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Abstract

When Question-Answering (QA) systems are
deployed in the real world, users query them
through a variety of interfaces, such as speak-
ing to voice assistants, typing questions into a
search engine, or even translating questions to
languages supported by the QA system. While
there has been significant community attention
devoted to identifying correct answers in pas-
sages assuming a perfectly formed question,
we show that components in the pipeline that
precede an answering engine can introduce
varied and considerable sources of error, and
performance can degrade substantially based
on these upstream noise sources even for pow-
erful pre-trained QA models. We conclude
that there is substantial room for progress be-
fore QA systems can be effectively deployed,
highlight the need for QA evaluation to expand
to consider real-world use, and hope that our
findings will spur greater community interest
in the issues that arise when our systems actu-
ally need to be of utility to humans.!

1 Introduction

Everyday users now benefit from powerful QA
technologies in a range of consumer-facing appli-
cations including health (Jacquemart and Zweigen-
baum, 2003; Luo et al., 2015; Abacha and Demner-
Fushman, 2016; Kilicoglu et al., 2018; Guo et al.,
2018), privacy (Sathyendra et al., 2017; Harkous
et al., 2018; Ravichander et al., 2019), personal
finance (Alloatti et al., 2019), search (Yang, 2015;
Bajaj et al., 2016; He et al., 2018; Kwiatkowski
et al., 2019) and dialog agents (Dahl et al., 1994;
Raux et al., 2005). Voice assistants such as Amazon
Alexa” or Google Home? have brought natural lan-
guage technologies to several million homes glob-
ally (Osborne, 2016; Jeffs, 2018). Yet, even with

'All resources available at noiseqga.github.io.
2developer .amazon.com/alexa
Sassistant. google.com

millions of users now interacting with these tech-
nologies on a daily basis, there has been surpris-
ingly little research attention devoted to studying
the issues that arise when people use QA systems.

Traditional QA evaluations do not reflect the
needs of many users who can benefit from QA tech-
nologies. For example, users with a range of visual
and motor impairments now rely extensively on
voice interfaces (Pradhan et al., 2018) for efficient
text entry.* Another need is cross-lingual informa-
tion access, e.g. in scenarios where a speaker of
one of the ~7000 non-English living languages in
the world (Eberhard et al., 2020) may want to take
advantage of an English QA system.’ QA evalua-
tion has to keep up with the different ways in which
users may use these systems in practice, and the
different users who interact with these systems.

Keeping these needs in mind, we construct eval-
uations considering the interfaces through which
users interact with QA systems.® We analyze er-
rors introduced by three interface types that could
be connected to a QA engine: speech recogniz-
ers converting spoken queries to text, keyboards
used to type queries into the system, and transla-
tion systems processing queries in other languages.
Our contributions are as follows:

1. We identify and describe the problem of in-
terface noise for QA systems. We construct a
challenge set framework for errors introduced
by three kinds of interfaces: speech recogniz-
ers, keyboard interfaces, and translation en-
gines, based on the popular SQuAD question-
answering benchmark (Rajpurkar et al., 2016).
We define synthetic noise generators, as well

“More than 3.4 million American adults over the age of 40

have a form of visual impairment (Congdon et al., 2004).

SAs of 2021-01-24, there are 6,235,415 articles on English

Wikipedia making it the largest edition: wikicount .net
6<QA system’ refers to any computing engine that receives

a users’ question and constructs an answer. It may consist of
an end-to-end neural architecture or a structured pipeline.
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Original Question

Interface Synthetic Construction

Natural Construction

What has a Lama determined to do? | ASR

what has a llama determined to do

what has a llama determined to do

What has a Lama determined to do? |keyboard] Wjat has a Lsma determined yo do?

WHat has a Lama determied to do?

What has a Lama determined to do? What has a Lama decided to do?

What is a llama determined to do?

Table 1: Example question perturbations from synthetic and natural noise challenge sets for three types of inter-
faces: Automatic Speech Recognition (ASR) systems, Keyboard and Machine Translation (MT) systems.

as manually construct natural noise challenge
sets, by processing SQuAD questions through
the specified interfaces.

2. We evaluate the performance of current state-
of-the-art methods on natural and synthetic
noisy data. We find that accessibility needs
to be consciously worked towards, as we see
that the performance of QA systems can be
impacted by the choice of interface.

3. We analyze the generated noise and its impact
on the downstream question answering and
conduct an initial exploration of mitigation
strategies for interface errors, focusing on data
augmentation and query repair.

2 Motivation

Modern QA systems often rely on large databases
of digital text such as Wikipedia as their source
of knowledge; such corpora typically contain well-
formed text in a high-resource language like En-
glish. However, the user’s input could come in
many different forms: it could be spoken, or written
but in another, possibly lower-resource language.
To convert these inputs into the format that the sys-
tem can process, another machine learning system
such as a speech recognizer or a machine trans-
lation engine is required, and these intermediate
systems will inevitably propagate their decoding
errors into the QA engine. However, interface er-
rors are not necessarily artifacts of machine learn-
ing models: even when the question comes in the
desired form (e.g. English text), it has to be com-
municated to the QA system through a mechanical
interface such as a keyboard, and the process of
typing can introduce errors such as character sub-
stitutions. To be useful in real-world settings, a
QA system has to be able to correctly process the
input question regardless of the input interface. We
simulate the use cases for three interface categories
(ASR, MT, and keyboard) with different level of
human involvement, from fully automatic pipelines

to leveraging existing human-generated resources
to manual annotation, and evaluate whether the
modern QA systems are capable of going from con-
trolled well-formed inputs to real-world scenarios.

3 Challenge Set Construction

We define a suite of three types of noise perturba-
tions, each imitating noise specific to a category
of interfaces, and apply them to the data to create
the challenge sets. We choose to add the noise to
the questions but not to the context paragraphs, to
replicate a realistic scenario of the noise being in-
troduced to the question by the interface through
which the user interacts with the QA engine. For
each type of noise, we both build a synthetic gen-
erator that can introduce noise on a large scale, as
well as manually create ‘natural’ noise challenge
sets to imitate real-world noise.

Our challenge sets are based on SQuAD 1.1 (Ra-
jpurkar et al., 2016),” a large-scale machine com-
prehension dataset based on Wikipedia articles
where the answer to each question is a span in
a provided context. We choose SQuUAD both for its
popularity as a benchmark (Gardner et al., 2018;
Devlin et al., 2019; Radford et al., 2018; Wolf et al.,
2019) and to avoid additional confounds such as
unanswerable questions (Rajpurkar et al., 2018).3
We use the standard ~90K/10K train/development
split and construct the challenge sets from the
XQuAD data (Artetxe et al., 2020), a subset of
1,190 SQuAD development set questions accom-
panied by professional translations into ten lan-
guages.” Below we discuss each challenge set in
more detail.

"Though in principle, these constructions could be applied
to any kind of QA dataset

8Future work would pursue a context-driven evaluation
of unanswerability, identifying the kinds of unanswerable
questions users ask in practice (Ravichander et al., 2019; Asai
and Choi, 2020).

9Spanish, German, Greek, Russian, Turkish, Arabic, Viet-
namese, Thai, Chinese, and Hindi.
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3.1 MT Noise

Our first challenge set emulates machine transla-
tion noise introduced when the question is asked
in a language other than the language of the QA
system’s training data. We use English as the QA
system language, pairing English contexts with
non-English questions.

Synthetic Challenge Set  Our synthetic noise
generator employs the back-translation technique
(Sennrich et al., 2016; Dong et al., 2017; Yu et al.,
2018). In our case, back-translation is not meant
to act as a data augmentation technique but rather
to simulate noise that could be introduced by an
MT engine when translating the question from an-
other language. We imperfectly approximate natu-
ral non-English input by automatically translating
English questions into a pivot language (German);
we then translate them back to English, imitating a
scenario where the user submits a query through an
MT engine. We use the HuggingFace implementa-
tion (Wolf et al., 2019) of MarianNMT (Junczys-
Dowmunt et al., 2018).10

Natural Challenge Set  To bring our simulation
closer to the natural setting, we create another chal-
lenge set from English machine translations of
human-generated questions in other languages. We
take the questions from the XQuAD dataset, which
consists of English questions paired with profes-
sional translations into ten other languages.!' For
each of the test set languages, we use Google’s
commercial translation engine'? to produce the En-
glish translation of the question. This allows us
to construct ten challenge sets of translations from
different languages with 1,190 questions each.

3.2 Keyboard Noise

This challenge set represents the noise introduced
in the process of typing a question up on a key-
board, for example, when a question is submitted
to a QA system through a search engine.

Synthetic Challenge Set  Inspired by prior
work (Belinkov and Bisk, 2018; Naik et al., 2018),
our basic noise generator introduces per-character

Yhuggingface.co/Helsinki—~NLP/
opus—mt-{en-de|de-en}

A subtle nuance is that XQuAD questions are not origi-
nally written in these languages but translated from English;
acknowledging this, we use XQuAD data as the natural chal-
lenge set because its fully parallel nature allows varying input
language while controlling for content for fair comparison.

2t ranslate. google.com

ORIGINAL How many Panthers defense players were se-
QUESTION lected for the Pro Bowl?

GOOGLE  how many Santa’s defense players selected for
ASR the Pro Bowl
ESPNET  how many pantols the tent places were slected

(WITH LM) for the probol

KALDI how many friends tons of defence UNK for the
(wiTH LM) UNK

Table 2: Example outputs of different ASR systems
on a recorded question from SQuAD (Rajpurkar et al.,
2016).

typos based on the proximity of the keys in a stan-
dard QWERTY keyboard layout. Each word is
corrupted with a 25% probability by substituting
a randomly sampled character with its row-wise
neighbor. We also create more natural-looking
noise by introducing externally collected human
misspellings into our data on word level, as pro-
posed by Belinkov and Bisk (2018). Although prior
work refers to this as natural noise, emphasizing
that the typos have been produced by humans, we
consider it synthetic because the errors are applied
to the data outside of their original context. We start
with the Wikipedia common English misspellings
list' and apply a simple filtering heuristic that only
retains keyboard errors (see Appendix C), obtain-
ing 1,742 misspellings for 1,489 English words.

Natural Challenge Set  To generate errors spe-
cific to the context of the question rather than hy-
pothesized to exist at a lexical level across contexts,
we ask three human annotators to retype English
XQuAD questions. Annotators can see the original
question, which helps avoid errors caused by mis-
conception (e.g. not knowing the correct spelling
of a named entity), but not their own input, in order
to prevent them from correcting the typos. Of the
obtained noisy questions, 51.6% and 25.7% differ
from the original by at least one or at least two
characters respectively.

3.3 ASR Noise

Our final challenge set simulates ASR errors that
occur when a question is posed to a voice interface.

Synthetic Challenge Set We emulate automatic
recognition of natural speech by using a Text-to-
Speech (TTS) system pipelined with an ASR en-
gine (Tjandra et al., 2017). We voice the ques-
tions using Google TTS and transcribe the obtained
Ben. wikipedia.org/wiki/Wikipedia:
Lists_of_common_misspellings
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Interface CER({) WER({) BLEU(®®)
Synthetic
ASR 3.96 16.61 77.12
Keyboard 4.11 23.93 52.66
Translation 20.51 29.36 58.42
Natural
ASR 12.96 30.67 57.22
Keyboard 1.78 7.42 85.78
Translation 31.89 43.34 47.07

Table 3: % Character Error Rate (CER), % Word Error
Rate (WER) and BLEU scores for all challenge sets
compared to ground truth. For ASR and MT, synthetic
noise is less prominent than natural, reflecting the ide-
alized simulation conditions. As expected, natural key-
board noise demonstrates the best word-level statistics.

speech using Google Speech-to-Text optimized for
English—US. Besides Google ASR, we use Kaldi
ASpIRE (Povey et al., 2011; Peddinti et al., 2015)
and ESPnet CommonVoice (Watanabe et al., 2018;
Ardila et al., 2020) open-source systems, as shown
in Table 2. We choose the former for analyzing
the downstream effect of out-of-vocabulary word
prediction in fixed vocabulary decoding (Peskov
et al., 2019) and the latter for data augmentation
(§4.2) due to its improved out-of-vocabulary word
handling with subword units. In order to generate
the large amount of speech data needed for augmen-
tation, we use the open-source ESPnet LJSpeech
TTS (Hayashi et al., 2020; Ito and Johnson, 2017)
to voice the questions.

Natural Challenge Set We use the SANTLR
speech annotation toolkit (Li et al., 2019) to record
spoken versions of the prompt question from three
human annotators (for background details, see Ap-
pendix D). The obtained recordings are then tran-
scribed using the ASR engines listed above. As
expected, recognizing human speech is more diffi-
cult: the word error rate of the Google ASR system
on the obtained set is 31%, compared to 17% on
the synthesized English-US speech.

4 Experiments

We select four QA models that demonstrated
strong performance on SQUAD 1.1'* to be tested
under interface distortions: BiDAF (Seo et al.,
2017), which represents contexts at different lev-
els of granularity using bidirectional attention flow

14F1 scores on SQuUAD dev set: BiDAF: 77.8; BiDAF-
ELMo: 80.7; BERT: 88.8; RoBERTa: 89.9. For hyperparame-
ters and implementation details, see Appendix A.

mechanism,; its extension BiDAF-ELMo (Peters
et al., 2018) augmented with contextualized embed-
dings; BERT (Devlin et al., 2019), a bidirectional
Transformer-based language model (Vaswani et al.,
2017); and RoBERTa (Liu et al., 2019), a more
robustly pre-trained version of BERT.

4.1 Results and Analysis

Table 3 shows the character error rate (CER), word
error rate (WER) and BLEU score'” for the gen-
erated challenge sets. Synthetic ASR and MT
pipelines introduce substantially less noise than
their natural counterparts, while the opposite holds
for the keyboard. This is likely due to the genera-
tors not being equally controllable: while we can
arbitrarily make the synthetic keyboard set noisier
by increasing the corruption rate, synthetic ASR
and MT pipelines include black-box components
which also make the task easier for the interface
by design (TTS synthesizes idealized speech, back-
translation mimics MT training conditions).

In this section, we investigate how robust QA
models are to these interface errors. Table 4 reports
the performance on both synthetic and natural chal-
lenge sets. For brevity, we present results using the
German—English model and the Google ASR for
MT and ASR respectively.

First, we observe that both synthetic and natural
noise decrease accuracy for all models and inter-
faces, with synthetic keyboard and natural ASR
errors being the most challenging. As for MT
noise, Table 4 reports results on German queries;
although the systems seem robust on these, we find
that MT noise can actually be quite challenging
with sharp degradation of performance on Thai and
Arabic (Figure 2). Further, we notice that the rel-
ative performance of models on the development
set is not necessarily a sufficient proxy for the rela-
tive robustness of models to interface errors: while
BERT and RoBERTa perform very similarly on
XQuAD-English, RoBERTa outperforms BERT
on handling all three kinds of interface errors. For
practitioners, this could suggest that simply choos-
ing the highest-accuracy QA model without sepa-
rately evaluating robustness to interface noise may
lead to sub-optimal performance in practice.

Below we discuss the effect of each interface in
more detail.

SUncased detokenized BLEU using SacreBLEU (Post,
2018).
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XQuADkgy ASR MT Keyboard

Model EM F1 EM F1 EM F1 EM F1
Synthetic
BiDAF (Seo et al., 2017) 60.08 71.96 54.62 6639 5597 68.01 4521 57.78
BiDAF-ELMo (Peters et al., 2018) 62.61  75.38 56.81 70.30 57.39 70.05 50.93 63.80
BERT (Devlin et al., 2019) 7277 84.66 6193 77.02 6723 79.08 61.76 73.64
RoBERTa (Liu et al., 2019) 72.35 84.42 68.07 81.38 68.40 80.93 65.04 76.97
Natural

BiDAF (Seo et al., 2017) 60.08 71.96 4597 57.64 5487 6690 56.89 68.33
BiDAF-ELMo (Peters et al., 2018) 62.61  75.38 49.16 6249 5924 171.06 60.76 73.32
BERT (Devlin et al., 2019) 72.77 84.66 5294 67.13 68.82 79.98 69.16 81.84
RoBERTa (Liu et al., 2019) 72.35 84.42 60.08 73.61 70.00 82.13 70.92 83.37

Table 4: Performance of the QA models under the three kinds of interface noise: ASR (using Google ASR), MT
(with the German—English model), and keyboard. All models score lower on noisy data, most notably on the natural
ASR set. MT noise is less prominent, but we later show its impact is highly dependent on the input language.

Figure 1: Effect of synthetic

| (a) and natural (b) voice
variation on the QA perfor-
mance in an ASR pipeline.
- Synthetic voice variation is
achieved by varying accent
and gender settings in the
N Google TTS model; US ac-
cent setting shows the high-
est scores while neither gen-
der setting consistently per-
forms best (indicated by line

Female Us-US 801
80+ Male SN
Us AT A
“us GB-": 60 I
5 o a
ARy
) GB =4
3 / 3
Zool Us--ys _ GB 1 Z 40
[ mr_,.-lN =
Us 08
65 > o GBS y
5 Wég 20l
60| v .
0
BiDAF  BiDAF- BERT RoBERTa BiDAF
ELMo

(a) F1 scores for TTS voices over 4 accent and
2 gender settings. Lines connect the results for
different gender but same accent and model.

ASR Noise: Speech recognizers typically omit
punctuation, which could mean losing cues im-
portant for the downstream task. To look at this
factor in isolation, we remove punctuation from the
original XQuAD questions. This change alone de-
creases BERT performance by 5.1 F1, suggesting
that the absence of punctuation in part explains the
degradation in the presence of ASR noise. When
we qualitatively analyze a sample of 50 questions
that BERT answered successfully in the original
setting but not when passed through the speech in-
terface, we find that 14% of them are identical to
the original modulo punctuation. Other sources of
error include the ASR producing completely mean-
ingless questions (28%), hallucinating (12%) or
losing named entities (10%), and replacing words
with homonyms (4%); other difficult cases include

(b) F1 mean and standard deviation over
4 human voices. For details and score
breakdown by speaker, see Appendix D.

slopes). Natural variation
BiDAF- BERT RoBERTa 18 measured on a sample of
ELMo 100 questions narrated by

four annotators. All mod-
els exhibit considerable vari-
ation in both experiments.

recognizing acronyms and preserving possessives,
tense, and number (2% each). Although these prob-
lems could be diminished by designing better inter-
faces, we believe it is also worthwhile for practi-
tioners to work on improving robustness of the QA
systems itself: many interfaces, especially commer-
cial, only offer black-box access, and building a
completely noise-free interface is not feasible.

Voice variation also plays a role: ASR error dis-
tribution differs by speaker background variables
such as accent (Zheng et al., 2005), in turn affect-
ing the downstream systems (Harwell, 2018; Lima
et al., 2019; Palanica et al., 2019). To emulate
speaker variation in the synthetic setting, we use
Google English Text-to-Speech to pronounce the
XQuAD questions in eight different voices, varying
the provided accent and gender settings. As Fig-
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ure 1a shows, all models exhibit considerable vari-
ation in F1 score, consistently performing best on
synthetic US accent (which our speech recognizer
is optimized for) and worst on GB. Score break-
downs by setting can be found in Appendix D.

We also repeat the experiment with four human
speakers narrating a sample of 100 XQuAD ques-
tions, to control for content. As shown in Figure 1b,
each model’s performance varies substantially be-
tween voices. The four speakers differ by accent
(2 Indian, 1 Russian, 1 Scottish), gender (2 male, 2
female), and level of proficiency (native and non-
native); more details and individual speaker scores
can be found in Appendix D.!¢ Although improv-
ing robustness to accent variation is out of the scope
of our work, we highlight that the performance can
degrade sharply depending on the user and their
acoustic conditions.

We also analyze how the choice of ASR model
affects the QA accuracy, focusing in particular
on the decoding strategies for out-of-vocabulary
words. We compare Kaldi, which outputs an UNK
token for unknown words (Peddinti et al., 2015),
and Google’s large-vocabulary ASR model. On
our set of human voices, Kaldi produces at least
one UNK token for ~50% of the questions, and
BERT achieves an F1 score of only 43.6 on this
set (54.4 F1 and 32.3 F1 separately on questions
with and without UNK respectively) compared to
67.1 F1 achieved by Google ASR, demonstrating
that speech recognizer choice can greatly affect
downstream QA performance. The observed degra-
dation due to UNK decoding (previously noted
by Peskov et al., 2019) suggests that practitioners
might find it useful to go beyond speech recogni-
tion benchmarks, and also evaluate ASR systems
in the context of downstream QA applications.

Translation Noise: As Table 4 shows, German—
English translation errors affect the performance
of all models, although to a lesser extent than ASR
noise. However, the MT quality and, in turn, the
downstream performance varies greatly depending
on the source language. Figure 2 shows BERT and
RoBERTa F1 scores on questions translated from
each of the ten XQuAD languages to English (num-
bers reported in Appendix E). While German and
Spanish have the highest accuracy, lower-resource
and more typologically distant languages like Ara-

'8Comparisons between demographics should not be drawn
from per-speaker results, since we do not control for con-
founds like recording conditions, aiming for a realistic sample.

85 ||« BERT '
RoBERTa
o 30| A A h
1)
151 A
2 A A A a4
o A
75| ‘ a
70 B | | | | | | | | | [

th ar zh hi el tr vi ru es de en
Query language

Figure 2: Effect of the input language on the QA sys-
tem performance in an MT pipeline. Automatically
translating non-English queries to English decreases
performance for all source languages, and the decrease
is especially noticeable for lower-resource languages.

bic and Thai are far behind. On translated Thai
inputs, BERT achieves only 71.0 F1, which is a
16% drop in accuracy from the original English
setting compared to 6% for German.

Table 5 shows example translations from four
XQuAD languages and highlights their divergences
from the original questions. Since the questions
are being translated out of context, MT tends
to replace important content words with ones
that are semantically related but not appropriate
in given context (Lord—deity, chair— President,
ctenophore—jellyfish). Transliteration of tech-
nical terms and named entities is also a chal-
lenge, especially for languages written in non-Latin
scripts (ctenophore—tenophora through Hindi,
Jochi— Dschdotschi through German). For further
qualitative analysis, we sample 100 questions trans-
lated from Hindi which BERT fails to answer cor-
rectly despite accurately answering their English
equivalent. Of these, 30% were identified by a
native speaker annotator as paraphrases of the orig-
inal question that would admit the original answer.
The remaining incorrect translations are due to
question type shift (31%), ungrammatical or mean-
ingless questions (12%), corrupted named entities
(8%) and dropped determiners (2%; Hindi does not
generally use definite articles). Some divergences
also go beyond word level, e.g. 10% of questions
have semantic role inversion (What earlier market
did the Grainger Market replace?— Which earlier
market replaced Granger’s market?). While some
word-level errors can be corrected post-hoc, repair-
ing syntax is much more challenging, which again
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Language Question

Language Question

What type of Lord is Doctor Who?

When would the occupation of allies leave Rhineland?

de: What kind of gentleman is Doctor Who? de:
zh: What type of lord is Doctor Who? zh:
hi: What kind of deity is Doctor Who? hi:
ru: What type of overlord is Doctor Who? ru:

When would the Allied occupation leave the Rhineland?
When was the Allies scheduled to withdraw from Rhineland?
When will the Rhineland be removed from the occupation of the
Allied countries?

When did the Allies intend to remove the occupation of the
Rhine region?

Who is the chair of the IPCC?

How much food does a ctenophora eat in a day?

de: Who is the chair of the IPCC? de:
zh: Who is the current chairman of the IPCC? zh:
hi: Who is the President of IPCC? hi:
ru: Who is the chairman of the IPCC? ru:

How much food does a jellyfish eat in a day??
How much food does a jellyfish eat in a day?
How much food does a tenophora eat in a day?
How much food does a ctenophore eat per day?

Table 5: Examples of translation divergences for German (de), Chinese (zh), Hindi (hi), and Russian (ru).

brings it down to the robustness of the QA engine.

Keyboard Noise: Synthetic keyboard noise pro-
duced by our key-swap typo generator has a much
stronger effect on the QA performance than natural
noise (11.1 F1 and 2.4 F1 drop respectively). We
attribute this to differences in the perturbation in-
tensity: ~25% of question words are corrupted in
the synthetic setting, but only ~9% of words are
corrupted under natural conditions.!” Interestingly,
BiDAF- and BERT-based models consistently show
comparable decreases in F1 score, suggesting that
character-level tokenization of the former does not
on its own guarantee robustness to typos.

Another factor that could affect downstream per-
formance is error placement. We evaluate BERT on
three additional synthetic sets, introducing noise
to only function words (conjunctions, pronouns,
articles), only content words (which we limit to
nouns and adjectives), or only commonly mis-
spelled words (using the Wikipedia misspellings
list as described in §3.2). Synthetically perturbing
all function words and all content words decreases
F1 score by 6.7 and 11.7 respectively, confirming
that not all words are equally important for the
model finding the correct answer. Injecting the in-
terface errors from Wikipedia into the 2,716 ques-
tions containing at least one commonly misspelled
word yields F1 score of 78.6 (6.1 F1 drop), show-
casing the decreased performance we would likely
see in real-life user interactions.

4.2 Mitigation Strategies

We experiment with two strategies for improving
the QA system robustness: repairing the question

'"Synthetic data corruption rate is a design decision and
can be made to simulate the expected natural noise or be more
challenging as a stress test, depending on practitioner’s goals.

errors using the provided context and retraining
QA models on the data augmented with synthetic
noise. Question repair assumes availability of con-
text, making it unsuitable for open-domain QA, but
reasonable for use cases like QA over manuals or
policies (Feng et al., 2015; Harkous et al., 2018;
Ravichander et al., 2019). This approach treats
words that occur in the question but not the context
as potential noise, attempting to replace them with
the closest candidate from the context paragraph.
We use character error rate as the distance metric,
empirically setting the threshold to 0.5 using the
synthetic set. We perform two experiments, apply-
ing the repair either only to content words (here,
nouns and adjectives) or only to named entities in
both the context and the question. Table 6 shows
how these repairs affect BERT performance on
three types of natural noise. Named entity repair
yields marginal improvements across the board,
while content word repair has a stronger effect but
only for keyboard errors. The proposed strategy
could also be combined with other deterministic
or off-the-shelf repair methods, such as adding fi-
nal question marks for ASR (+6.52 F1) or using a
spellchecker for keyboard (+1.41 F1).

For data augmentation, we use our synthetic
noise generators to inject noise into ~90K SQuAD
training questions and retrain BERT on the com-
bined clean and noisy data. As Table 6 shows, aug-
mentation yields improvements on all three types
of natural noise over BERT trained on clean data
only, but the performance of the augmented models
drops slightly on the clean data. Best results on
natural ASR and MT noise are obtained when the
data is augmented with the same type of synthetic
noise; interestingly, this is not true for keyboard
noise, where ASR augmentation also works best.
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XQuADEgy ASR MT Keyboard
BERT Model EM Fl EM Fl EM Fl1 EM Fl
BERT 7277 84.66 5294 67.13 6882 7998 69.16 81.84
+ Named entity repair 72.94 84.78 53.03 67.34 68.82 80.05 69.58 82.22
+ Content word repair 72.94 84.77 52.61 67.01 6832 79.76 70.25 82.60
+ Augmentation 7235 83.89 6437 7589 6890 80.83 70.76 8243

Table 6: Effect of question repair and data augmentation on BERT performance on three types of natural noise.
Results on synthetic noise and data augmentation score breakdown by interface can be found in Appendix F.

Although our results are preliminary, they suggest
that augmentation could prove useful in enabling
effective question answering in the real world.

To better understand where ASR and MT aug-
mentation helps, we compare the performance of
augmented and baseline BERT on additional chal-
lenge sets, synthesizing some common noise arti-
facts in isolation. We find that ASR noise augmen-
tation improves robustness to omission of punc-
tuation: ASR-augmented model achieves 82.7 F1
on questions with no punctuation and 82.9 F1 on
questions without the final question mark (com-
pared to 79.2 and 79.6 F1 for the baseline). Fol-
lowing the definitions in §4.1, we also experiment
with removal of function and content words: both
augmented models outperform baseline when all
function words are dropped (76.1 F1 for ASR, and
70.2 F1 for MT, and 67.8 F1 for baseline), and
ASR augmentation helps when all content words
are dropped (68.6 F1 vs. 66.0 F1 for baseline). Fi-
nally, we replace one randomly sampled named
entity (of type LOC, ORG, or PER) per question
with a placeholder, and the performance of ASR-
augmented BERT drops less than that of the base-
line BERT (by 2.3% and 3.2% respectively). This
analysis suggests that ASR augmentation can make
models more robust to errors in punctuation, named
entities, and content words, and both ASR and MT
could help with function word errors.

On the utility of synthetic challenge sets: We
advocate that dataset designers always obtain natu-
ral data (with natural noise) when possible. How-
ever, in the circumstances where collecting natural
data is difficult, synthetic data can be useful when
reasonably constructed. While the distribution of
errors in our synthetically generated challenge sets
differs from that in the natural ones (Table 3), we
find that the model performance ranking is consis-
tent across all types of noise (Table 4), showing
that synthetic noise sets could act as a proxy for
model selection. Moreover, augmenting training

data with synthetic noise improves model robust-
ness to natural noise for all noise types in this study
(Table 6), suggesting that synthetic noise genera-
tors may be capturing some aspects of natural noise.
Our proposed generators could serve as templates
for synthesizing interface noise when collecting
natural data is infeasible, but individual practition-
ers should carefully identify and simulate the likely
sources of error appropriate for their applications.

5 Related Work

Question Answering QA systems have a rich
history in NLP, with early successes in domain-
specific applications (Green et al., 1961; Woods,
1977; Wilensky et al., 1988; Hirschman and
Gaizauskas, 2001). Considerable research effort
has been devoted to collecting datasets to support
a wider variety of applications (Quaresma and Pi-
menta Rodrigues, 2005; Monroy et al., 2009; Feng
et al., 2015; Liu et al., 2015; Nguyen, 2019; Jin
et al., 2019) and improving model performance
on them (Lally et al., 2017; Wang et al., 2018; Yu
et al., 2018; Yang et al., 2019). We too focus on
QA systems but center the utility to users rather
than new applications or techniques.

There has also been interest in studying the in-
teraction between speech and QA systems. Lee
et al. (2018a) examine transcription errors for Chi-
nese QA, and Lee et al. (2018b) propose Spoken
SQuAD, with spoken contexts and text-based ques-
tions, but they address a fundamentally different
use case of searching through speech. Closest to
our work is that of Peskov et al. (2019), which stud-
ies mitigating ASR errors in QA, assuming white-
box access to the ASR systems. Most such work au-
tomatically generates and transcribes speech using
TTS—ASR pipelines, similar to how our synthetic
set is constructed. However, our results show that
TTS does not realistically replicate human voice
variation. Besides, stakeholders relying on com-
mercial transcription services will not have white-
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box access to ASR; our post-hoc mitigation strate-
gies would be better suited for such cases.

Challenge sets Model robustness evaluation
with adversarial schemes is common in NLP
tasks (Smith, 2012), including dependency pars-
ing (Rimell et al., 2009), information extraction
(Schneider et al., 2017), natural language inference
(Marelli et al., 2014; Naik et al., 2018; Glockner
et al., 2018), machine translation (Isabelle et al.,
2017; Belinkov and Bisk, 2018; Bawden et al.,
2018; Burlot and Yvon, 2017) and QA (Jia and
Liang, 2017; Aspillaga et al., 2020). Unlike most
prior work, we do not create our challenge sets to
break QA systems, but rather for a more realistic
evaluation of the systems’ real-world utility.

6 Conclusion

In this work, we advocate for QA evaluations that
reflect challenges associated with real-world use.
In particular, we focus on questions that are writ-
ten in another language, spoken, or typed, and the
noise introduced into them by the corresponding in-
terface (machine translation, speech recognition, or
keyboard). We analyze the effect of synthetic and
natural noise in each interface and find that these
errors can be diverse, nuanced, and challenging for
traditional QA systems. Although we present an
initial exploration of mitigation strategies, our pri-
mary contribution lies not in the specific challenge
sets we construct or in developing new algorithms,
but rather in identifying and describing one class
of problems that practical QA systems must con-
sider and providing a framework to measure them.
We hope insights derived from our study stimulate
research in making QA systems ready to face real-
world users. We emphasize three considerations:

Sources of error: This work studies errors intro-
duced at the interface stage of QA pipelines. These
errors are nearly ubiquitous, as users always inter-
act with QA systems through some kind of inter-
face. Thus, it is important for QA system designers
to be mindful of distortions those might introduce.
Our analysis can be extended to study the impact of
interface-specific factors: for example, how errors
vary by keyboard layout (e.g. QWERTY vs. Dvo-
rak or language-specific layouts like AZERTY) or
preferred way of typing (e.g. using physical key-
boards vs. swipe typing). Another fruitful area
of study could lie in examining the accumulated
impact of errors resulting from interface combina-
tions (e.g. machine translation of ASR-transcribed

queries) and the effects of such interface noise in
languages other than English. However, interface
distortion represents only one source of error that
occurs in practical deployment, and future research
would study further sources of variation such as
how users may adapt their questions according to
the interface used.

Context-driven evaluation: This work focuses
on practical evaluation of QA systems that takes
into account the challenges associated with their
real-world deployment. We hope to encourage de-
velopment of future user-centered or participatory
design approaches to building QA datasets and eval-
uations, where practitioners work with potential
users to understand user requirements and the con-
texts in which systems are used in practice.

Community priorities for QA systems: While
leaderboards on established benchmarks have facil-
itated rapid progress (Rajpurkar et al., 2016, 2018)
and bolstered development of a variety of seman-
tic models (Xiong et al., 2018; Liu et al., 2018;
Huang et al., 2018; Devlin et al., 2019), we call for
practitioners to consider the orthogonal direction
of system utility in their model design. We believe
these subareas to be complementary, and commu-
nity attention towards both will help produce NLP
systems that are both accurate and usable.
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A Reproducibility details of models

We use the pre-trained AllenNLP implementa-
tions of BiDAF and BiDAF-ELMo'® (Gardner
et al., 2018) and the HuggingFace implementa-
tion of BERT.!” We fine-tune BERT and RoBERTa
on SQuAD with a learning rate of 3e—5 for
2 epochs, with a maximum sequence length of
384. All models achieve good performance on
the SQuAD dataset. Our trained models achieve
the following F1 scores on SQuAD development
set: BiDAF: 77.82, BIDAF-ELMo: 80.68, BERT:
88.75, RoBERTa: §89.93.

B Keyboard noise in the wild

Common examples of keyboard typos include
replacing a character with the one correspond-
ing to an adjacent key (frame—framd), insert-
ing or deleting characters (between—betwen,
agency—agenchy), and swapping adjacent charac-
ters within words (beroids—yberiods). Such errors
exist even in textual QA datasets collected in rela-
tively controlled settings: for example, all the error
examples above actually occur in SQuAD. In a real-
life situation of information need, where the user
produces the question without being exposed to the
context and the answer, these errors will likely be
even more pervasive. We qualitatively analyze a
sample from a dataset of questions collected from
the Yahoo! Answers platform (Miao et al., 2010),
randomly selecting 50 questions from each topic
(Science, Internet, and Hardware). We manually
identify non-standard spellings and discard ones
that are intentional, such as slang (thanks—thanx)
or expression of emotion (so—sooo). Since we are
specifically interested in the errors that happen in
the process of typing, we also separate out errors
that could have originated in the user’s mind; for
example, the most frequent class of errors is omis-
sion or insertion of apostrophes in contractions,
possessives and plurals, but all of them could plau-
sibly be explained by the user’s intention. Other
common error types we find are incorrect whites-
pace placement and character substitutions (mostly
plausible human errors), and character insertions,
deletions or swapping adjacent characters within
words (mostly interface errors); statistics and error
examples can be found in Table 7.

Bgithub.com/allenai/allennlp-hub
Ygithub.com/huggingface/
pytorch-transformers

Error type Examples #Errors
Apostrophe  it’s—its, devices—device’s 55 (0)
Whitespace  anyone—any one, a lot—alot 18 (4)
Deletion too—to, school—schol 18 (10)
Substitution  warranty—warrenty, will—well 12 (2)
AdjSwap type—tpye, piece—peice 11 (9)
Insertion answer—asnswer, lose—loose 9(5)
KeySwap of—if 1(1)

Table 7: Examples of common error types observed in a
manual analysis of the Yahoo! Answers questions. Ex-
amples identified as interface errors are highlighted in
blue. #Errors is total number of typographical errors,
with # of interface errors in parentheses.

C Filtering interface misspellings

Our source of human keyboard errors is the
Wikipedia list of common English misspellings;
some of them are likely to occur in the process of
typing (e.g. and—adn), while others can plausi-
bly be explained by user misconception (e.g. re-
cieve—sreceive). Since our work focuses on inter-
face errors specifically, we would like to only retain
errors from the former category.

Our filtering approach is based on two assump-
tions: (a) interface errors must be plausible un-
der the keyboard layout, and (b) misspellings that
preserve pronunciation of the original word (e.g.
article—artical) are more likely to be non-interface
errors coming from users themselves. We use a two-
step filtering heuristic: first, we retain only error
categories likely to be explained by the interface
noise (character deletion and insertion, adjacent
character swap or adjacent key swap in QWERTY
layout), and then discard spellings with similar pro-
nunciations. Pronunciations are obtained via the
Epitran G2P system (Mortensen et al., 2018), and
similarity is determined by weighted edit distance.

On a sample of 100 Wikipedia misspellings man-
ually labeled as interface or non-interface errors,
the proposed heuristic shows 83% agreement with
human annotation. Applying the heuristic to the
initial 4,518 word-spelling pairs, we obtain a set
of 1,742 interface errors for 1,489 English words.

D Voice variation in ASR

This section describes the details of the voice vari-
ation experiments discussed in §4.1. The numbers
used to generate Figures 1a and 1b are presented in
Tables 8 and 10 respectively.
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Synthetic variation We generate the synthetic
voices using Google English Text-to-Speech sys-
tem with four different accent settings (Australian,
British, Indian, and US) and two gender settings
(male and female voices). The performance of all
models on these voices is presented in Table 8. All
QA models achieve highest F1 score when the ques-
tions are voiced with a US accent, which is likely
explained by the ASR component being optimized
for this accent specifically. Neither gender setting
consistently leads to best performance across all
models and accents. BiDAF and RoBERTa achieve
highest scores when the US female synthetic voice
is used, and BiDAF-ELMo and BERT perform best
with the US male synthetic voice.

Natural variation We record the spoken ver-
sions of the 1,190 XQuAD questions voiced by
three human annotators: H1 (Indian female), H2
(Russian female), and H3 (Indian male). The same
three annotators and an additionally recruited anno-
tator H4 (Scottish male) also voiced the same ran-
dom sample of 100 XQuAD questions to measure
the effect of voice variation in content-controlled
setting. The summary statistics (mean and standard
deviation) for the sample of speakers are shown
in Figure 1b, and the breakdown of each model’s
score by speaker is presented in Table 10. To col-
lect a set of recordings that is more representative
of the real-life use cases, we do not control for
recording conditions and other confounds, so our
per-speaker results alone are not meant to be taken
as evidence of the ASR or QA models being better-
tuned for any of the mentioned demographics.

E Input language variation in MT

Table 9 presents the results of the query language
variation experiment (§4.1, Figure 2). In this ex-
periment, we use XQuAD human translation of
questions into ten languages as inputs, translating
them back into English through the Google Trans-
lation API. The table also reports the results on
the original English SQuAD questions to serve as
a skyline. As expected, lower-resource languages
and languages that are more typologically divergent
from English (the QA system’s language) pose the
biggest challenge for the MT-QA pipeline.

F Robustness experiments

Table 11 presents the question repair and data aug-
mentation results on both synthetic and natural

noise for all interfaces. Synthetic noise sets were
used for development and tuning in all experiments.
Table 11 also breaks down data augmentation re-
sults by the specific augmentation noise source.
Training on ASR noise proves helpful for natural
keyboard noise as well as natural ASR noise, and
robustness to natural translation noise is only im-
proved by augmenting the data with its synthetic
counterpart.

G ASR system benchmarking

To benchmark both the ESPnet CommonVoice
ASR system, which we use for data augmentation,
and the Google ASR, which was used to create
ASR challenge sets from recorded XQuAD ques-
tions, we also transcribe the natural and synthetic
challenge set recordings with ESPnet ASR. ESPnet
achieves 56.8% and 70.1% WER for synthetic and
natural voices respectively, while Google ASR gets
a WER of 16.6% and 30.7% respectively (Table 3).

H Numeral handling and ASR interfaces

Correctly transcribing numerals is often impor-
tant for producing a correct answer in an ASR—
QA pipeline. Even a different representation of
the same quantity in the question and in the con-
text passage creates additional difficulties for the
QA system. To additionally analyze the effect
of handling numerals in ASR engines, we com-
bine BERT with Kaldi (Povey et al., 2011) or
Google speech recognizers and compare their per-
formance on the portion of XQuAD questions con-
taining numerals (XQUAD-NUMBERS) and the re-
maining questions (XQUAD-NONUM). With the
questions narrated by human annotators, the QA
pipeline performs worse on XQUAD-NUMBERS
than XQUAD-NONUM with either Kaldi (38.39 F1
and 44.30 F1 respectively) or Google ASR (64.44
F1 and 70.86 F1 respectively). In case of Kaldi, we
hypothesize that the discrepancy might be partially
explained by the speech recognizer outputting num-
bers in their spelled-out form rather than numeric
form. To test this hypothesis, we convert all nu-
merals in the original written XQUAD-NUMBERS
questions into their spelled-out form and observe
a drop in performance from 87.10 F1 to 82.88 F1
on this subset. However, the representation mis-
match is only one of many challenges: unlike Kaldi,
Google ASR outputs numerals as digits, but the cor-
responding pipeline still shows worse performance
on spoken XQUAD-NUMBERS.
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Model Female Male Female Male Female Male Female Male
BiDAF (Seo et al., 2017) 64.14 64.76 60.45 63.73 64.09 64.80 65.93  66.39
BiDAF-ELMo (Peters et al., 2018) 67.84  67.49 65.08 67.04 68.13 68.94 70.50 70.30
BERT (Devlin et al., 2019) 74.54  73.87 70.56  72.79 73.65 74.47 7742  77.02
RoBERTa (Liu et al., 2019) 78.86  78.79 76.37  78.27 78.83  80.13 81.11 81.38

Table 8: Performance of different QA models in the TTS-ASR pipeline with different synthetic voices. We
use Google Text-to-Speech with different accent and gender settings, and Google Speech-to-Text optimized for
English—US as the speech recognizer.

Model en es hi vi de ar zh el ru th tr

BERT 84.66 79.86 T76.75 77.14 7998 7545 7639 7696 78.06 71.03 76.98
RoBERTa 84.42 81.65 79.61 7877 8213 76.41 78.88 79.6 79.67 74.68 79.28

Table 9: QA performance on XQuAD human translations of SQuAD questions in different source languages posed
to an English QA system. Questions in each non-English language are translated to English using the Google MT
system, and the performance on the original English questions is reported as a skyline.

Model H1 H2 H3 H4

BiDAF 58.14 62.86 31.60 60.07
BiDAF-ELMo 56.15 62.65 29.30 6248
BERT 59.77 67.27 3298 65.63
RoBERTa 60.74 7431 34.14 6748

Table 10: Performance of the different QA models on different human annotator voices: Indian Female (H1),
Russian Female (H2), Indian Male (H3), and Scottish Male (H4). We do not control for recording conditions and
other confounds in this experiment, so our results are not meant to act as evidence of ASR systems being more
effective for any particular demographic.

XQuADgy ASR MT Keyboard

BERT Model EM F1 EM F1 EM F1 EM F1
Synthetic
BERT 72777 84.66 6193 77.02 67.23 79.08 61.68 74.43
+ NE Repair 7294 84778  62.10 77.23 67.31 79.19 63.78 75.31
+ Content Repair 7294 84777 62.02 77.12 67.31 79.14 62.61 74.34
+ Spelling Augmentation 72.35 83.89 56.81 73.68 65.63 78.09 67.31 78.83
+ ASR Augmentation 7193 83.41 66.13 78.29 66.13 7829 6546 76.65
+ Translation Augmentation 70.76  83.17 61.09 7642 66.72 79.70 59.83 72.29
+ Spelling+ASR+Translation Augmentation 67.48 80.64  66.13 79.82 6420 77.18 64.28 77.63
Natural

BERT 7277 84.66 5294 67.13 68.82 7998 69.16 §81.84
+ NE repair 7294 84.78 53.03 67.34 6882 80.05 69.58 82.22
+ Content repair 7294 8477 5261 67.01 6832 79.76 70.25 82.60
+ Spelling Augmentation 72.35 83.89 50.84 66.04 6849 8020 70.25 82.22
+ ASR Augmentation 7193 8341 6437 7589 68.65 80.32 70.76 82.43
+ Translation Augmentation 70.76 83.17 5370 68.11 68.90 80.83 68.57 81.05

+ Spelling+ASR+Translation Augmentation 67.48 80.64  62.02 74.61 66.81 80.25 65.88 78.55

Table 11: Effect of question repair and data augmentation on BERT performance on both synthetic and natural
noise for the three interface types. Data augmentation results are presented separately for each source of training
synthetic noise. Synthetic noise sets are used for development and tuning in all experiments.
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