017 web crawl
dataset (Ginter et al., 2017) or in the Wikipedia
of the respective language. All new words with
unambiguous lemma and morphological analysis
were added to the augmented training set.

3 Method

The core of the proposed model is the Stanford lem-
matizer (Qi et al., 2018, 2020) which is a sequence-
to-sequencemodel with attention. It takes character-



3114

Hin

Hcn

hin+cn

cin+cn

output

SF
POS
FEATS

candidate

BiLSTM
Encoder

Encoder Decoder

hin

hcn

cin

ccn

LSTM

Attention

Attention

Linear

BiLSTM
Encoder

Linear

Linear

BiLSTM
Encoder

Linear

BiLSTM
Encoder

BiLSTM
Encoder

LSTM

Attention

Attention

Linear
h	-	hidden	state	for	the	last	timestep
c	-	cell	state	for	the	last	timestep
H	-	hidden	states	from	the	last	layer	for	all	timesteps
in	-	state(s)	for	the	encoded	SF-POS-FEATS
cn	-	state(s)	for	the	encoded	candidates

Figure 1: The architecture of the dual-encoder enhanced
lemmatizer. Layers that comprise the original Stanza
lemmatizer are marked with a bold red border.

level word representation and the POS tag as input
and processes them with a bidirectional LSTM en-
coder. Then, it passes the encoder outputs to an
LSTM decoder, which applies a soft dot attention
layer after every LSTM cell. Finally, the output is
constructed via greedy decoding.
We make several changes to the model archi-

tecture as shown in Figure 1. The components
comprising the original Stanford lemmatizer are
marked on the figure with the bold red border. First,
we add another encoder that encodes the lemma can-
didates provided by the external system. The output
representations of both encoders are combined with
a linear layer and fed to the decoder. Secondly,
we add another attention layer to the decoder that
attends to the outputs of the second encoder. The
outputs are finally combined with a linear layer.
Finally, in addition to the POS tag, we also add
morphological features to the first encoder’s input.

Additionally, we implement the encoder dropout
to simulate the situation when the external candi-
dates are absent. The value of the encoder dropout
that varies in the range of {0.0, 1.0} defines the
probability of discarding all candidates from a
batch during training. Thus, the model will train
only the main encoder based on this batch. This
helps to train the model to perform more robustly in
both situations when the candidates in the second
encoder are present or absent.

4 Experiments
Data The models are trained and tested on the
Universal Dependencies (UD) v2.5 corpora (Zeman
et al., 2019). As additional external data, the lexi-
cons from the Unimorph project (Kirov et al., 2016),

UD Lexicons (Sagot, 2018), and lemmas generated
with the Apertium morphological analyzer module
(Forcada et al., 2011) are used. We also experiment
with the lexicon constructed from the training set
to simulate the situation when no additional data is
available—this scenario assesses the effect of the
second encoder without external data. The experi-
ments are conducted on 23 languages from the UD
collection. The basis of this selection was that all
these languages are supported by both Unimorph,
UD Lexicons, and Apertium.
To extract lemmas from the Unimorph lexicon,

the input surface form (SF) is queried from the
lexicon to retrieve the corresponding lemma. Some
morphological forms in the Unimorph lexicons
consist of several space-separated tokens; these
were discarded. UD Lexicons are presented in
the CoNLL-UL format, which is an extension of
the CoNLL-U format. This makes the extraction
process trivial since the lexicons are already pre-
tokenized. For Apertium, all generated lemmas
were stripped from special annotation symbols, and
duplicate lemmas were removed. Finally, the sim-
ple training set based lexicon solution, similar to
Qi et al. (2018), consists of two lookup dictionar-
ies. The first lexicon maps SF-POS pairs to their
lemmas, the second lexicon maps just SF’s to their
possible lemmas found in the training set. The
lemma candidates for a SF are selected by first
querying the input SF and POS tag from the SF-
POS dictionary and, in case of failure, falling back
to the SF dictionary.

Baselines As the first baseline, we compare our
results with Stanza, the lemmatization module
from the Stanza pipeline (Qi et al., 2020), which is
a repackaging of the Stanford lemmatization system
from the CoNLL 2018 Shared Task (Qi et al., 2018).
We used the lemmatization models trained on the
UDv2.5 available on the Stanza web page. As the
Default baseline, we use our enhanced model,
with the second encoder always being empty.

Experimental Setup We train four enhanced
dual-encoder models that differ in the input to
the second encoder. For all models, the input to the
first encoder is the concatenation of SF characters,
POS tag, and morphological features. During the
training phase, gold POS tags and morphological
features are supplied, while during inference, POS
tags predicted with the Stanza tagger are used. The
input to the second encoder is the following: for the
second baseline (Default), it is always empty; for



3115

Treebank Size All words Out-of-vocabulary
Def Lex Uni Apt Stanza Def Apt Diff OOV%

cs_pdt 1,503K 98.51 98.66 98.67 98.55 98.58 90.51 90.95 0.44 7.53
ru_syntagrus 1,107K 97.82 97.92 98.00 98.11 97.91 89.48 91.65 2.17 10.56
es_ancora 547K 99.31 99.28 99.31 99.35 99.21 95.06 95.40 0.34 5.90
ca_ancora 530K 98.85 98.83 98.83 98.89 98.49 95.82 96.79 0.97 5.43
fr_gsd 389K 98.05 98.07 98.10 98.13 98.15 89.50 90.83 1.33 6.19
hi_hdtb 351K 98.77 98.71 98.71 98.80 96.66 93.49 94.62 1.13 4.67
de_gsd 287K 96.87 96.91 97.04 96.80 96.78 85.53 85.22 -0.31 13.04
it_isdt 278K 98.19 98.39 98.31 98.48 98.32 90.28 92.22 1.94 5.86
en_ewt 254K 98.21 98.19 98.22 98.26 98.18 90.10 90.49 0.39 10.05
ro_rrt 218K 98.33 98.28 98.32 98.53 98.16 91.46 93.22 1.76 11.60
pt_bosque 210K 98.24 98.20 98.23 98.32 98.12 93.15 94.27 1.12 8.85
nl_alpino 208K 97.08 96.61 96.89 96.74 96.99 86.34 84.88 -1.46 15.81
bg_btb 156K 97.97 98.20 98.17 98.07 97.36 91.07 91.02 0.05 13.97
ur_udtb 138K 97.16 97.29 97.28 97.28 95.62 91.83 91.93 0.01 6.79
gl_ctg 126K 98.48 98.48 98.51 98.93 98.59 89.73 93.55 3.82 10.94
uk_iu 122K 97.03 97.07 97.06 97.12 96.70 91.15 91.32 0.17 33.62
eu_bdt 121K 96.48 96.62 96.63 96.68 96.52 86.18 86.81 0.63 21.68
da_ddt 100K 97.87 97.7 97.81 98.03 97.36 89.86 90.31 0.45 18.13
sv_talbanken 96K 97.36 97.59 97.64 98.27 97.53 87.66 92.33 4.67 17.52
el_gdt 61K 96.84 97.06 97.25 97.38 96.66 84.18 86.42 2.24 19.59
tr_imst 56K 97.03 97.23 97.13 97.39 96.73 92.27 93.18 0.91 36.25
hy_armtdp 52K 95.55 95.84 94.87 96.01 95.55 86.11 87.34 1.23 38.54
be_hse 13K 81.91 81.86 82.36 82.63 79.98 68.78 70.30 1.52 93.28

Average 97.04 97.09 97.10 97.25 96.70 89.11 90.22 1.11

Table 1: Lemmatization accuracy of the models enhanced with training the set lexicon (Lex), Unimorph lexicon
(Uni), and Apertium systems (Apt) as well as the Default (Def)and Stanza baselines on 23 UD languages.

the Lexicon, Unimorph, and Apertium enhanced
models, it contains the lemma candidate(s) from the
training set based lexicon, Unimorph lexicons, and
Apertium analyses respectively. If several possible
candidates are returned for a SF, then these are con-
catenated. The encoder dropout for the Lexicon
model is set to 0.8 to simulate the situation during
testing for out-of-vocabulary (OOV) words where
the second encoder will be empty. All models were
trained in the HPC at the University of Tartu (Uni-
versity of Tartu, 2018) for a maximum of 60 epochs
with stopping early if there was no improvement in
the development accuracy in 10 epochs.

5 Results

Table 1 shows the results for all three enhanced
systems and two baselines. The Apertium model
outperforms other models for most languages, al-
though the absolute differences are quite small. The
Lexiconmodel and theDefault baseline are on the

same level on average, suggesting that supplying the
model with lemmas extracted from the training set
via the second encoder does not help to leverage the
training data better. However, all enhanced models,
including the Default model, perform better than
the Stanza baseline, suggesting that omitting the
lexicon heuristics and supplying the input tokens
with both POS and morphological features might
improve performance.
One-way ANOVA was performed to detect

statistical difference between the systems.5 A
significant difference between the scores at the
? < 0.05 level (? = 0.038) was found. Post
hoc comparisons using one-sided paired t-tests
showed that the mean accuracy of the Apertium-
enhanced model is significantly greater compared
to the the Default (?03 9 = 0.0005), Lexicon

5The results for be_hse were extreme outliers and were not
included in the comparison. The Unimorph-enhanced model
was excluded from this test as its results did not conform to
the normality requirement.



3116

(?03 9 < 0.0001), Unimorph (?03 9 = 0.0001) and
Stanza (?03 9 < 0.0001) systems with the ?-value
adjusted for multiple comparisons using the Bon-
ferroni correction.

As the baseline model performances are already
very high and the external information is expected
to improve the lemmatization most for the new
words unseen during training, we computed the
accuracy of the out-of-vocabulary words (OOV)
for the best performing Apertium model and the
Default baseline. In this context, OOV words
are those words in the test set that were not seen
by the model during training. The results are
shown in the right-most section of the Table 1.
The improvements on the OOV words are variable,
depending on the language, although on average,
the improvement of the Apertium model over the
Default baseline is more than 1%. We hypothesize
that the direction and the magnitude of these effects
are dependent on the coverage and the quality of
the Apertium morphological analyzer.

6 Analysis of the Results

In this section, we analyze more thoroughly the
potential of the proposed method. First, we com-
pare our enhanced system with alternative methods
for deploying external data, particularly with the
data augmentation method proposed by Kanerva
et al. (2020) and a lexicon extension method imple-
mented based on the Stanza system (Qi et al., 2020).
Secondly, we present more analyses to provide evi-
dence towards the conclusion that the improvements
presented for the enhanced model in the previous
section can be attributed to our system’s ability
to make use of external resources supplied to the
model via the second encoder.

6.1 Data Augmentation

We implemented the transducer augmentation
method described by Kanerva et al. (2020). This
method’s basic idea relies on applying existing mor-
phological analyzers (in this case, Apertium) to
unannotated data to generate additional training
instances. To obtain the augmentation data, we
recreated the experiments of Kanerva et al. (2020)
with 8K additional data. First, we collected a word
frequency list for each language based on automati-
cally annotated CoNLL2017 corpora (Ginter et al.,
2017). For the languages not present in this dataset
(Belarusian and Armenian), we used the wikidump
to extract the word frequency list. Next, all words

in the list were analyzed with the Apertiummorpho-
logical analyzer. Then, we used the scripts6 from
the original experiments of Kanerva et al. (2020)
to convert the Apertium analyses to the UD format
and filter out ambiguous cases. Finally, the 8Kmost
frequent words not already present in the training
set together with their analyses were chosen and
appended to the UD training set.

Although both the enhanced and augmented sys-
tems utilize Apertium as the external source, addi-
tional data usage differs. The augmented system
uses Apertium to create extra labeled training data,
while our enhanced model uses Apertium to gener-
ate additional lemma candidates to the words of the
same initial training set. On the other hand, during
test time, the augmented model must fully rely on
the regularities learned during training, while our
enhancedmodel can additionally look at the lemmas
for words that were never seen during training.
The comparison of our Apertium-enhanced

model and the augmented model is shown in the
first two blocks of Table 2. The first two columns
reintroduce the Default and Apertium-enhanced
models’ results from the Table 1, the third and the
fourth columns show the same two models trained
on the augmented training sets. Overall, the aver-
age results for both Apertium-enhanced and the
augmented Default model (the column Def+8K)
are very similar, with the average of the Apertium-
enhanced model being slightly higher (97.25 vs.
97.17). The Apertium-enhanced model is better
in 15 languages out of 23 (underlined in the table),
while the augmented model surpasses the enhanced
model on 8 models. The Apt+8K column shows
the results of a model combining both augmen-
tation and enhanced methods—the training data
is first augmented with the additional 8K words
and then additionally enhanced with the Apertium
candidates via the second encoder. The combined
approach scores are the best for 8 languages out
of 23, resulting in an average improvement over
the augmented Default model of 0.14% and over
the Apertium-enhanced model of 0.06% in abso-
lute. These results show that both augmentation
and enhancement methods can contribute in com-
plementary ways.

6.2 Lexicon Extension
Another simple baseline method for using external
data is to use a lexicon or an external system first

6https://github.com/jmnybl/
universal-lemmatizer

https://github.com/jmnybl/universal-lemmatizer
https://github.com/jmnybl/universal-lemmatizer


3117

Treebank Def Apt Def+8K Apt+8K Apt0.8 Apt+E Apt+Uni Apt+UD
Our models Augmented models The second encoder input varies

cs_pdt 98.51 98.55 98.49 98.57 98.49 98.39 98.51 98.50
ru_syntagrus 97.82 98.11 97.86 98.06 97.98 97.83 97.98 97.97
es_ancora 99.31 99.35 99.53 99.60 99.33 99.29 99.33 99.33
ca_ancora 98.85 98.89 98.86 98.89 98.85 98.80 98.85 98.85
fr_gsd 98.05 98.13 98.98 99.05 97.98 97.79 97.97 97.98
hi_hdtb 98.77 98.80 98.83 98.78 98.84 98.66 98.83 98.84
de_gsd 96.87 96.80 96.79 96.67 96.83 96.49 96.83 96.84
it_isdt 98.19 98.48 98.98 98.99 98.36 98.3 98.36 98.37
en_ewt 98.21 98.26 97.24 98.12 98.21 98.17 98.22 98.20
ro_rrt 98.33 98.53 97.56 98.48 98.44 98.29 98.46 98.41
pt_bosque 98.24 98.32 98.13 98.29 98.30 98.32 98.30 98.31
nl_alpino 97.08 96.74 96.80 96.82 96.89 96.86 96.81 96.85
bg_btb 97.97 98.07 98.84 98.82 98.02 98.06 98.02 98.02
ur_udtb 97.16 97.28 96.90 97.31 97.13 97.13 97.13 97.13
gl_ctg 98.48 98.93 98.27 98.84 98.74 97.02 98.74 98.70
uk_iu 97.03 97.12 97.25 97.35 97.22 97.11 97.22 97.22†
eu_bdt 96.48 96.68 96.66 96.71 96.63 96.33 96.63 96.62
da_ddt 97.87 98.03 97.74 97.95 97.87 97.57 97.91 97.87
sv_talbanken 97.36 98.27 97.49 98.16 98.41 97.64 97.84 97.95
el_gdt 96.66 97.38 97.02 96.96 97.49 97.38 97.56 97.47
tr_imst 97.03 97.39 97.01 97.24 97.17 96.89 97.17 97.14
hy_armtdp 95.55 96.01 95.74 95.66 95.86 95.68 95.86 95.86†
be_hse 81.91 82.63 83.33 82.92 83.51 82.13 83.51 83.51†

Average 97.03 97.25 97.17 97.31 97.24 96.96 97.22 97.21

Table 2: Comparison of the enhanced models with the augmentation method: Def is the Default model, Apt
is the Apertium-enhanced model, Def+8K and Apt+8K are the same Default and Apertium-enhanced models
with augmented data. For the models marked with †, the UD Lexicon is absent and is replaced with Apertium
candidates instead.

and only resort to neural generation when the sur-
face form (SF) is not present in the lexicon. This
is essentially how the Stanza lemmatizer works.
Stanza constructs a lexicon based on the training
set. During inference, the prediction goes through a
cascade of three steps: 1) if the SF is present in the
lexicon, then the lemma is immediately retrieved
from the lexicon. 2) If the SF is novel and is missing
from the lexicon, an edit operation is generated that
decides whether the SF itself or its lowered form is
the lemma, or whether neither is true. 3) Only in
the last case the lemma is generated by the sequen-
tial decoder. For testing out the lexicon extension
system, we used the pretrained Stanza models but
extended the lexicon stored in the Stanza system
with additional items. Note that Stanza lexicons
can only store one lemma per SF-POS combina-
tion. Thus, if any of the external lexicons contain
ambiguous lemmas, the firstly encountered lemma

is chosen for each word.
We extended the Stanza lexicons with both

the Apertium 8K datasets used for training the
augmented models in section 6.1 and the UD lexi-
cons (Sagot, 2018). The results of these evaluations
are shown in Table 3. The set of languages in this
table is slightly different than in Table 1, only in-
cluding those languages for which the UD lexicons
are existent. The left block shows the results with
various Stanzamodels. The first column shows the
baseline Stanza results (taken from Table 1), the
second and the third columns present the Stanza
model with its lexicon extended with the UD lexi-
cons and the 8K words, respectively. The original
UD lexicon for Russian contained many erroneous
lemmas due to poor post-processing, which skewed
the average accuracy. Thus, we did additional post-
processing to put it in line with other languages.
The average scores of the Stanza systems ex-



3118

Treebank Stanza Stanza+UD Stanza+8K Apt Lex+UD Lex+8K

cs_pdt 98.58 98.76 98.60 98.49 98.70 98.66
ru_syntagrus 97.91 96.76† 97.92 97.98 97.36† 97.97
es_ancora 99.21 99.25 99.15 99.33 99.27 99.28
ca_ancora 98.49 98.29 98.51 98.85 98.83 98.83
fr_gsd 98.15 97.69 98.24 97.98 97.09 96.75
hi_hdtb 96.66 96.75 96.66 98.84 98.76 98.71
de_gsd 96.78 97.53 96.86 96.83 97.01 96.94
it_isdt 98.32 98.60 98.46 98.36 98.38 98.39
en_ewt 98.18 98.21 98.17 98.21 98.21 98.19
ro_rrt 98.16 98.44 98.27 98.44 98.38 98.28
pt_bosque 98.12 98.32 98.12 98.30 97.98 98.20
nl_alpino 96.99 97.22 96.97 96.89 96.63 96.61
bg_btb 97.36 96.26 96.62 98.02 98.12 98.20
ur_udtb 95.62 95.66 95.64 97.13 97.28 97.29
gl_ctg 98.59 98.64 98.60 98.74 98.48 98.48
eu_bdt 96.52 96.51 96.41 96.63 96.66 96.62
da_ddt 97.36 97.89 97.55 97.87 97.82 97.70
sv_talbanken 97.53 98.45 97.63 98.41 97.78 97.59
el_gdt 96.66 96.49 96.89 97.49 97.52 97.54
tr_imst 96.73 96.90 96.83 97.17 97.17 97.23

Average 97.60 97.63 97.61 98.00 97.87 97.87

Table 3: Evaluation of the effect of the Stanza-based lexicon extension method; comparison with the Apertium-
enhanced (Apt) and the Lexicon-enhanced systems (Lex+UD and Lex+8K).

tended with both UD and 8K lexicons remain
roughly the same. However, when extending the
Stanza with UD lexicons, most languages improve
at least slightly, as shown with the underlined scores
in the column Stanza+UD. Overall, on average, the
simple lexicon extension method falls considerably
behind our Apertium-enhanced model (97.63 vs.
98.00), the scores of which are again replicated in
the first column of the right-most block.

However, the Apertium-enhanced model is not
directly comparable to the Stanza models with ex-
tended lexicons because 1) the training data differs
as the enhanced model has access to extra lemma
candidates of the training set words during training
and 2) the lexicons available during the test time
are different. Thus, we also show in the last two
columns of the right-hand block of Table 3 the
results of two Lexicon-enhanced models (recall
Section 4 and Table 1), similarly extended with
the UD and 8K lexicons. The Lexicon-enhanced
model has access to the same data as the Stanza
model during both training (training set + the train-
ing set based lexicon) and testing.

While the Lexicon-enhanced model alone does

not perform better than the Default baseline (see
results in Table 1), adopting additional UD or
8K lexicons during test time increases the results
to the same level with the Apertium-enhanced
model. This shows that our proposed approach
does not need additional resources during training—
the model can be trained to use external sources
based on the lexicon created from the training set.
Then, the system’s real benefits can be achieved
when using extra resources later during test time.
Without those resources, the model still performs
on the same level as the non-enhanced baseline.

We hypothesize that our dual-encoder approach
performs better than the Stanza with extended
lexicon partly because of the differences in the
usage of the external data. Since Stanza uses the
lexicon resources as a first step in the cascade, it is
prone to potential errors and noise in the lexicons.
The dual-encoder model is safer against noise in
this respect because the lemma candidates are not
simply chosen as the prediction if present but are
rather fed through the system that can decide how
much to take or ignore from the given candidates.
Also, because Stanza lexicons have the restriction



3119

of only one lemma per word-POS pair, the system
might solve some ambiguities erroneously. Our
approach is also more flexible in this respect, as
the second encoder can be given several candidates,
and again, the system learns to decide itself from
which candidate how much to take. On average,
there are 0.71 lemma candidates per input word,
and 1.09 lemma candidates per input word when
excluding those words that do not have external
lemma candidates.

6.3 Effect of the Second Encoder
Next, we performed a set of evaluations to argue
for the effect of the second encoder in the enhanced
model. We suggest that the improvements presented
in Table 1 for the Apertium-enhanced model over
the Default baseline are indeed due to the input
provided via the second encoder. To demonstrate
that, we evaluated the test set for each language
again, on the same model that was trained with
Apertium lemma candidates but leaving the second
encoder empty for the test time. For that, we re-
trained the Apertium-enhanced models with the
encoder dropout of 0.8. This means that during
training, 80% of the time, the lemma candidates
provided for the second encoder are dropped, and
the model trains only the main encoder. The reason-
ing for using the dropout is similar to one provided
for the Lexicon-enhanced model in Section 3—if
the lemma candidates are always provided during
training, the model learns to rely equally on both en-
coders. Due to that, if the second encoder remains
empty during testing, the performance degrades
considerably. If, on the other hand, the dropout is
used, then the model learns to make predictions
both when the candidates in the second encoder are
present and also when they are absent. The results
of these experiments are shown in the right-most
block of Table 2.
We first show in Table 2 that the results of the

Apertium-enhanced models trained with dropout
are equivalent to the results obtained without
dropout as evidenced by the column Apt0.8. Next,
when the second encoder is empty (column Apt+E),
the test results are similar to the ones obtained with
the Default model, providing evidence that the im-
provements are indeed due to the extra info supplied
via the second encoder during test time. Addition-
ally, we emulated the scenario when extra lexicon
information becomes available after training the
model. In this case, it is straightforward to integrate
this information into the system without having to

retrain the model. The last two columns in Table 2
show the following scenarios on this respect: 1)
Unimorph lexicons in addition to Apertium (7th
column Apt+Uni) and 2) UD lexicons (the last col-
umn Apt+UD) in addition to Apertium. The results
in Table 2 show that, on average, extending the
Apertium system with these particular lexicons do
not add any benefit. The reasons for that can be two-
fold: 1) The UD lexicons are for most languages
constructed based on the Apertium system and thus
might not add any extra information; 2) The cov-
erage of Unimorph lexicons in terms of lemmas is
typically smaller than of Apertium systems.

Table 4 shows some examples when the Default
model predicted incorrect lemma while the Aper-
tium-enhanced model predicted the correct one. In
some cases, Apertium provided the only and cor-
rect candidate for the Apertium-enhanced model,
which was picked as a final prediction. In other
cases, several candidates are provided to the second
encoder, and the enhanced model chooses the cor-
rect one in most of the cases. This indicates that the
second encoder effectively learns how to use the
candidates to better control the lemma generation.

6.4 Effect of Morphological Features
All dual-encoder models were trained with both
POS and morphological features in the input, while
the Stanza baseline only uses POS-tag information.
Thus, the effect of the morphological features is
a potential confounding factor when comparing
the performance of the enhanced models to the
Stanza baseline. To evaluate the effect of the
morphological features, we trained theDefault and
Apertium-enhanced models with only providing
POS-tag information to the input.
Figure 2 shows the improvement in accuracy

over the Default model trained with POS-tags
only of 1) the Default model trained with both
POS-tags and morphological features, 2) the Aper-
tium-enhanced model trained with only POS-tags,
and 3) the Apertium-enhanced model trained with
both POS-tags and morphological features. It can
be seen that for some of the languages, the most
improvement comes from adding morphological
features to the input, while for other languages
adding the second encoder gives the main boost.
However, for most languages, combining the sec-
ond encoder and morphological features provides
the largest effect, which seems to be more complex
than a linear combination of the two. We sup-
pose that, in this scenario, the attention mechanism



3120

Input Def Apt Candidate(s)

паперi *папер папiр папiр
〈paperi〉 〈paper〉 〈papir〉 〈papir〉
чотирьох *четвери чотири четверо, чотири
〈čotyr’oh〉 〈četvery〉 〈čotyry〉 〈četvero, čotyry〉
Antworten *Antworte Antworten antworten, antwort
besten bester gut gut

раскладзе *раскладз расклад раскласцi, расклад
〈raskladze〉 〈raskladz〉 〈rasklad〉 〈rasklasci, rasklad〉
стаiць стаiць стаяць стаяць, стаiць
〈staic’〉 〈staic’〉 〈stajac’〉 〈stajac’, staic’〉

Table 4: Examples for Ukrainian, German, and Be-
larusian words corrected by the enhanced model. All
predictions of the Default (Def) are incorrect, the un-
grammatical ones are marked with *. The correct pre-
dictions of the Apertium-enhanced (Apt) models are
in bold. The last column shows the external candidates.

works differently—it allegedly takes the morpholog-
ical features into account when picking the correct
lemma from the multiple candidates.

7 Conclusion

We proposed a method for enhancing neural lemma-
tization by integrating external input into the model
via a second encoder and showed that the system
incorporating Apertium morphological analyzer
significantly improved the performance over the
baselines. Both Bergmanis and Goldwater (2019)
and Kanerva et al. (2020) used external resources
to augment the training data, and thus, the improve-
ment of their system is dependent on the amount
and quality of the extended data supplied during
training. On the other hand, our method trains the
system to use the external information provided
during run-time, thus making it independent of the
particular external data available during training.
We experimentally showed that the enhancing

method is both slightly better and complementary
to the data augmentation method of Kanerva et al.
(2020). We also compared our systemwith a simple
lexicon extension method implemented based on
the Stanza system. When trained and tested in a
comparable setting, the proposed enhanced system
achieves considerably higher results.

Although the model’s computational complexity
is increased by introducing the second encoder, it
is counterbalanced by our model being more robust
to noise and the ambiguities stemming from the
external lexicons. Moreover, the main bottleneck
in computation originates not from the neural net-
work’s increased size but can rather stem from the
external system. For example, in our experiments,

Figure 2: Independent and cumulative effects of the
second encoder and the morphological features on the
model’s performance. The origin of the x-axis is the
performance of theDefaultmodel with POS-tags only.

the main bottleneck in computation originated from
executing the transducer-based Apertium morpho-
logical analyser. To overcome this bottleneck, one
possible trade-off between the speed and accuracy
is to precompile a candidate list large enough to
cover the most frequent words for a given language.
This is a problem that also simpler baseline methods
adopting external resources have to address.
Finally, it is worth noting that the proposed

method could be beneficial for less-resourced lan-
guages. However, establishing this claim would
need more systematic experiments exploring specif-
ically on this question, which we did not focus on
in this paper. Still, because the significant improve-
ments shown in this work are obtained on languages
with larger datasets, the possible gains on smaller
datasets can be larger.

Acknowledgments

The first author was supported by the IT Academy
Program (StudyITin.ee).



3121

References
Toms Bergmanis and Sharon Goldwater. 2018. Con-

text Sensitive Neural Lemmatization with Lematus.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 1391–1400.

Toms Bergmanis and Sharon Goldwater. 2019. Train-
ing Data Augmentation for Context-Sensitive Neural
Lemmatizer Using Inflection Tables and Raw Text.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 4119–
4128.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Mikel L. Forcada, Mireia Ginestí-Rosell, Jacob Nord-
falk, Jim O’Regan, Sergio Ortiz-Rojas, Juan An-
tonio Pérez-Ortiz, Felipe Sánchez-Martínez, Gema
Ramírez-Sánchez, and Francis M. Tyers. 2011.
Apertium: A Free/Open-Source Platform for Rule-
Based Machine Translation. Machine translation,
25(2):127–144.

Filip Ginter, Jan Hajic, Juhani Luotolahti, Milan Straka,
andDaniel Zeman. 2017. CoNLL 2017 Shared Task–
Automatically Annotated Raw Texts and Word Em-
beddings. LINDAT/CLARIN digital library at the
Institute of Formal and Applied Linguistics, Charles
University.

Jenna Kanerva, Filip Ginter, Niko Miekka, Akseli
Leino, and Tapio Salakoski. 2018. Turku Neural
Parser Pipeline: An End-to-End System for the
CoNLL 2018 Shared Task. In Proceedings of the
CoNLL 2018 Shared Task: Multilingual parsing
from raw text to universal dependencies, pages 133–
142.

Jenna Kanerva, Filip Ginter, and Tapio Salakoski. 2020.
Universal Lemmatizer: A Sequence to Sequence
Model for Lemmatizing Universal Dependencies
Treebanks. Natural Language Engineering, pages
1–30.

Christo Kirov, John Sylak-Glassman, Roger Que, and
David Yarowsky. 2016. Very-large Scale Parsing
and Normalization of Wiktionary Morphological
Paradigms. InProceedings of the Tenth International
Conference on Language Resources and Evaluation
(LREC 2016), Paris, France. European Language Re-
sources Association (ELRA).

Arya D. McCarthy, Ekaterina Vylomova, Shijie Wu,
Chaitanya Malaviya, Lawrence Wolf-Sonkin, Gar-
rett Nicolai, Christo Kirov, Miikka Silfverberg, Se-
bastian J. Mielke, Jeffrey Heinz, et al. 2019. The
SIGMORPHON 2019 Shared Task: Morphological
Analysis in Context and Cross-Lingual Transfer for
Inflection. In Proceedings of the 16th Workshop on
Computational Research in Phonetics, Phonology,
and Morphology, pages 229–244.

Peng Qi, Timothy Dozat, Yuhao Zhang, and Christo-
pher D Manning. 2018. Universal Dependency Pars-
ing from Scratch. InProceedings of the CoNLL 2018
Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies, pages 160–170.

PengQi, Yuhao Zhang, Yuhui Zhang, JasonBolton, and
Christopher D. Manning. 2020. Stanza: A Python
Natural Language Processing Toolkit for Many Hu-
man Languages. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics: System Demonstrations.

Rudolf Rosa and David Mareček. 2018. CUNI x-ling:
Parsing Under-Resourced Languages in CoNLL
2018 UD Shared Task. In Proceedings of the CoNLL
2018 Shared Task: Multilingual Parsing from Raw
Text to Universal Dependencies, pages 187–196.

Benoît Sagot. 2018. A Multilingual Collection of
CoNLL-U-Compatible Morphological Lexicons. In
Proceedings of the Eleventh International Confer-
ence on Language Resources and Evaluation (LREC
2018).

Milan Straka. 2018. UDPipe 2.0 Prototype at CoNLL
2018 UD Shared Task. In Proceedings of the CoNLL
2018 Shared Task: Multilingual Parsing from Raw
Text to Universal Dependencies, pages 197–207.

Milan Straka and Jana Straková. 2017. Tokenizing, POS
tagging, lemmatizing and parsing UD 2.0 with UD-
Pipe. In Proceedings of the CoNLL 2017 Shared
Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies, pages 88–99, Vancouver, Canada.
Association for Computational Linguistics.

Milan Straka, Jana Straková, and Jan Hajic. 2019. UD-
Pipe at SIGMORPHON 2019: Contextualized Em-
beddings, Regularization with Morphological Cate-
gories, Corpora Merging. In Proceedings of the 16th
Workshop on Computational Research in Phonetics,
Phonology, and Morphology, pages 95–103.

University of Tartu. 2018. UT Rocket. share.neic.no.

Daniel Zeman, Jan Hajic, Martin Popel, Martin Pot-
thast, Milan Straka, Filip Ginter, Joakim Nivre, and
Slav Petrov. 2018. CoNLL 2018 Shared Task: Mul-
tilingual Parsing from Raw Text to Universal Depen-
dencies. In Proceedings of the CoNLL 2018 Shared
Task: Multilingual parsing from raw text to universal
dependencies, pages 1–21.

https://www.aclweb.org/anthology/N18-1126/
https://www.aclweb.org/anthology/N18-1126/
https://www.aclweb.org/anthology/N19-1418/
https://www.aclweb.org/anthology/N19-1418/
https://www.aclweb.org/anthology/N19-1418/
https://www.aclweb.org/anthology/N19-1423/
https://www.aclweb.org/anthology/N19-1423/
https://www.aclweb.org/anthology/N19-1423/
https://dl.acm.org/doi/abs/10.1007/s10590-011-9090-0
https://dl.acm.org/doi/abs/10.1007/s10590-011-9090-0
https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-1989
https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-1989
https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-1989
https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-1989
https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-1989
https://www.aclweb.org/anthology/K18-2013/
https://www.aclweb.org/anthology/K18-2013/
https://www.aclweb.org/anthology/K18-2013/
https://www.cambridge.org/core/journals/natural-language-engineering/article/universal-lemmatizer-a-sequencetosequence-model-for-lemmatizing-universal-dependencies-treebanks/9341ECA9B562DAF55E2F3F966554A667
https://www.cambridge.org/core/journals/natural-language-engineering/article/universal-lemmatizer-a-sequencetosequence-model-for-lemmatizing-universal-dependencies-treebanks/9341ECA9B562DAF55E2F3F966554A667
https://www.cambridge.org/core/journals/natural-language-engineering/article/universal-lemmatizer-a-sequencetosequence-model-for-lemmatizing-universal-dependencies-treebanks/9341ECA9B562DAF55E2F3F966554A667
https://www.aclweb.org/anthology/L16-1498/
https://www.aclweb.org/anthology/L16-1498/
https://www.aclweb.org/anthology/L16-1498/
https://www.aclweb.org/anthology/W19-4226/
https://www.aclweb.org/anthology/W19-4226/
https://www.aclweb.org/anthology/W19-4226/
https://www.aclweb.org/anthology/W19-4226/
https://www.aclweb.org/anthology/K18-2016/
https://www.aclweb.org/anthology/K18-2016/
https://www.aclweb.org/anthology/2020.acl-demos.14/
https://www.aclweb.org/anthology/2020.acl-demos.14/
https://www.aclweb.org/anthology/2020.acl-demos.14/
https://www.aclweb.org/anthology/K18-2019/
https://www.aclweb.org/anthology/K18-2019/
https://www.aclweb.org/anthology/K18-2019/
https://www.aclweb.org/anthology/L18-1292/
https://www.aclweb.org/anthology/L18-1292/
https://www.aclweb.org/anthology/K18-2020/
https://www.aclweb.org/anthology/K18-2020/
https://doi.org/10.18653/v1/K17-3009
https://doi.org/10.18653/v1/K17-3009
https://doi.org/10.18653/v1/K17-3009
https://www.aclweb.org/anthology/W19-4212/
https://www.aclweb.org/anthology/W19-4212/
https://www.aclweb.org/anthology/W19-4212/
https://www.aclweb.org/anthology/W19-4212/
https://doi.org/10.23673/PH6N-0144
https://www.aclweb.org/anthology/K18-2001/
https://www.aclweb.org/anthology/K18-2001/
https://www.aclweb.org/anthology/K18-2001/


3122

Daniel Zeman, Joakim Nivre, Mitchell Abrams,
and et al. 2019. Universal Dependencies 2.5.
LINDAT/CLARIAH-CZ digital library at the Insti-
tute of Formal and Applied Linguistics (ÚFAL), Fac-
ulty of Mathematics and Physics, Charles University.

http://hdl.handle.net/11234/1-3105

