
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics, pages 2709–2719
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

2709

Learning Coupled Policies for Simultaneous Machine Translation
using Imitation Learning

Philip Arthur†
Department of

Data Science and AI
Monash University

Trevor Cohn‡
School of Computing and

Information Systems
University of Melbourne

†{philip.arthur, gholamreza.haffari}@monash.edu
‡tcohn@unimelb.edu.au

Gholamreza Haffari†
Department of

Data Science and AI
Monash University

Abstract

We present a novel approach to efficiently learn
a simultaneous translation model with cou-
pled programmer-interpreter policies. First, we
present an algorithmic oracle to produce or-
acle READ/WRITE actions for training bilin-
gual sentence-pairs using the notion of word
alignments. This oracle actions are designed
to capture enough information from the par-
tial input before writing the output. Next, we
perform a coupled scheduled sampling to effec-
tively mitigate the exposure bias when learning
both policies jointly with imitation learning.
Experiments on six language-pairs show our
method outperforms strong baselines in terms
of translation quality while keeping the transla-
tion delay low.

1 Introduction

Simultaneous machine translation (SIMT) is a set-
ting where the translator needs to incrementally
generate the translation while the source utterance
is being received. This is a challenging transla-
tion scenario as the SIMT model needs to trade off
delaying translation output and the quality of the
generated translation.

Recent research on SIMT relies on a strategy
to decide when to read a word from the input or
write a word to the output (Satija and Pineau, 2016;
Gu et al., 2017). This is based on a sequential
decision making formulation of SIMT, where the
decision making about the next READ/WRITE ac-
tion is made by an agent, interacting with the neural
machine translation (NMT) environment. Current
approaches are sub-optimal as they either fix the
agent’s policy to focus learning the NMT model
(Ma et al., 2019; Dalvi et al., 2018) or learn adap-
tive agent policies while the NMT model is fixed
(Gu et al., 2017; Alinejad et al., 2018). We argue
that the interpreter should also learn to generate
correct translation from incomplete input informa-
tion. This is challenging as we need to optimize

both programmer’s and interpreter’s policies to bal-
ance the tradeoff between quality and delay in the
reward.

Previous research has considered the use of im-
itation learning (IL) to train the agent’s policy
(Zheng et al., 2019a,b), which is generally supe-
rior to reinforcement Learning (RL) in terms of
the stability and sample complexity. However, the
bottleneck of IL in SIMT is the unavailability of
the oracle sequence of actions. Designing algorith-
mic oracles to compute sequence of READ/WRITE

actions with low translation latency and high trans-
lation quality is under-explored.

We present an IL approach to efficiently learn ef-
fective coupled programmer-interpreter policies in
SIMT, based on the following contributions. First,
we present a simple, fast, and effective algorithmic
oracle to produce oracle actions from the training
bilingual sentence-pairs based on statistical word
alignments (Brown et al., 1993). Next, we design a
framework that uses scheduled sampling on both
programmer and interpreter. This is different from
the typical IL scenarios, where there is only one
policy to learn. As the two policies collaborate,
their learning needs to be robust not only to their
own incorrect predictions, but also to incorrect pre-
dictions of the other policy to mitigate this coupled
exposure bias.

Experiments on six language pairs (translating
to English from Arabic, Czech, German, Roma-
nian, Hungarian, and Bulgarian) show the poli-
cies trained using our approach compares favorably
with strong policies from the previous work. We
attribute the effectiveness of the learned coupled
policies to (i) the scheduled sampling, which han-
dles the coupled exposure bias, resulting in up to
5-8 BLEU score improvements, and (ii) the quality
of oracle actions generated by our algorithmic ora-
cle, which balances translation quality and delay.

2710

Algorithm 1 Generation in NPI-SIMT
1: i, j ← 0
2: while a stopping condition is not met do
3: t← i+ j
4: st+1 ← fffprog(st, [at, gj ,hi])
5: Pprog ← softmax(denseprog(st+1))
6: at+1 ∼ Pprog
7: if at+1 = READ then
8: i← i+ 1
9: hi ← fff enc(hi−1, xi)

10: else
11: j ← j + 1
12: gj ← fff intp(gj−1, yj−1,h≤i)
13: Pintp ← softmax(denseintp(gj))
14: yj ∼ Pintp
15: end if
16: end while

2 NPI Approach to SIMT

We describe generation in our neural programmer-
interpreter (NPI) approach to simultaneous ma-
chine translation (SIMT) in Algorithm 1. At
each time step t, the programmer needs to de-
cide whether to READ the next source word or to
WRITE the next target word in the translation. The
interpreter then immediately executes the action
generated by the programmer. Both programmer
and interpreter are modeled using Markov Deci-
sion Process (MDP) where prediction at particular
timestep depends on the history of previous pre-
dictions. The indices it and jt are the number of
READ and WRITE actions in the program up to
time step t.

The Programmer needs to sequentially decide
about the next action, given the previous actions
a<t and the prefix of the source utterance read so
far x≤it as well as the prefix of the target transla-
tion generated so far y≤jt . That is, our programmer
is modeled as Pprog(a|a<t,x≤it ,y≤jt).

The Interpreter needs to execute the action gen-
erated by the programmer. At time step t, if
the generated action at is READ, we reveal the
next input token. Otherwise, if WRITE, then
we generate the next target word according to
Pintp(y|a≤t,x≤it ,y≤jt).1

The Probabilistic Model. The probability of si-
multaneously generating the translation y and the

1The counter i and j are also incremented according to the
respective actions at time t.

sequence of actions a for a source utterance x is,

PSIMT(y,a|x) =
|x|+|y|∏
t=1

Pprog(a|a<t,x≤it ,y≤jt)

×
∏

t:at=WRITE

Pintp(y|a≤t,x≤it ,y≤jt).

Training the Model. In SIMT, we are interested
in not only producing a high quality translation, but
also reducing the delay between the times of receiv-
ing the source words and generating their transla-
tions. Training of the model based on this hybrid
training objective can be done by reinforcement
learning (RL) or imitation learning (IL). The RL
approach has been attempted by (Satija and Pineau,
2016; Gu et al., 2017; Alinejad et al., 2018) for
training the programmer; however, it is unstable
due to sparsity of the reward function and these
works also assumed a fixed interpreter. We thus
take the IL approach for a sample efficient, effec-
tive, and stable learning of policies in NPI-SIMT.

3 Deep Coupled Imitation Learning

Our goal is to learn a pair of policies for the pro-
grammer and interpreter using IL. §3.1 describes
the method of learning of both policies where their
learning inter-dependency needs to be taken into
account. §3.2 describes our novel oracle program
actions for each sentence pair in the training set,
i.e., the program a which has been responsible
for generating the translation y for a source utter-
ance x with as low delay as possible. Our over-
all training algorithm is depicted in Algorithm 2.
X̂ = [x̂1, ..., x̂|x|] is the encoding of the input se-
quence and Ŷ = [ŷ1, ..., ŷ|y|] is a list of interpreter
hidden states for all predictions. During training,
these values are calculated before calculating the
loss of the programmer.

3.1 Learning Robust Coupled Policies
Assuming we have the oracle actions, we can learn
the policies for both the programmer and interpreter
using behavioural cloning in IL (Torabi et al., 2019).
That is, the model parameters are learned by max-
imising the likelihood of the oracle actions for both
the programmer and interpreter,

θ∗prog, θ
∗
intp := argmaxθprog,θintp

∑
(x,y,a)

|x|+|y|∑
t=1

logPprog(a|a<t,x≤it ,y≤jt ; θprog)

+
∑

t:at=WRITE

logPintp(y|x≤it ,y≤jt ; θintp).

2711

This is akin to have the expectation, in the origi-
nal training objective of NPI, under a point-mass
distribution over the oracle actions.

IL with behavioural cloning does not lead to ro-
bust policies for unseen examples in the test time
due to exposure bias (Bengio et al., 2015). That
is, the agent is only exposed to situations result-
ing from the correct actions in the training time,
leading to its inability to mitigate from propagation
of errors faced due to incorrect actions in the test
time. Scheduled sampling (Bengio et al., 2015;
Ross et al., 2011) addresses this issue by exposing
the agent to incorrect decisions in training time
through perturbation of the oracle decisions, which
we extend to learning policy pairs. Crucially, the
programmer-interpreter policies need to be robust
to incorrect decisions encountered not only in their
own trajectories, but also to one anothers’ trajecto-
ries.

Learning the Programmer. To train our pro-
grammer on a training example (x,y,a) with
scheduled sampling, we first create the perturbation
(a′,y′) of the ground truth program and interpreter
decisions. The perturbed program a′ and transla-
tion y′ are only used as the input to the recurrent
architectures of the programmer and interpreter’s
decoder. They are created by replacing some of the
ground truth element by randomly selecting an ac-
tion from the predictive distribution of each model.
We then maximise the following training objective,

θ∗prog := argmaxθprog

∑
(x,y′,a,a′,a′′)

∑|x|+|y′|
t=1

logPprog(a|a′<t,x≤it ,y′≤jt ; θprog). (1)

Based on the generative process described in Algo-
rithm 1, the programmer conditions the generation
of actions in each time step on the current states
of the NMT’s encoder and decoder. Hence, while
training the programmer, the valid READ/WRITE

actions need to be communicated to the interpreter
and be executed in order to provide NMT’s en-
coder/decoder states to the programmer to condi-
tion upon. Crucially, the communicated program
needs to be valid.

Valid Program A ground truth program a is
a valid sequence of READ/WRITE actions if
|READ ∈ a| = |x| and |WRITE ∈ a| = |y|. This
valid program ensures the NPI model to safely
consume a pair of parallel sentence. We gener-
ate a valid perturbation a′′ by only permuting the
READ/WRITE actions of the program a (Figure 1).

R W R W W R R W

1 2 3 4 5 6 7 8

Oracle

Index

1 2 3 4 5 6 7 8Bernoulli

1 5 2 4 6 3 7 8Permute

R W W W R R R Wa’’

Figure 1: Creating valid perturbation from oracle pro-
gram. We use a combination of Bernoulli sample and
permutation function.

Algorithm 2 Training NPI-SIMT

Require: D: Sentence pairs with oracle actions,
β1, β2, β3 : scheduled sampling probabilities
for y′,a′,a′′.

1: while a stopping condition is not met do
2: randomly pick (x,y,a) ∈ D
3: y′ ← perturbSeq(y, β1, θintp)
4: a′ ← perturbSeq(a, β2, θprog)
5: a′′ ← perturbProgValid(a, β3)
6: ŷ, X̂, Ŷ ← forward_intp(θintp,x,y

′,a′′)

7: â← forward_prog(θprog,a
′, X̂, Ŷ)

8: θintp ← θintp − α1∇δ(ŷ,y)
9: θprog ← θprog − α2∇δ(â,a)

10: end while

We further extend the definition of a valid program
with respect to the domain knowledge of transla-
tion so that: (i) no WRITE at the beginning, and (ii)
no READ at the end of the program.

Learning the Interpreter. The interpreter needs
to be robust to the incorrect actions in the previ-
ously generated words in the translations as well
as the READ/WRITE actions generated by the pro-
grammer. This is done by communicating a′′ to
the intepreter during training. Thus, the training
objective for the interpreter is,

θ∗intp := argmaxθintp

∑
(x,y,y′,a′′)

∑
t:a′′t =WRITE

logPintp(y|x≤it ,y′≤jt ; θintp). (2)

3.2 Oracle Program Actions
Our proposed oracle should measure the appro-
priate amount of inputs needed for translating a
particular target word yjt . This is done by deter-
mining the key word or phrases δj which contain
important information of yjt , and therefore guid-
ing the programmer to read until δj before writing
yjt . Algorithm 3 outlines our oracle generation

2712

Algorithm 3 Oracle Generation
Require: a: Symmetrized alignment of x and y

in forms of ai,j , which means that xi is aligned
to yj . Index starts with 0.

1: δREAD := −1
2: for j ∈ range(0, |y|) do
3: δj ← max[{i ∈ ai,j}]
4: for (δj − δREAD) times do
5: emit READ

6: end for
7: δREAD ← max(δj , δREAD)
8: emit WRITE

9: end for

procedure. No READ operation is emitted if the
δj ≤ δREAD or {i ∈ ai,j} = ∅.
δj can be heuristically determined by using word

alignment (Brown et al., 1993; Koehn et al., 2003),
which captures strong relationship between tokens.
In the case of many to one alignment of source to
target, we choose the furthest source word. In the
case of no alignment, nothing is done as it means
the target word can be induced merely from the
decoder without needing to read additional inputs.
This oracle can generally generate a valid program.
Caution is needed to ensure that no WRITE at the
beginning and no READ at the end of the generated
oracle. This can be done by aligning the first words
of the parallel sentence. Similarly we also need to
align the last words of the parallel sentence. 2

4 Experiments

Our experiments aim to measure the effectiveness
of our proposed method versus a strong wait-k base-
line, over a range of languages of varying difficulty,
syntactic complexity, and lexical complexity.

4.1 Settings

Datasets. Our main experiment will be per-
formed in higher quality corpus which is designed
for spoken dialogue and carefully edited dataset.
Additionally, we perform a single large scale exper-
iment using crawled corpus such as WMT to show
that our method also scales to a large dataset.

We evaluate our proposed method on 6 language
pairs, in all cases translating into English, with the
source languages chosen to cover a wide range

2Our oracle algorithm’s code is released in
https://github.com/Monash-NLP-ML-Group/
arthur-eacl2021.

of language families and syntax. We use Ger-
man (DE), Czech (CS) and Arabic (AR) from the
IWSLT 2016 translation dataset (Cettolo et al.,
2012). We use the provided training and devel-
opment sets as-is, and concatenate all provided test
sets to create our test set. We also evaluate Hun-
garian (HR), Bulgarian (BG), and Romanian (RO)
from the SETIMES corpus (Tyers and Alperen,
2010). As this corpus is not partitioned, we use
the majority of the data for training, holding out
2000 random sentence pairs for development and
another 2000 sentence pairs for testing. Together
these languages are representative of Germanic,
West Slavic, Arabic, Uralic, East Slavic, and Italic
language families, respectively.

We use sentencepiece (Kudo and Richardson,
2018) to build and tokenize our training data with
16k vocabulary size. Then we generate our oracle
program actions based on the segmented tokens.
We use fast_align (Dyer et al., 2013) to generate
symmetrized alignments between tokens. Unless
otherwise specified, we use the default settings of
the mentioned toolkit.

Evaluation. We evaluate the SIMT systems
based on its translation quality and delay. Trans-
lation quality can be measured by case sensitive
BLEU (Papineni et al., 2002).3 We adopt three
delay measurements by previous studies. First, av-
erage proportion (AP) (Gu et al., 2017) is a fraction
of read source words per emited target words. Sec-
ond, average lagging (AL) (Ma et al., 2019) is an
average number of lagged source words until all in-
puts are read. Finally the differentiable-AL (DAL)
(Arivazhagan et al., 2019) is a refinement of AL
which also accumulates the cost of writing output
tokens after inputs are fully read.

Baseline. We compare against the wait-k base-
line (Ma et al., 2019) where the programmer’s pol-
icy begins with k numbers of READ, and is fol-
lowed by switching WRITE and READ, until the
source sentence is exhausted or end of sentence
(EOS) symbol is written. If the source sentence is
exhausted, the programmer will only emit WRITE

actions. This baseline was shown to be superior
compared to the reinforcement learning approach
(Zheng et al., 2019a), and k can be tuned for the
desired delay. Arivazhagan et al. (2019)’s approach
is superior than the wait-k baseline. However there

3Calculated using sacrebleu (Post, 2018).
BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a+
version.1.4.4 is our sacreblue’s signature

https://github.com/Monash-NLP-ML-Group/arthur-eacl2021
https://github.com/Monash-NLP-ML-Group/arthur-eacl2021

2713

DE→EN CS→EN AR→EN HR→EN BG→EN RO→EN
BLEU DAL AL AP BLEU DAL AL AP BLEU DAL AL AP BLEU DAL AL AP BLEU DAL AL AP BLEU DAL AL AP

wait-k
k = 1 14.40 3.74 2.22 0.61 11.87 4.05 2.60 0.63 16.08 4.04 2.88 0.64 24.78 3.72 2.15 0.58 22.02 3.58 1.58 0.56 22.76 3.51 1.43 0.55
k = 2 18.67 4.01 2.93 0.64 15.90 4.21 3.20 0.66 19.46 4.35 3.44 0.68 28.50 3.99 2.80 0.60 25.37 3.99 2.27 0.59 28.31 3.82 2.13 0.58
k = 3 21.13 4.59 3.71 0.68 17.27 4.82 3.92 0.70 22.11 4.91 4.21 0.72 32.04 4.55 3.52 0.63 26.79 4.90 3.35 0.62 32.13 4.31 2.88 0.61
k = 4 24.21 5.03 4.32 0.71 18.54 5.49 4.72 0.74 22.60 5.67 5.04 0.75 35.16 5.20 4.36 0.66 31.42 5.37 4.10 0.65 34.74 5.12 3.83 0.64
k = 5 25.63 5.81 5.19 0.75 19.77 6.23 5.59 0.77 23.22 6.50 5.90 0.79 37.42 5.91 5.12 0.69 34.83 5.85 4.73 0.67 38.70 5.63 4.37 0.66
k = 6 26.19 6.68 6.11 0.78 20.19 7.00 6.41 0.80 23.09 7.47 6.90 0.82 38.41 6.90 6.14 0.72 37.26 6.64 5.56 0.70 39.90 6.63 5.59 0.69
k = 7 26.89 7.51 7.01 0.81 20.12 7.95 7.33 0.83 23.51 8.20 7.67 0.84 39.77 7.69 6.97 0.74 38.42 7.53 6.54 0.72 40.35 7.54 6.46 0.72
k =∞ 28.05 21.67 21.67 1.00 20.85 20.91 20.91 1.00 23.54 19.98 19.98 1.00 41.86 27.56 27.56 1.00 41.98 29.06 29.06 1.00 46.22 29.88 29.88 1.00

NPI-SIMT 17.53 5.05 1.96 0.57 13.58 3.23 1.16 0.55 15.78 3.65 1.34 0.57 25.72 4.30 1.82 0.55 25.42 5.75 2.61 0.57 24.60 5.81 2.46 0.57
+a′ 20.89 3.98 1.65 0.56 16.17 3.02 1.22 0.55 16.12 2.88 1.14 0.56 30.66 4.05 1.83 0.55 30.73 4.25 1.96 0.55 30.47 5.07 2.25 0.56
+a′′ 20.83 5.14 2.04 0.58 16.96 4.07 1.56 0.57 17.18 3.44 0.96 0.56 33.45 5.31 2.35 0.58 32.97 6.80 3.25 0.60 34.05 7.45 3.43 0.61
+a′,a′′ 22.37 4.11 1.83 0.57 18.69 3.32 1.43 0.56 19.33 3.20 1.31 0.57 33.69 4.23 2.00 0.56 33.78 4.69 2.18 0.56 35.97 5.32 2.55 0.58
+a′,a′′,y′ 22.38 4.04 1.80 0.57 18.97 3.24 1.32 0.56 20.47 2.89 1.15 0.55 35.38 3.96 1.84 0.56 34.67 4.72 2.26 0.56 37.92 4.98 2.38 0.57

Oracle-at-test 30.53 3.66 1.72 0.57 23.17 3.17 1.50 0.56 25.63 3.10 1.49 0.57 44.98 3.84 1.84 0.55 46.68 3.98 1.92 0.56 50.31 4.32 2.10 0.56

Table 1: Full results on IWSLT and SETIMES datasets. Boldface indicates better translation quality versus wait-k
are about the same delay (relevant systems indicated using underline within same column). Oracle-at-test is the
system where the correct program is given during testing, serving as an upper bound on translation quality at a given
delay.

is currently no open source code available and their
end-to-end approach is not using an oracle policy.
As our goal is not to beat the state-of-the-art, we
leave this comparison as a future work.

NPI-SIMT. Both the programmer and inter-
preter are modelled using a unidirectional recur-
rent neural network (RNN) with a long short term
memory cell (LSTM). In particular, we follow the
architecture of Luong et al. (2015) with the multi-
layer perceptron attention of Bahdanau et al. (2015).
Both the programmer and interpreter employ 20%
dropout to the network output and 10% dropout
to the embedding vector, and use a single layered
LSTM with 512 hidden units. For the large scale
experiment, we are using the transformer architec-
ture (described in §4.5).

Training. We use Adam optimizer (Kingma and
Ba, 2015) to train this framework. We track the
learning rate of programmer and interpreter sepa-
rately. We start with 0.001 learning rate, and start
halving it whenever perplexity increase on develop-
ment set. We use a fixed perturbation probability of
5%, 15%, and 15% for y′, a′, and a′′ respectively.
Early stopping is executed at the fourth learning
rate decay.

Testing. We use a beam search algorithm with a
beam size of 5 and length normalization algorithm
that divides hypothesis score by its length during
search (Murray and Chiang, 2018).

4.2 Empirical Results

Scheduled Sampling. Our first experiment tests
the effect of scheduled sampling (SS) in learning

coupled policies in our NPI-SIMT method. For
this purpose, we train four versions of our models
where apply SS to both the programmer and the in-
terpreter, only programmer, only interpreter, or nei-
ther. Table 1 shows the results, comparing against
policies trained using the baseline wait-k method
where k ∈ {1, 2, . . . , 7,∞}. The NPI-SIMT sys-
tem that is trained using our proposed oracle (NPI
SIMT) is able to learn from the low delay oracle as
their natural delays (DAL, AL, AP) are generally
as low as the delay of the oracle during training.
However, it is clearly difficult to perfectly predict
the oracle during test-time, and these programmer
prediction errors resulted in mistakes in interpreter
decisions.

Next, we consider the effect of perturbation and
scheduled sampling on the proposed method. Ta-
ble 1 shows that applying valid perturbation (a′′)
is more important than doing normal scheduled
sampling (a′). This perturbation is directly corre-
lated with the training of the interpreter, as such the
noisy program make the interpreter resilient to the
exposure bias. Applying both scheduled sampling
further increased our proposed method accuracy.
The schedule sampling on programmer (+a′, a′′)
during training ameliorate this; as it increased up
to 10 points of BLEU score in case of Romanian
and Hungarian, 8 points in case of Bulgarian and,
5 points for German, Czech and Arabic. Addition-
ally applying scheduled sampling on the interpreter
(+y′) further improves translation accuracy while
slightly decreasing the delay, both effects being
consistent across all language pairs.

2714

0.0 0.2 0.4 0.6 0.8 1.0
DAL - Delay

0.0

0.2

0.4

0.6

0.8

1.0

BL
EU

 -
Qu

al
ity

20

30
DE-EN CS-EN AR-EN

5 10

30

40

50
HR-EN

5 10

BG-EN

5 10

RO-EN

Coupled-SS
No-SS

Wait-
SS-Agent

Wait-k
Oracle

Wait-k+finetune

Figure 2: BLEU score versus delay using added delay and finetuning. Our proposed method coupled scheduled-
sampling (Coupled-SS) method performs better than the wait-k baseline in all settings. The leftmost4 is the result
of our proposed method without added delay, while4s to the right include delay (see description in text). The 3

and � are an ablation study considering not doing SS, and doing SS only on the agent, respectively. The × report
finetuning various pretrained wait-k models with oracle+SS.

Oracle Policy vs Wait-k Policy. Figure 2 com-
pares the policies trained by our algorithmic oracle
vs those trained using the wait-k policy starting
from k = 1. In each of these six plots, the pol-
icy trained using the oracle actions corresponds to
the leftmost triangle point on the figure. Observe
that the policy trained using the oracle actions com-
pares favorably with those trained using the wait-k
method in terms of translation quality (higher is
better) and translation delay (lower is better).

Next we investigate the effect of increasing the
delay of the oracle policy in a controlled manner
onto the translation quality of the trained systems.
As such, we increase the delay of the oracle pol-
icy by moving the last READ action in the oracle
program to the beginning of the program, and thus
increasing the delay of the oracle artificially. For
additional delay, we repeat this process. We expect
that the delayed oracle programs lead to trained
policies with better translation quality at increased
delay. The triangles in Figure 2 correspond to poli-

cies trained using the versions of the oracle pro-
gram, where we added delays {0−5}. Observe that
policies trained with the delayed versions of the or-
acle program consistently outperform the wait-k
policies, across all languages.

The quality of the oracle is shown as the green
triangle in Figure 2. This system is provided the or-
acle program at test time, unlike the other systems
that allow errors to propagate from the interpreter
into subsequent decisions of the programmer. Note
both the low delay of the oracle, and also the fact
that the BLEU score outperforms offline translation
(wait-∞). This seemingly surprising finding can be
explained by the oracle providing key information
to the interpreter in the form of word and phrase
segmentation of the inputs.

Achieving oracle level quality with a learned
programmer is particularly difficult, which can be
attributed to exposure bias. However, our coupled
SS method manages to bridge much of the gap be-
tween the learned program and the oracle program.

2715

_Aber _wenn _wir _die _Zusammensetzung _des _Erd boden s _nicht _ändern , _werden _wir _das _nie _tun . </s>
_ B ut _if _we _look _at _the _composition _of _ E ar th ’ s _ground , _we _never _will .

_Aber _wenn _wir _die _Zusammensetzung _des _Erd boden s _nicht _ändern , _werden _wir _das _nie _tun . </s>
_ B ut _if _we _don ’ t _change _the _composition _of _the _soil , _we _will _never _do _that .
_Aber _wenn _wir _die _Zusammensetzung _des _Erd boden s _nicht _ändern , _werden _wir _das _nie _tun . </s>
_But _if _we _don ’ t _change _the _composition _of _the _soil , _we _will _never _do _this .

Table 2: The comparison of our wait-k, our coupled-SS (Co-SS) and the oracle trajectory. A column shows a
sequence of consecutive READ and WRITE. Here our proposed method is able to imitate the oracle well, by patiently
waiting for sufficient input to produce a good translation. Red texts indicate place of translation error.

Finetuning Wait-k. Next we consider warm-
starting training using the wait-k model, and fine-
tuning with the oracle program and SS training
method. This method of training is cheaper when a
wait-k system is available, as training converges in
few iterations. In this setting, we allow retraining
of the interpreter, as fixing the interpreter yielded
poor BLEU scores. The × points in Figure 2 show
the results of this experiment, where each point
was warm-started with a different wait-k system.
As it can be seen, all of these runs achieve similar
results, but with inferior delay and quality to our
proposed method (leftmost4). One explanation to
this result is that the interpreter already converged
to the wait-k policy and retraining it results in an
inferior model compared to training it jointly from
scratch.4

4.3 Qualitative Analysis

Gu et al. (2017) address the difficulty of translating
sentences in subject-object-verb order when trans-
lating from German to English. We show a typical
example in Table 2 where the wait-k systems are
forced to make difficult decisions with insufficient
evidence, in this case of predicting negation of a
verb which appears latter in the input. We com-
pare systems with AL ≈ 2 and DAL ≈ 4 which
is achieved by the wait-2, our coupled-SS system,
and the oracle system. Consider first the wait-2 sys-
tem. From the state shown at bottom right corner
of the smaller red box, the system next generates
a poor choice of verb (“look”), which was done
without access to the verb in the German input.
Instead the rightmost context word was “Zusam-
mensetzung” (“composition”), which gives little
information about the verb. One way around this
problem is to use a specialized classifier which
predicts the final verb (Grissom II et al., 2014).

4Note that we also try to finetune the wait-k system without
scheduled sampling but it yields far worse performance than
the one with scheduled sampling. This finding is similar with
the main experiment.

However, this is often onerous or impossible. In
this example, the model must also predict the nega-
tion “nicht” which appears immediately before the
final verb. In a real interpretation scenario, the only
way to ensure we output a correct translation is to
wait for the matrix verb and negation token.

In this example the oracle trajectory breaks down
the input sentence into coherent chunks, and this
leads to excellent translation of each segment, and
with low delay. This is because the word alignment
oracle includes crossing alignment inside a phrase,
thus producing sequence of READ and WRITE that
do not break phrase translations. We posit that
this oracle provides the minimal context needed for
SIMT to translate on the fly, with sufficient context
to generate each output token.

Here our proposed system closely imitates the
oracle trajectory. Our proposed method is more
conservative in waiting for the input, waiting until
the final verb to make precise prediction. This
can be explained by the uncertainty over breaking
the phrases by the programmer, and thus is incurs
additional delay for the sake of better translation
quality. Such behaviour that is observed in the
output of human interpreters, who will often wait
when they are unsure what the main speaker is
talking about.

4.4 Oracle Behaviour towards Alignment

Section 4.3 has partly shown our oracle behavior in
translating from a final-verb language into English.
Here we discuss the oracle’s action when translat-
ing into a final verb language (English-Dutch). In
English, the past participle is usually found right
after the auxiliary verb. In this case, our oracle
actions are conservative when waiting for inputs
on the target side.

The example is shown in Figure 3 in which
“have worked” does not produce a crossing align-
ment. First, the generated oracle will READ “have”
and WRITE “heb”. Then it will examine the next
word, “jaren”, and determine whether it needs to

2716

I have worked in that company for years

Ik heb jaren in dat bedrijf gewerkt

Figure 3: Translation example from English to Dutch.
In this case “have worked” produce a non crossing align-
ment with “heb ... gewerkt” in Dutch.

READ more up until the word it is aligned. When
it decided to WRITE “gewerkt”; the word “worked”
would have been scanned in the past; so it should
WRITE without an additional READ.

Next, it is also inevitable that our produced align-
ments are noisy and do not align all words correctly.
It is currently not clear how much this will hurt the
performance of the systems in terms of quality and
delay due to alignment errors. In the worst case,
our oracle will misguide the interpreter to guess
target words without appropriate context (lower-
ing quality, lowering delay) or wait for too many
words (increasing quality, increasing delay). Both
scenarios resulting from this noisy alignment are
not catastrophic as it still depends on the inter-
preter’s ability to guess translation outputs without
appropriate input context.

4.5 Transformer and Large Scale
Experiments

To show that the proposed method also extends to
the transformer and larger parallel data, we conduct
two experiments. The first experiment is changing
the LSTM architecture with the transformer archi-
tecture similar to Ma et al. (2019). The second
experiment uses 4.5 millions DE to EN parallel
sentences from WMT 2015.

The interpreter is a standard 6 layers encoder-
decoder NMT transformer similar to Vaswani et al.
(2017). The programmer consists of single 6 layers
encoder transformer with a binary classifier. For
both networks, we allow attention to attend only
to the previous timesteps. Then we use the pro-
gram to mask out unseen inputs at each timestep
in the interpreter. Unless otherwise specified, we
use the default settings of training transformer as in
Vaswani et al. (2017). We employ 30% dropout to
all transformers and 10% to the embeddings, 16k
vocabulary size, an average batch size of 4k, 8k
steps learning rate warmup, 50 tokens maximum
per sentence during training, for a total of 200k
steps. We use a single pass of parallel scheduled
sampling (Duckworth et al., 2019) for the trans-

IWSLT WMT
BLEU AL AP BLEU AL AP

wait-k
k = 1 11.12 2.24 0.60 13.65 1.70 0.56
k = 2 17.08 2.61 0.62 16.77 2.27 0.59
k = 3 19.52 3.33 0.66 18.30 2.95 0.62
k = 4 21.14 4.10 0.70 19.09 3.66 0.64
k = 5 22.68 4.93 0.73 19.80 4.42 0.67
k = 6 24.16 5.68 0.76 20.70 5.28 0.70
k = 7 26.60 6.64 0.79 21.08 6.16 0.72
k = ∞ 29.53 22.46 1.00 22.51 29.49 1.00

NPI-SIMT 22.06 1.73 0.56 17.57 3.25 0.59
+a′ 21.40 1.69 0.56 18.18 3.17 0.59
+a′′ 23.28 1.85 0.57 18.70 3.33 0.60
+a′,a′′ 23.82 1.83 0.57 18.78 3.54 0.60
+a′,a′′,y′ 24.54 1.78 0.57 19.07 3.27 0.59

Oracle-at-test 30.68 1.79 0.57 27.09 2.75 0.58

Table 3: Results using transformer on IWSLT and WMT
corpora.

former to generate a′ and y′ and set the y′,a′,a′′

perturbation rate to be 10%, 15%, and 25%. Train-
ing is completed within 20 hours on a single V100
GPU.5

Table 3 presents the Transformer results on
IWSLT and WMT. First we see that our transformer
results are competitive or better than the LSTM on
IWSLT dataset (compare with Table 1). These
results are similar to the Ma et al. (2019) when
comparing LSTM and transformer based architec-
tures in the SIMT settings. Second, we see that our
coupled scheduled sampling approach is also able
to increase BLEU by up to 1.5 points compared to
vanilla NPI-SIMT approach while also keeping the
delay low (3.27 AL). The higher AL of the SIMT
model in WMT compared to IWSLT is likely due to
the higher AL of the oracle (2.75 vs. 1.79), which
we attribute to the nature of the dataset. Arguably,
this crawled corpus is less suitable for SIMT in gen-
eral, because it contains considerably longer paral-
lel sentences; moreover, the text is less reflective of
a real simultaneous interpretation setting as it was
built by only matching offline and post-edited texts.
We are able to see similar improvements using cou-
pled scheduled sampling over vanilla NPI-SIMT
approach, showing the scalability of our approach.

5 Related Work

Satija and Pineau (2016); Gu et al. (2017)
and Alinejad et al. (2018) formulate simultane-

5Because of the limitation of our computational resources,
we are unable to use multiple GPUs for larger batch size.
Using smaller batch size is known to reduce the overall per-
formance of the transformer.

2717

ous NMT as sequential decision making prob-
lem where an agent interacts with the environ-
ment (i.e. the underlying NMT model) through
READ/WRITE actions. They pre-train the NMT
system, while the agent’s policy is trained using
deep-RL.

Arivazhagan et al. (2020) highlights the poor
performance of finetuned offline translation model
when translating prefixes of input, which is the
case of SIMT. Their approach uses retranslation
strategy where every READ is performed, a new
translation is generated from scratch, allowing re-
vising translation on the fly and mitigating error
propagation on the decoder that was attributed to
the insufficient evidence when generating past out-
put words. Their approach uses a stability metric
which takes number of suffixes revisions made to
produce latest translation. This approach involves
wait-k inference, which limits number of words
that can be emitted by the interpreter during one
writing and thus limiting number of suffix revi-
sions at the next writing. This wait-k inference is a
heuristic that can be replaced by learning from the
oracle.

Ma et al. (2019); Dalvi et al. (2018) introduced
the fixed wait-k policy, which allows the integrated
training of the NMT model wrt the fixed policy, as
opposed to the adaptive policy of Gu et al. (2017);
Arivazhagan et al. (2019) jointly trains an adaptive
policy and re-trains the underlying NMT system.
Arivazhagan et al. (2019); Zheng et al. (2019b)
produces oracle READ/WRITE actions using a pre-
trained NMT model, which is then used to train
an adaptive agent based on supervised learning, i.e.
behavioural cloning in imitation learning. Com-
pared to our oracle which is produced merely from
word alignment, their method requires a full decod-
ing of training corpus, which is computationally
expensive. These works are different from ours
in that: (i) they do not use word alignment to pro-
duce the oracle actions, and (ii) they do not use of
scheduled sampling.

6 Conclusion

This paper proposes a simple and effective way to
train a simultaneous translation system to produce
low delay translations. Our central contribution is
to determine a sufficient, if not minimum, amount
of inputs to translate each target token. This is
achieved using word-alignment to create an oracle,
which is then used as part of a training algorithm

based on imitation learning to learn coupled poli-
cies, for a “programmer” which decides when to
wait for more input producing translation tokens,
and an “interpreter” which generates the transla-
tion. We show the importance of scheduled sam-
pling during learning, which is crucial to combat
exposure bias. Overall we show improvements
in BLEU score over naively trained systems with
modest translation delays.

Future work is needed to better understand the
effect of various alignment models and symmetriza-
tion methods on the generated oracle. Beyond this,
other opportunities include applying the model to
the real speech input and applying more sophisti-
cated imitation learning techniques that involves
the generated trajectories of both “interpreter” and
“programmer”.

Acknowledgment

We thank anonymous reviewers for their valuable
comments that helped to make this paper consid-
erably better. This work is supported by the Aus-
tralian Research Council (ARC DP160102686) and
an Amazon Research Award.

References
Ashkan Alinejad, Maryam Siahbani, and Anoop Sarkar.

2018. Prediction improves simultaneous neural ma-
chine translation. In Proceedings of the Conference
on Empirical Methods in Natural Language Process-
ing.

Naveen Arivazhagan, Colin Cherry, Wolfgang
Macherey, Chung-Cheng Chiu, Semih Yavuz, Ruom-
ing Pang, Wei Li, and Colin Raffel. 2019. Monotonic
infinite lookback attention for simultaneous machine
translation. In Proceedings of the 57th Annual
Meeting of the Association for Computational
Linguistics.

Naveen Arivazhagan, Colin Cherry, Wolfgang
Macherey, and George Foster. 2020. Re-translation
versus streaming for simultaneous translation. arXiv
preprint arXiv:2004.03643.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd International
Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam
Shazeer. 2015. Scheduled sampling for sequence pre-
diction with recurrent neural networks. In C. Cortes,

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473

2718

N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 28, pages 1171–1179. Curran Asso-
ciates, Inc.

Peter F. Brown, Stephen Della Pietra, Vincent J. Della
Pietra, and Robert L. Mercer. 1993. The mathematics
of statistical machine translation: Parameter estima-
tion. Computational Linguistics, 19(2):263–311.

Mauro Cettolo, Christian Girardi, and Marcello Fed-
erico. 2012. Wit3: Web inventory of transcribed and
translated talks. In Proceedings of the 16th Con-
ference of the European Association for Machine
Translation (EAMT), pages 261–268, Trento, Italy.

Fahim Dalvi, Nadir Durrani, Hassan Sajjad, and Stephan
Vogel. 2018. Incremental decoding and training
methods for simultaneous translation in neural ma-
chine translation. In Meeting of the North American
Chapter of the Association for Computational Lin-
guistics (NAACL), pages 493–499.

Daniel Duckworth, Arvind Neelakantan, Ben
Goodrich, Lukasz Kaiser, and Samy Bengio.
2019. Parallel scheduled sampling. arXiv preprint
arXiv:1906.04331.

Chris Dyer, Victor Chahuneau, and Noah A. Smith.
2013. A simple, fast, and effective reparameteriza-
tion of IBM model 2. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 644–648.

Alvin Grissom II, He He, Jordan Boyd-Graber, John
Morgan, and Hal Daumé III. 2014. Don’t until the
final verb wait: Reinforcement learning for simul-
taneous machine translation. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1342–1352.

Jiatao Gu, Graham Neubig, Kyunghyun Cho, and Vic-
tor O.K. Li. 2017. Learning to translate in real-time
with neural machine translation. In Proceedings of
the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume
1, Long Papers, pages 1053–1062, Valencia, Spain.
Association for Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Philipp Koehn, Franz J. Och, and Daniel Marcu. 2003.
Statistical phrase-based translation. In Proceedings
of the 2003 Human Language Technology Conference
of the North American Chapter of the Association for
Computational Linguistics, pages 127–133.

Taku Kudo and John Richardson. 2018. Sentencepiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing.
arXiv preprint arXiv:1808.06226.

Thang Luong, Hieu Pham, and Christopher D. Manning.
2015. Effective approaches to attention-based neural
machine translation. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1412–1421, Lisbon, Portugal. As-
sociation for Computational Linguistics.

Mingbo Ma, Liang Huang, Hao Xiong, Renjie Zheng,
Kaibo Liu, Baigong Zheng, Chuanqiang Zhang,
Zhongjun He, Hairong Liu, Xing Li, Hua Wu, and
Haifeng Wang. 2019. STACL: Simultaneous trans-
lation with implicit anticipation and controllable la-
tency using prefix-to-prefix framework. In Proceed-
ings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 3025–3036, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Kenton Murray and David Chiang. 2018. Correcting
length bias in neural machine translation. In Proceed-
ings of the Third Conference on Machine Translation:
Research Papers, pages 212–223, Brussels, Belgium.
Association for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Stephane Ross, Geoffrey Gordon, and Drew Bagnell.
2011. A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In Pro-
ceedings of the Fourteenth International Conference
on Artificial Intelligence and Statistics, pages 627–
635.

Harsh Satija and Joelle Pineau. 2016. Simultaneous ma-
chine translation using deep reinforcement learning.
In Proceedings of the Abstraction in Reinforcement
Learning Workshop.

Faraz Torabi, Garrett Warnell, and Peter Stone. 2019.
Recent advances in imitation learning from obser-
vation. In Proceedings of the Twenty-Eighth Inter-
national Joint Conference on Artificial Intelligence,
IJCAI-19, pages 6325–6331. International Joint Con-
ferences on Artificial Intelligence Organization.

Francis M Tyers and Murat Serdar Alperen. 2010.
South-east european times: A parallel corpus of
balkan languages. In Proceedings of the LREC Work-
shop on Exploitation of Multilingual Resources and
Tools for Central and (South-) Eastern European Lan-
guages, pages 49–53.

https://www.aclweb.org/anthology/E17-1099
https://www.aclweb.org/anthology/E17-1099
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://www.aclweb.org/anthology/N03-1017
https://doi.org/10.18653/v1/D15-1166
https://doi.org/10.18653/v1/D15-1166
https://doi.org/10.18653/v1/P19-1289
https://doi.org/10.18653/v1/P19-1289
https://doi.org/10.18653/v1/P19-1289
https://doi.org/10.18653/v1/W18-6322
https://doi.org/10.18653/v1/W18-6322
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319

2719

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran Asso-
ciates, Inc.

Baigong Zheng, Renjie Zheng, Mingbo Ma, and Liang
Huang. 2019a. Simpler and faster learning of adap-
tive policies for simultaneous translation. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing, pages 1349–1354.

Baigong Zheng, Renjie Zheng, Mingbo Ma, and Liang
Huang. 2019b. Simultaneous translation with flexi-
ble policy via restricted imitation learning. In Pro-
ceedings of the 57th Conference of the Association
for Computational Linguistics, ACL 2019, Florence,
Italy, July 28- August 2, 2019, Volume 1: Long Pa-
pers, pages 5816–5822.

http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

