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Abstract
Abstractive text summarization aims at com-
pressing the information of a long source doc-
ument into a rephrased, condensed summary.
Despite advances in modeling techniques, ab-
stractive summarization models still suffer
from several key challenges: (i) layout bias:
they overfit to the style of training corpora;
(ii) limited abstractiveness: they are optimized
to copying n-grams from the source rather
than generating novel abstractive summaries;
(iii) lack of transparency: they are not inter-
pretable. In this work, we propose a frame-
work based on document-level structure induc-
tion for summarization to address these chal-
lenges. To this end, we propose incorporating
latent and explicit dependencies across sen-
tences in the source document into end-to-end
single-document summarization models. Our
framework complements standard encoder-
decoder summarization models by augment-
ing them with rich structure-aware document
representations based on implicitly learned
(latent) structures and externally-derived lin-
guistic (explicit) structures. We show that
our summarization framework, trained on the
CNN/DM dataset, improves the coverage of
content in the source documents, generates
more abstractive summaries by generating
more novel n-grams, and incorporates inter-
pretable sentence-level structures, while per-
forming on par with standard baselines.1

1 Introduction

Text summarization aims at identifying important
information in long source documents and express-
ing it in human readable summaries. Two promi-
nent methods of generating summaries are extrac-
tive (Dorr et al., 2003; Nallapati et al., 2017), where
important sentences in the source article are se-
lected to form a summary, and abstractive (Rush

1Code and data available at: https://github.com/
vidhishanair/structured_summarizer

et al., 2015; See et al., 2017), where the model
restructures and rephrases essential content into a
paraphrased summary.

State of the art approaches to abstractive summa-
rization employ neural encoder-decoder methods
that encode the source document as a sequence
of tokens producing latent document representa-
tions and decode the summary conditioned on the
representations. Recent studies suggest that these
models suffer from several key challenges. First,
since standard training datasets are derived from
news articles, model outputs are strongly affected
by the layout bias of the articles, with models rely-
ing on the leading sentences of source documents
(Kryscinski et al., 2019; Kedzie et al., 2018). Sec-
ond, although they aim to generate paraphrased
summaries, abstractive summarization systems of-
ten copy long sequences from the source, causing
their outputs to resemble extractive summaries (Lin
and Ng, 2019; Gehrmann et al., 2018). Finally,
current methods do not lend themselves easily to
interpretation via intermediate structures (Lin and
Ng, 2019), which could be useful for identifying
major bottlenecks in summarization models.

To address these challenges, we introduce Struct-
Sum: a framework that incorporates structured doc-
ument representations into summarization mod-
els. StructSum complements a standard encoder-
decoder architecture with two novel components:
(1) a latent-structure attention module that adapts
structured representations (Kim et al., 2017; Liu
and Lapata, 2017) for the summarization task, and
(2) an explicit-structure attention module that incor-
porates an external linguistic structure (e.g., coref-
erence links). The two complementary components
are incorporated and learned jointly with the en-
coder and decoder, as shown in Figure 1.

Encoders with induced latent structures have
been shown to benefit several tasks including doc-
ument classification, natural language inference

https://github.com/vidhishanair/structured_summarizer
https://github.com/vidhishanair/structured_summarizer
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(Liu and Lapata, 2017; Cheng et al., 2016), and
machine translation (Kim et al., 2017). Our la-
tent structure attention module builds upon Liu
and Lapata (2017) to model the dependencies be-
tween sentences in a document. It uses a variant
of Kirchhoff’s matrix-tree theorem (Tutte, 1984)
to model such dependencies as non-projective tree
structures(§2.2). The explicit attention module is
linguistically-motivated and aims to incorporate
inter-sentence links from externally annotated doc-
ument structures. We incorporate a coreference
based dependency graph across sentences, which
is then combined with the output of the latent struc-
ture attention module to produce a hybrid structure-
aware sentence representation (§2.3).

We test our framework using the CNN/DM
dataset (Hermann et al., 2015) and show in §4.1 that
it outperforms the base pointer-generator model
(See et al., 2017) by up to 1.1 ROUGE-L. We find
that the latent and explicit structures are comple-
mentary, both contributing to the final performance
improvement. Our modules are also orthogonal to
the choice of an underlying encoder-decoder archi-
tecture, rendering them flexible to be incorporated
into other advanced models.

Quantitative and qualitative analyses of sum-
maries generated by StructSum and baselines (§4),
reveal that structure-aware summarization miti-
gates the news corpora layout bias by improving the
coverage of source document sentences. Addition-
ally, StructSum reduces the bias of copying large
sequences from the source, inherently making the
summaries more abstractive by generating ∼15%
more novel n-grams than a competitive baseline.
We also show examples of the learned interpretable
sentence dependency structures, motivating further
research for structure-aware modeling.

2 StructSum Framework

Consider a source document x consisting of n sen-
tences {s} where each sentence si is composed
of a sequence of words. Document summariza-
tion aims to map the source document to a target
summary y of m words {y}. A typical neural ab-
stractive summarization system is an attentional
sequence-to-sequence model that encodes the in-
put sequence x as a continuous sequence of to-
kens {w} using a standard encoder (Hochreiter and
Schmidhuber, 1997; Vaswani et al., 2017). The
encoder produces a set of hidden representations
{h}. A decoder maps the previously generated

token yt−1 to a hidden state and computes a soft
attention probability distribution p(at | x,y1:t−1)
over encoder hidden states. A distribution p over
the vocabulary is computed at every time step t
and the network is trained using the negative log
likelihood loss: losst = −log p(yt).

StructSum modifies the above architecture as fol-
lows. We aggregate the token representations from
the encoder to form sentence representations as in
hierarchical encoders (Yang et al., 2016). We then
use implicit- and explicit-structure attention mod-
ules to augment the sentence representations with
sentence dependency information, leveraging both
a learned latent structure and an external structure
from other NLP modules. The attended vectors are
then passed to the decoder, which produces the out-
put abstractive summary. In the rest of this section,
we describe our framework architecture, shown in
Figure 1, in detail.

2.1 Sentence Representations
We consider an encoder which takes a sequence
of words in a sentence si = {w} as input and
produces contextual hidden representation for each
word hwik

, where wik is the kth word of the ith

sentence, k = 1 : q and q is the number of words
in the sentence si. The word hidden representations
are max-pooled at the sentence level and passed
through a sentence-encoder, which produces new
hidden sentence representations for each sentence
hsi . The sentence hidden representations are then
passed as inputs to the latent and explicit structure
attention modules.

2.2 Latent Structure (LS) Attention
We model the latent structure of a source document
as a non-projective dependency tree of sentences
and force a pairwise attention module to automati-
cally induce this tree. We denote the marginal prob-
ability of a dependency edge as aij = p(zij = 1)
where zij is the latent variable representing the
edge from sentence i to sentence j. We parame-
terize the unnormalized pairwise scores between
sentences with a neural network and use the Kir-
choff’s matrix tree theorem (Tutte, 1984) to com-
pute the marginal probability of a dependency edge
between any two sentences.

Specifically, we decompose the representation
of a sentence si into a semantic vector gsi and
structure vector dsi as hsi = [gsi ;dsi ]. Using the
structure vectors dsi ,dsj , we compute a score fij
between sentence pairs (i, j) (where sentence i is
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Figure 1: StructSum incorporates Latent Structure (LS) §2.2 and Explicit Structure (ES) §2.3 Attention to produce
structure-aware representations. Here, StructSum augments the Pointer-Generator model, but the methodology
that we proposed is general, and it can be applied to other encoder-decoder summarization systems

the parent node of sentence j) and a score ri (where
the sentence si is the root node):

fij = Fp(dsi)
TWaFc(dsj ) and ri = Fr(dsi)

where Fp, Fc and Fr are linear-projection func-
tions that build representations for the parent, child
and root nodes respectively, and Wa is the weight
for bilinear transformation. Here, fij is the edge
weight between nodes (i, j) in a weighted adja-
cency graph F and is computed for all pairs of
sentences. Using fij and ri, we compute normal-
ized attention scores aij and ari using a variant
of Kirchhoff’s matrix-tree theorem where aij is
the marginal probability of a dependency edge be-
tween sentences (i, j) and ari is the probability of
sentence i being the root.

Using these probabilistic attention weights and
the semantic vectors {gs}, we compute the at-
tended sentence representations as:

psi =

n∑
j=1

ajigsj + arigroot

csi =
n∑

j=1

aijgsi

lsi = tanh(Wr[gsi ,psi , csi ])

where psi is the context vector gathered from

possible parents of sentence i, csi is the context
vector gathered from possible children, and groot
is a special embedding for the root node. Here, the
updated sentence representation lsi incorporates
the implicit structural information.

2.3 Explicit Structure (ES) Attention

Following Durrett et al. (2016), who showed that
modeling coreference knowledge through anaphora
constraints leads to improved clarity or grammati-
cality, we incorporate cross-sentence coreference
links as the source of explicit structure. First, we
use an off-the-shelf coreference parser2 to identify
coreferring mentions. We then build a coreference
based sentence graph by adding a link between sen-
tences (si, sj), if they have any coreferring men-
tions. This graph is converted into a weighted graph
by incorporating a weight on the edge between
two sentences that is proportional to the number
of unique coreferring mentions between them. We
normalize these edge weights for every sentence,
effectively building a weighted adjacency matrix
K where kij is given by:

2https://github.com/huggingface/
neuralcoref/

https://github.com/huggingface/neuralcoref/
https://github.com/huggingface/neuralcoref/
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kij = P (zij = 1) (1)

=
count(mi

⋂
mj) + ε∑n

v=1 count(mi
⋂
mv)

(2)

wheremi denotes the set of unique mentions in sen-
tence si, (mi

⋂
mj) denotes the set of co-referring

mentions between the two sentences, and z is a
latent variable representing a link in the corefer-
ence sentence graph. ε = 5e−4 is a smoothing
hyperparameter.

Given contextual sentence representations {hs}
and our explicit coreference-based weighted ad-
jacency matrix K, we learn an explicit structure-
aware representation as follows:

usi = tanh(Fu(hsi))

tsi =

p∑
j=1

kijusj

esi = tanh(Fe(tsi))

where Fu and Fe are linear projections and esi
is an updated sentence representation which
incorporates explicit structural information.

Finally, to combine the two structural repre-
sentations, we concatenate the latent and explicit
sentence vectors as: hsi = [lsi ; esi ] to form en-
coder sentence representations of the source doc-
ument. To provide every token representation
with the context of the entire document, the to-
ken representations are concatenated with their
corresponding structure-aware sentence represen-
tation: hwij = [hwij ;hsi ] where si is the sen-
tence to which the word wij belongs. The resulting
structure-aware token representations can be used
to directly replace previous token representations
as input to the decoder.

3 Experiments

Dataset: We evaluate our approach on the
CNN/Daily Mail corpus3 (Hermann et al., 2015;
Nallapati et al., 2016) and use the same prepro-
cessing steps as shown in See et al. (2017). The
CNN/DM has 287226/13368/11490 train/val/test
samples respectively. The reference summaries
have an average of 66 tokens (σ = 26) and 4.9
sentences. Differing from See et al. (2017), we
truncate source documents to 700 tokens instead of

3https://cs.nyu.edu/˜kcho/DMQA/

400 in training and validation sets to model longer
documents with more sentences. All our experi-
ments were trained on Nvidia GTX Titan X GPUs.

Base Model: Although StructSum framework
can be incorporated in any encoder-decoder frame-
work with structure-aware representations, for our
experiments we chose the pointer-generator model
(See et al., 2017) as the base model, due to its
simplicity and ubiquitous usage as a neural abstrac-
tive summarization model across different domains
(Liu et al., 2019; Krishna et al., 2020). The word
and sentence encoders are BiLSTM and the de-
coder is a BiLSTM with a pointer based copy mech-
anism. We re-implement the base pointer-generator
model and augment it with the StructSum modules
described in §2 and hence our model can be directly
compared to it.

Baselines: In addition to the base model, we
compare StructSum with the following baselines:
Tan et al. (2017): This is a graph-based attention
model that is closest in spirit to the method we
present in this work. A graph attention module is
used to learn attention between sentences, but it
cannot be easily used to induce interpretable doc-
ument structures, since its attention scores are not
constrained to learn structure. On top of latent
and interpretable structured attention between sen-
tences, StructSum introduces an explicit structure
component to inject external document structure,
which distinguishes it from Tan et al. (2017).
Gehrmann et al. (2018): This work introduces a
separate content selector which tags words and
phrases to be copied. The DiffMask variant is an
end-to-end variant like ours and hence is included
in our baselines. We compare StructSum with the
DiffMask experiment.4

Hyperparameters: Our encoder uses 256 hid-
den states for both directions in the one-layer BiL-
STM, and 512 for the single-layer decoder. We use
the Adagrad optimizer (Duchi et al., 2011) with
a learning rate of 0.15 and an initial accumula-
tor value of 0.1. We do not use dropout and use

4The best results from Gehrmann et al. (2018) outperform
DiffMask experiment, but they use inference-time hard mask-
ing which can be applied on ours. Our baselines also exclude
Reinforcement Learning (RL) based systems as they are not
directly comparable, but our approach can be introduced in an
encoder-decoder based RL system. Since we do not incorpo-
rate any pretraining, we do not compare with recent contextual
representation based models (Liu and Lapata, 2019).

5https://github.com/atulkum/pointer_
summarizer

https://cs.nyu.edu/~kcho/DMQA/
https://github.com/atulkum/pointer_summarizer
https://github.com/atulkum/pointer_summarizer
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Model ROUGE 1 ROUGE 2 ROUGE L
Pointer-Generator (See et al., 2017) 36.44 15.66 33.42
Pointer-Generator + Coverage (See et al., 2017) 39.53 17.28 36.38
Graph Attention (Tan et al., 2017) 38.10 13.90 34.00
Pointer-Generator + DiffMask (Gehrmann et al., 2018) 38.45 16.88 35.81

Pointer-Generator (Re-Implementation) 35.55 15.29 32.05
Pointer-Generator + Coverage (Re-Implementation) 39.07 16.97 35.87
Latent-Structure (LS) Attention 39.52 16.94 36.71
Explicit-Structure (ES) Attention 39.63 16.98 36.72
LS + ES Attention 39.62 17.00 36.95

Table 1: Evaluation of summarization models on the CNN/DM dataset. Published abstractive summarization base-
line scores are on top. The bottom section shows re-implementations of See et al. (2017)5 and StructSum results
that incorporate latent and explicit document structure into the base models. StructSum’s utility is on par with the
base models, while introducing additional benefits of better abstractiveness and intrepretability shown in §4.

gradient-clipping with a maximum norm of 2. We
selected the best model using early stopping based
on the ROUGE score on the validation dataset as
our criteria. We also used the coverage penalty dur-
ing inference as shown in Gehrmann et al. (2018).
For decoding, we use beam-search with a beam
width of 3. We did not observe significant improve-
ments with higher beam widths.

4 Evaluation

A standard ROUGE metric does not shed mean-
ingful light into the quality of summaries across
important dimensions. As a recall-based metric it
is not suitable for assessing the abstractiveness of
summarization; it is also agnostic to layout biases
and does not facilitate intrepretability of model de-
cisions. We thus adopt automatic metrics tailored
to evaluating separately each of these aspects. We
compare StructSum to our base model, the pointer-
generator network with coverage (See et al., 2017)
and the reference.

4.1 Automatic Metrics

We first conduct a standard comparison of gener-
ated summaries with reference summaries using
ROUGE-1,2 and L (Lin, 2004) F16 metric. Table 1
shows the results. We first observe that introducing
the latent structures and explicit structures indepen-
dently improves our performance on ROUGE-L.
It suggests that modeling dependencies between
sentences helps the model compose better long
sequences compared to baselines. We see small
improvements in ROUGE-1 and ROUGE-2, hint-

6https://pypi.org/project/pyrouge/

ing that we retrieve similar content words as the
baseline but compose them into better contiguous
sequences. As both ES and LS independently get
similar performance, the results show that LS atten-
tion induces good latent dependencies that make
up for pure external coreference knowledge.

Finally, our combined model which uses both La-
tent and Explicit structure performs the best with an
improvement of 1.08 points in ROUGE-L and 0.6
points in ROUGE-1 over base pointer-generator
model (statistically significant for 11490 samples
at p=0.05 using Wilson Confidence Test). It shows
that the latent and explicit information are com-
plementary and a model can jointly leverage them
to produce better summaries. Additionally, we
find that structural inductive bias helps a model to
converge faster. The combined LS+ES Attention
model converges in 126K iterations in compari-
son to ∼230K iterations required for the pointer-
generator network.

While ROUGE is a popular metric used for eval-
uating summarization models, it is limited to only
evaluating n-gram overlap while ignoring seman-
tic correctness. Hence, we compared our method
with the baseline Pointer-Generator model using
the BERTScore metric (Zhang et al., 2020). We
observe that our model improves BERTScore by
9 points (12.3 for Pointer-Generator v/s 21.7 for
StructSum) showing that our model is able to gen-
erate semantically correct content.

4.2 Abstractiveness

Despite being an abstractive model, the pointer-
generator model tends to copy very long sequences
of words including whole sentences from the

https://pypi.org/project/pyrouge/
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Figure 2: Comparison of % Novel n-grams between
StructSum, Pointer-Generator+Coverage and the Ref-
erence. Here, “sent” indicates full novel sentences.

source document (also observed by Gehrmann et al.
(2018)). We use two metrics to evaluate the abstrac-
tiveness of the model:

Copy Length: Table 2 shows a comparison
of the average length (Copy Len) of contigu-
ous copied sequences from the source document
(greater than length 3). We observe that the pointer-
generator baseline on average copies 16.61 continu-
ous tokens from the source which shows the extrac-
tive nature of the model. This indicates that pointer
networks, aimed at combining advantages from
abstractive and extractive methods by allowing to
copy content from the input document, tend to skew
towards copying, particularly in this dataset. A con-
sequence of this is that the model fails to interrupt
copying at desirable sequence length. In contrast,
modeling document structure through StructSum
reduces the length of copied sequences to 9.13
words on average reducing the bias of copying
sentences entirely. This average is closer to the
reference (5.07 words) in comparison, without sac-
rificing task performance. StructSum learns to stop
when needed, while still generating coherent sum-
maries.

Novel N-Grams: The proportion of novel n-
grams generated has been used in the literature
to measure the degree of abstractiveness of summa-
rization models (See et al., 2017). Figure 2 com-
pares the percentage of novel n-grams in StructSum
as compared to the baseline model. Our model pro-
duces novel trigrams 21.0% of the time and copies
whole sentences only 21.7% of the time. In com-
parison, the pointer-generator network has only

Figure 3: Coverage of source sentences in summary.
Here the x-axis is the sentence position in the source
article and y-axis shows the normalized count of sen-
tences in that position copied to the summary.

6.1% novel trigrams and copies entire sentences
51.7% of the time. This shows that StructSum on
average generates 14.7% more novel n-grams in
comparison to the pointer-generator baseline.

4.3 Coverage

A direct outcome of copying shorter sequences is
being able to cover more content from the source
document within given length constraints. We ob-
serve that this leads to better summarization perfor-
mance. We compute coverage by computing the
number of source sentences from which contigu-
ous sequences greater than length 3 are copied in
the summary. Table 2 shows a comparison of the
coverage of source sentences in the summary con-
tent. While the baseline pointer-generator model
only copies from 12.1% of the source sentences,
StructSum copies content from 24.0% of the source
sentences. Additionally, the average length of the
summaries produced by StructSum remains mostly
unchanged at 66 words on average compared to 61
of the baseline model. This indicates that Struct-
Sum produces summaries that draw from a wider
selection of sentences from the original article com-
pared to the baseline models.

4.4 Layout Bias

Neural abstractive summarization methods applied
to news articles are typically biased towards select-
ing and generating summaries based on the first
few sentences of the articles. This stems from the
structure of news articles, which present the salient
information of the article in the first few sentences
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Copy Len Coverage

PG+Cov 16.61 12.1 %
StructSum 9.13 24.0 %
Reference 5.07 16.7 %

Table 2: Results of analysis of copying and coverage
distribution over the source sentences on CNN/DM test
set. Copy Len denotes the average length of copied
sequences; Coverage – coverage of source sentences.

Coref NER Coref+NER

precision 0.29 0.19 0.33
recall 0.11 0.08 0.09

Table 3: Precision and recall of ES and LS shared edges

and expand in the subsequent ones. As a result,
the LEAD 3 baseline, which selects the top three
sentences of an article, is widely used in the litera-
ture as a strong baseline to evaluate summarization
models applied to the news domain (Narayan et al.,
2018). Kryscinski et al. (2019) observed that the
current summarization models learn to exploit the
layout biases of current datasets and offer limited
diversity in their outputs.

To analyze whether StructSum also holds the
same layout biases, we compute a distribution of
source sentence indices that are used for copying
content (copied sequences of length 3 or more are
considered). Figure 3 shows the distributions of
source sentences covered in the summaries. The
coverage of sentences in the reference summaries
shows a high proportion of the top 5 sentences of
any article being copied to the summary. Addition-
ally, the reference summaries have a smoother tail
end distribution with relevant sentences in all po-
sitions being copied. It shows that a smooth distri-
bution over all sentences is a desirable feature. We
notice that the pointer-generator framework have
a stronger bias towards the beginning of the arti-
cle with a high concentration of copied sentences
within the top 5 sentences of the article. In con-
trast, StructSum improves coverage slightly having
a lower concentration of top 5 sentences and copies
more tail end sentences than the baselines. How-
ever, although the modeling of structure does help,
our model has a reasonable gap compared to the
reference distribution. We see this as an area of
improvement and a direction for future work.

Depth 2 3 4 5+

StructSum 29.3% 53.7% 14.4% 2.6%

Table 4: Distribution of latent tree depth.

5 Analysis of Induced Document
Structures

Similar to Liu and Lapata (2017), we also look at
the quality of the intermediate structures learned
by the model. We use the Chu-Liu-Edmonds al-
gorithm (Chu and Liu, 1965; Edmonds, 1967) to
extract the maximum spanning tree from the atten-
tion score matrix as our sentence structure. Table 4
shows the frequency of various tree depths. We find
that the average tree depth is 2.9 and the average
proportion of leaf nodes is 88%, consistent with
results from tree induction in document classifica-
tion (Ferracane et al., 2019). Further, we compare
latent trees extracted from StructSum with undi-
rected graphs based on coreference, on NER, or on
both. These are constructed similarly to our explicit
coreference based sentence graphs in §2.3 by link-
ing sentences with overlapping coreference men-
tions or named entities. We measure the similarity
between the learned latent trees and the explicit
graphs through precision and recall over edges.
The results are shown in Table 3. We observe that
our latent graphs have low recall with the linguis-
tic graphs showing that our latent graphs do not
capture the coreference or named entity overlaps
explicitly, suggesting that the latent and explicit
structures capture complementary information.

Figure 4 shows qualitative examples of induced
structures along with summaries from the Struct-
Sum. The first example shows a tree with sentence
3 chosen as root, which was the key sentence men-
tioned in the reference. In both examples, the sen-
tences in the lower level of the dependency tree
contribute less to the generated summary. Sim-
ilarly, in the examples source sentences used to
generate summaries tend to be closer to the root
node. In the first summary, all source content sen-
tences used in the summary are either the root node
or within depth 1 of the root node. In the second ex-
ample, 4 out of 5 source sentences were at depth=1
in the tree. In both examples, generated summaries
diverged from the reference by omitting certain
sentences used in the reference. These sentences
are in the lower section of the tree, providing in-
sights on which sentences were preferred for the
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Document Latent Structures Summaries

1. leicester city have rejected approaches for striker tom lawrence 
from an astonishing nine clubs . 

2. the former manchester united forward has barely played for 
leicester since arriving from old trafford in the summer but 
manager nigel pearson wants to have all options available as he 
battles against the odds to keep leicester in the premier league . 

3. lawrence , 21 , is poised to make his full international debut for 
wales in their european championship qualifier with israel on 
saturday but has only figured in four games for leicester this 
season and three as a substitute . 

4. leicester city have rejected approaches for striker tom lawrence 
from an astonishing nine clubs . 

5. championship promotion chasers bournemouth , ipswich and 
wolves have all asked about lawrence . 

6. blackburn , charlton , leeds , bolton , rotherham and wigan have 
also made contact . 

7. however , they are now looking at other options in a last-gasp bid 
to bolster their squad .

Reference: 
bournemouth , ipswich , wolves , blackburn , charlton , 
leeds , bolton , rotherham and wigan have all asked 
about tom lawrence . the 21-year-old is poised to make 
his full international debut for wales . leicester manager 
nigel pearson wants to have options available . 

StructSum: 
leicester city have rejected approaches for tom 
lawrence . lawrence is poised to make his debut for 
wales in their european championship qualifier with 
israel on saturday . leicester city are looking at other 
options in last-gasp bid to bolster their squad . 
lawrence from old trafford has only figured in four 
games for leicester this season and three as a 
substitute . the former manchester united star has 
barely

3

1 7 2

6 4 5

1. andrew henderson celebrated landing the london broncos 
coaching   job on a permanent basis as halifax were beaten 
22-18 . 

2. henderson was given the nod by the london hierarchy this week 
after a mixed spell in caretaker charge since the departure of 
joey grima . 

3. his weakened side put on a fine show to crown his appointment , 
though , scoring four tries through daniel harrison , matt garside , 
iliess macani and brad dwyer , whose score was the winning 
one . 

4. iliess macani , pictured last year , scored one of london broncos ' 
four tries in the 22-18 win over halifax . 

5. james saltonstall , ben heaton and mitch cahalane scored for 
halifax . 

6. henderson had spoken earlier in the week about how he felt 
broncos were moving in the right direction , and their narrow 
victory put some substance to his words . 

7. the win was just their third in six in the kingstone press 
championship having been relegated from super league at the 
end of last season .

1

2 3 7 4

5 6

Reference: 
andrew henderson won his first game as broncos full-
time coach . daniel harrison , matt garside , iliess 
macani and brad dwyer all scored . james saltonstall , 
ben heaton and mitch cahalane scored for halifax . 

StructSum: 
andrew henderson celebrated landing the coaching job 
on a permanent basis .henderson was given the nod 
by london hierarchy this week after a mixed spell in the 
22-18 win over halifax . his weakened side put on fine 
show to crown his appointment , though he felt 
broncos were moving in the right direction . the win 
was their third in six in the press championship having 
been relegated

Figure 4: Examples of induced structures and generated summaries.

summary generation. We also see in example 1 that
the latent structures cluster sentences based on the
main topic of the document. Sentences 1,2,3 differ
from sentences 5,6,7 in the topic discussed and our
model clustered the two sets separately.

6 Related Work

Data-driven neural summarization falls into extrac-
tive (Cheng et al., 2016; Zhang et al., 2018) or
abstractive (Rush et al., 2015; See et al., 2017;
Gehrmann et al., 2018; Chen and Bansal, 2018).
Pointer-generator See et al. (2017) learns to either
generate novel in-vocabulary words or copy from
the source. It has been the foundation for much
work on abstractive summarization (Gehrmann
et al., 2018; Hsu et al., 2018; Song et al., 2018). Our
model extends it by incorporating latent/explicit
structure, but these extensions are applicable to
any other encoder-decoder architecture. For exam-
ple, a follow-up study has already shown benefits
of our method in multi-document summarization
(Chowdhury et al., 2020).

In pre-neural era, document structure played
a critical role in summarization (Leskovec et al.,
2004; Litvak and Last, 2008; Liu et al., 2015; Dur-
rett et al., 2016; Kikuchi et al., 2014). More re-

cently Song et al. (2018) infuse source syntactic
structure into the pointer-generator using word-
level syntactic features and augmenting them to
decoder copy mechanism. In contrast, we model
sentence dependencies as latent structures and ex-
plicit coreference structures; we do not use heuris-
tics or salient features. Li et al. (2018) propose
structural compression and coverage regularizers
incorporating structural bias of target summaries
while we model the structure of the source doc-
ument. Frermann and Klementiev (2019) induce
latent structures for aspect based summarization,
Cohan et al. (2018) focus on summarization of
scientific papers, Isonuma et al. (2019) reviews un-
supervised summarization, Mithun and Kosseim
(2011) use discourse structures to improve coher-
ence in blog summarization and Ren et al. (2018)
use sentence relations for multi-document summa-
rization. These are complementary directions to
our work. To our knowledge, StructSum is the first
to jointly incorporate latent and explicit document
structure in a summarization framework.

7 Conclusion and Future Work

In this work, we propose the framework Struct-
Sum for incorporating latent and explicit document
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structure in neural abstractive summarization. We
introduce a novel explicit-attention module which
incorporates external linguistic structures, instan-
tiating it with coreference links. We show that
our framework improves the abstractiveness and
coverage of generated summaries, and helps mit-
igate layout biases associated with prior models.
We present an extensive evaluation of StructSum-
along abstractiveness, coverage, and layout quan-
titatively. Future work will investigate the role of
document structures in pretrained language models
(Lewis et al., 2019; Liu and Lapata, 2019).
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