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Abstract
Privacy is an important concern when build-
ing statistical models on data containing per-
sonal information. Differential privacy of-
fers a strong definition of privacy and can be
used to solve several privacy concerns (Dwork
et al., 2014). Multiple solutions have been
proposed for the differentially-private transfor-
mation of datasets containing sensitive infor-
mation. However, such transformation algo-
rithms offer poor utility in Natural Language
Processing (NLP) tasks due to noise added in
the process. In this paper, we address this is-
sue by providing a utility-preserving differen-
tially private text transformation algorithm us-
ing auto-encoders. Our algorithm transforms
text to offer robustness against attacks and
produces transformations with high semantic
quality that perform well on downstream NLP
tasks. We prove the theoretical privacy guar-
antee of our algorithm and assess its privacy
leakage under Membership Inference Attacks
(MIA) (Shokri et al., 2017) on models trained
with transformed data. Our results show that
the proposed model performs better against
MIA attacks while offering lower to no degra-
dation in the utility of the underlying trans-
formation process compared to existing base-
lines.

1 Introduction

Differentially Private (DP) mechanisms provide ro-
bustness against privacy attacks and offer practical
solutions for transforming and releasing datasets
without compromising privacy (Dwork et al., 2009).
A typical downstream task may involve training
a machine learning model with data transformed
from a differentially private mechanism. However,
while the DP mechanism offers privacy, it can ad-
versely impact the utility of the trained model (Li
and Li, 2009). Specifically, in the case of text
datasets (e.g., those used in Natural Language Un-
derstanding(NLU) tasks), if the DP transformation

impacts the syntactic structure of the sentence or
does not factor in the target NLU label (e.g. intent
of the sentence in an intent classification task), the
loss in utility can render the use of processed data
impractical. We address this problem in the paper
and introduce ADePT - an Auto encoder based Dif-
ferentially Private Text transformation mechanism
that process text data while reducing the impact on
the utility of the dataset.

The ADePT mechanism relies on text-based
auto-encoders (e.g. LSTM based sequence-to-
sequence models) for text transformation. An auto-
encoder first transforms a given text input into some
latent representation, followed by text generation
(transformation) via the decoder. In this paper, we
prove that the application of clipping and noising
operation on the latent sentence representations
returned by the encoder followed by text genera-
tion by the decoder is a DP mechanism. We use
ADePT to transform text datasets relevant to the
Intent Classification (IC) task, where we predict in-
tent of input sentence (e.g. ‘BuyTicketIntent’ intent
prediction for the sentence ‘buy me a ticket to Seat-
tle’ ). While one can transform the text in datasets
and retain original intent labels to train the intent
classifier, it is not guaranteed that the transformed
text would correspond to the original intent post
transformation, which can adversely impact the
trained IC’s utility. To mitigate this problem, we
append the intent labels to the rest of tokens while
training the auto-encoder as well as for transform-
ing text with the trained auto-encoder. For instance,
@BuyTicketIntent buy me a ticket to Seattle is used
as the input sample to train the autoencoder where
@BuyTicketIntent is the intent annotation for buy
me a ticket to Seattle. Similarly, the intent label is
regenerated along with the rest of the tokens after
transformation, which is then used for IC training
with the regenerated intent as the label of the regen-
erated sentence. In addition to this, we argue that
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data regeneration via decoder maintains the syn-
tactic structure of the sentence since the decoder
generates tokens auto-regressively, factoring in the
previously generated tokens. We hypothesize that
these properties make ADePT a utility preserving
DP mechanism and demonstrate the superiority of
the algorithm against an existing baseline (Feyise-
tan et al., 2019).

2 Related Work

Differentially private data transformation and
generation: Researchers have proposed several
methods for DP data transformation using indi-
vidual ranking micro-aggregation (Sánchez et al.,
2016), random projection (Xu et al., 2017), and
kernel mean embeddings (Balog et al., 2018). Al-
ternatively, models such as differentially private
Generative Adversarial Networks (Xie et al., 2018)
and differentially private autoencoder-based gener-
ative model (Chen et al., 2018) focus on training
data generators that guarantee that the data gener-
ation mechanism is DP. While DP data transfor-
mation and generation has shown great success for
structured data (e.g. numeric tables, histograms),
the same for unstructured data (e.g. text) is more
challenging. Beigi et al. (2019) propose an algo-
rithm that learns numeric text representations that
offer guarantees of differential privacy. However,
arguably it may be more desirable to release trans-
formed text as opposed to latent representations.
Feyisetan et al. (2019) proposes DP mechanism to
transform text data that constructs a hierarchical
representation given a sentence to identify private
phrases in the input sentence. Each word in the
private phrase is then randomly replaced by neigh-
boring word in a word embedding space. We use
the work by Feyisetan et al. (2019) as baseline in
our work since it also focusses on obtaining text
transformed text with a DP mechanism.

Membership Inference Attacks: While the
(ε, δ) bounds provide theoretical quantification of a
mechanism’s privacy (Dwork et al., 2014), recently
Membership Inference Attack (MIA) success rates
have emerged as practical quantification of privacy
preservation (Shokri et al., 2017). In this work we
use the setup suggested by Shokri et al. (2017) as a
method to quantify privacy for models trained on
transformed data. Given a trained machine learn-
ing model and its confidence score on a datapoint,
MIA infers whether the datapoint was part of the
model’s training data. In order to conduct MIA,

an attacker trains a shadow model that he/she ex-
pects to mimic the target model under attack. Once
trained, the shadow model’s confidence scores on
the datapoints members of its training set and other
non-member datapoints are used to train the binary
attack model. Given a datapoint, the attacker then
extracts a similar vector of confidence scores from
the target model and uses the attack model to make
a member/non-member prediction.

3 ADePT: Auto-encoder based
DiffEerentially Private Text
transformation

Consider an utterance u drawn from a dataset D.
Furthermore, consider an auto-encoder model that
takes input a sentence u and outputs another sen-
tence v. A vanilla auto-encoder model consists
of an encoder that returns a vector representa-
tion r = Enc(u) for the input u, which is then
passed onto the decoder that constructs an output
v = Dec(r). We define ADePT as a randomized
algorithmA, that given an utterance u, generates v
as shown in equation 2. η is a vector sampled from
either a Laplacian or a Gaussian distribution (with
0 mean and a pre-defined variance).

v = Dec(r′) (1)

Where r′ = Enc(u) ·min
(

1,
C

||Enc(u)||2

)
+ η

(2)

3.1 Proof that ADePT is differentially private

Given that ADePT conducts a transformation from
u −→ r′ −→ v, we first show that it is sufficient to
prove that the transformation from u −→ r′ is DP
for ADePT to be DP. Thereafter, we prove that the
transformation u −→ r′ is DP.

Lemma 1. The transformation u −→ v will be at
least (ε, δ) differentially private, if the algorithm
that transforms u to r′ is (ε, δ) DP.

Proof. This is true based on proposition 2.1 on
post-processing in Dwork et al. (2014).

Theorem 1. If η is a multidimensional noise, such
that each element ηi ∈ η is independently drawn
from a distribution shown in equation 3, then the
transformation from u −→ v′ is (ε, 0) DP.

Lap(ηi) ∼
ε

4C
exp(−ε|vi|

2C
) (3)
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Proof. We refer the reader to the proof in Dwork
et al. (2014), Theorem 3.6. The function f(x) used
in the Theorem in Dwork et al. (2014) is equiv-
alent to the encoder output with clipping. The
l1-sensitivity of this function (please refer to defi-
nition 3.1 in Dwork et al. (2014)) is 2C since max-
imum L1 norm difference between two points in
a hyper-sphere of radius C is 2C. Replacing ∆f
in Theorem 3.6 in Dwork et al. (2014) by 2C, we
obtain the that the transformation is (ε, 0) DP.

Akin to the proof with a Laplacian noise, we
can also borrow the proof in Appendix A in Dwork
et al. (2014) to show that ADePT would also be DP
if η was a Gaussian noise.

4 Experimental setup

We perform an intent classification task in our ex-
periments and quantify impacts on accuracy and
privacy metrics after data transformation via the
ADePT mechanism. While the intent classification
accuracy quantifies the utility of the transformed
dataset, we evaluate success of MIA against the IC
model to quantify privacy. Below, we describe the
datasets, auto-encoder and IC model training and
the MIA setup used in our experiments.

4.1 Datasets
We use ATIS (Dahl et al., 1994) and SNIPS
(Coucke et al., 2018) for training IC models on
the respective datasets. The ATIS dataset consists
of ∼5.5k data samples, while the SNIPS dataset
consists of ∼14.5k data samples. We used a 50:50
split for training and evaluation sets. Apart from
offering a larger accuracy evaluate test set, a 50:50
split also ensures that we have a balanced train-
ing and evaluation sets for MIA, as discussed in
Section 4.5.

4.2 Training the auto-encoder model
Given utterances u in the training partition of the
datasets of interest, we train an auto-encoder model
to reconstruct the input utterance u via the decoder
Dec. In our case, the auto-encoder is a sequence to
sequence model, where both encoder and decoders
are uni-directional LSTM models. We train the
auto-encoder on the training portions of the ATIS
and SNIPS datasets, with an objective to recon-
struct the input sentence through the latent repre-
sentation. Note that during training, we apply clip-
ping to ensure that the latent representation are en-
couraged to reside within a hyper-sphere of radius

C, no noise is added to the latent representation.
Clipping and noising operations are applied during
the final transformation after the auto-encoder is
trained, as discussed in section 4.3.

4.2.1 Making ADePT utility preserving
In the proof above, we show that ADePT is DP
algorithm that transforms input utterances u to v.
For the purposes of training an intent classifier,
a naive scheme can assume that the intent label
applied to the utterance u is also applicable to v.
However, this assumption may not always be true
as the transformation may render utterance v to
carry a different intent label than u. In order to
encourage the transformed utterances v to conform
to the intent label for utterance u, and also obtain
the correct intent label in cases where the transfor-
mation may lead v to belong to a different intent,
we tweak the auto-encoder model to also ingest
the intent label. We train annotation aware auto-
encoder models with inputs/outputs as utterances
and the corresponding intent. The intent label is ap-
pended to the beginning of each utterance (demar-
cated with a special character to help distinguish
the intent names with utterance tokens) during the
auto-encoder training.

4.3 Data transformation

Once the auto-encoder model is trained, we apply
the transformation again on the training portions of
ATIS and SNIPS datasets. During the transforma-
tion, the intent token is appended with the rest of
the utterance and an output in a similar format is
expected.

4.4 Intent classifier training

The ADePT transformation yields the altered sen-
tence, along with an intent. We transform the train-
ing portion of ATIS and SNIPS datasets through
the autoencoder and use the altered sentences along
with the reproduced intent for training an intent
classifier. Our IC architecture is inspired from
Ma and Hovy (2016) and consists of three blocks:
(i) an embedding block consisting of word and
character embeddings, (ii) a block consisting of bi-
directional LSTM layers and, (iii) a fully connected
network operation on a max-pool of LSTM layer
outputs for intent classification.

4.5 Privacy evaluation using MIA
We train the attack model on confidence scores
returned by a shadow IC model trained similarly
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Figure 1: Privacy and accuracy metrics using baseline and ADePT mechanisms on the ATIS and SNIPS datasets.
Baseline mechanism transforms datasets with Laplacian noise with variance values ∈ (1, 6, 9, 15, 28, 100). ADePT
transforms datasets with Gaussian and Laplacian noises with variances ∈ (0.25, 0.5, 0.6, 0.75, 0.85, 1). The vari-
ance scales are different between the two mechanism due to inherent difference in their construct.

Original Baseline ADePT
what are the flights on january
first 1992 from boston to san
francisco

what are the flights on febru-
ary inhales 1923 from boston
to san mostrar

what are the flights on thurs-
day going from dallas to
san francisco

show all flights boston to any
time

show all 5-minutes distinctions
from massachusetts to tempat
chiefs

show all flights flights flights
boston to any time

Table 1: Example of a good and a corrupted output from ADePT

as the target IC model. We extract scores for the
top five intents returned by the shadow IC model
on the member and non-member sentences used
to train the shadow IC model. The attack model
is a binary logistic regression model, trained on
the extracted IC scores from ‘member’ and ’non-
member’ sentences.

During the attack, top 5 intent scores from the
target IC model are fed to the logistic regression
model to make a prediction whether the correspond-
ing scores belong to the target model’s member or
non-member data. While the member sentences
are sourced from the training set, we borrow non-
member sentences from the test set used to evaluate
the model accuracy (note that their counts are bal-
anced as we use a 50:50 split). We use the Area
Under the ROC curve (AUC) to evaluate the suc-
cess of the attack model and a higher AUC implies
worse privacy metric.

5 Experimental Results

We conduct ADePT transformation using both
Laplacian and Gaussian noises, with different vari-
ance values. The baseline mechanism also uses

a Laplacian noise to sample words replacements
for the private words. Figure 1 show the MIA suc-
cess rates and IC accuracies obtained on ATIS and
SNIPS data respectively. Note that the algorithm
with a lower AUC and a higher IC accuracy is desir-
able. We observe that as we sweep the noise param-
eters for the ADePT and Redactive mechanisms,
we generally obtain lower AUC with a higher IC ac-
curacy for the former. Additionally ADePT mecha-
nism with a Gaussian noise performs the best. This
empirical observation supports our hypothesis that
factoring in the intent label during ADePT based
transformation helps providing better utility.

However, we also note that the privacy-utility
trade-off in ADePT can be non-monotonic. We
noticed that the sentence transformation using en-
coders is sensitive to noise value added to encoded
representation Enc(u). The clipping and noise ad-
ditional has potential to change the entire sentence,
unlike the baseline, where the public phrase in the
utterance remains unaltered and only the private
phrases in the utterances are subject to alteration.
We show two examples of sentence transformation
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using the baseline and Gaussian ADePT mecha-
nism in Table 1. In particular, the decoder tends to
repeat the same word multiple times for corrupted
outputs which can be corrected with constrained
decoding.

6 Conclusions

We propose ADePT - an auto-encoder based DP
algorithm in this paper. We theoretically prove
that the mechanism is DP and demonstrate that it
offers a better privacy utility trade-off compared to
a baseline that relies on detecting the transforming
public phrases in a sentence. In the future, we
will extend ADePT to transforming datasets with
sequence level tags (for instance, in named entity
recognition tasks) and also use non-autoregressive
decoders (e.g. transformers). We will also extend
the mechanism to other modalities (e.g. Image)
using auto-encoder models in the corresponding
domains.
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