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Abstract

Imposing the style of one image onto another
is called style transfer. For example, the style
of a Van Gogh painting might be imposed on a
photograph to yield an interesting hybrid. This
paper applies the adaptive normalization used
for image style transfer to language semantics,
i.e., the style is the way the words are said
(tone of voice and facial expressions) and these
are style-transferred onto the text. The goal is
to learn richer representations for multi-modal
utterances using style-transferred multi-modal
features. The proposed Style-Transfer Trans-
former (STT) grafts a stepped styled adaptive
layer-normalization onto a transformer net-
work, the output from which is used in senti-
ment analysis and emotion recognition prob-
lems. In addition to achieving performance on
par with the state-of-the art (but using less than
a third of the model parameters), we examine
the relative contributions of each mode when
used in the downstream applications.

1 Introduction

Multi-modal language analysis expands textual
analysis by utilizing co-occurring acoustic and vi-
sual information, and has recently become a popu-
lar topic in machine learning (Morency et al., 2011;
Baltrušaitis et al., 2018). In both sentiment analysis
(Wang et al., 2016; Zadeh et al., 2016) and emo-
tion recognition (Busso et al., 2008; Mittal et al.,
2019), the three modalities are combined to better
represent the sentiment or emotional meaning of a
passage. The idea of combing textual, acoustic, and
visual features is obvious: individual modalities are
not always able to convey as accurate an impression
as multi-modal features, which typically provide
more complete information. For instance, Fig. 1

∗Work done while at UW-Madison

shows a caricature where the sentiment may be eas-
ily understood from the audio and video, but not
from textual analysis alone.

Figure 1: An example of multi-modal sentiment anal-
ysis. In this example, textual information is unrelated
to the underlying sentiment while acoustic and visual
features reflect the perceived sentiment.

Combining textual, acoustic, and visual features
can be accomplished in a variety of ways ((Tsai
et al., 2018; Zadeh et al., 2018a; Liang et al., 2018;
Mai et al., 2019; Sun et al., 2019b; Mittal et al.,
2019)). Among these, (Wang et al., 2018b; Sun
et al., 2019a) consider text as the backbone and
study methods to inject acoustic and visual infor-
mation into the textual features that are typically
extracted via pre-trained word/language models,
e.g., Glove (Pennington et al., 2014), ELMO (Pe-
ters et al., 2018), and BERT (Devlin et al., 2018).

This paper also uses textual features as a back-
bone and studies a novel way of injecting non-text
features into a primarily text-only model. A style
vector is learned from the acoustic and visual fea-
tures. This style vector is then transferred to a text
input transformer encoder via Stepped Adaptive
Layer Normalization (SAdLaN). While adaptive
style transfer in image processing literature is well
studied (Karras et al., 2018; Huang and Belongie,
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2017; Park et al., 2019), the novelty in our work
is to consider the corresponding audio and video
to be the style of the text and transfer the non-
verbal features’ information to text-based models
via the effective SAdLaN. Concretely, our model
replaces the original layer normalization in the text
transformer encoder with the proposed SAdLaN,
which learns style scale and style bias from non-
text features. The proposed model is named as
Style-Transfer Transformer (STT) and it is tested
on three benchmark datasets.

This paper makes three contributions. First, our
model’s performance is on par with the state-of-the-
art but using only less than one third of the model
parameters. Since our model does not require
training a multimodal transformer from scratch to
achieve the same results, the style transfer method
benefits from both reduced model size and training
time. Second, we introduce the Stepped Adap-
tive Layer Normalization (SAdLaN), which per-
forms adaptive normalization as a function of the
layer of the DNN encoder. Third, we study the
contributions of each modality towards use in our
downstream applications. While we know that
multimodal embeddings would contribute more
than each individual modality, such an examina-
tion highlights the relative strength of each mode,
particularly on sentiment classification tasks.

The rest of this paper is organized as follows.
Section 2 reviews the related work. Section 3 de-
scribes our proposed method Style Transfer Trans-
former (STT). Section 4 and 5 presents experimen-
tal results, and Section 6 concludes this work.

2 Related Work

Multi-modal Language Analysis: Previous
work on multi-modal language analysis typically
learns a novel network structure to capture
interactions between text, audio, and video features
via supervised learning. Liu et al. (2018) develop
an efficient low-rank tensor fusion mechanism
to learn the outer-product representation of
multi-modal features, while (Zadeh et al., 2018a)
learn a multi-modal memory gate that is applied
to an LSTM to capture the flow of information
in the different modalities. In their work (Liang
et al., 2018) learn a specialized multi-modal
fusion model by applying a novel multistage
fusion in the recurrent network. Recently, the
multi-modal transformer introduced by (Tsai et al.,
2019) achieves the state-of-the-art performance

by using bi-directional cross modal relationships
between the different modalities. Note that the
transformer architecture in STT is the same as
in (Tsai et al., 2019). However, we depart from
their modeling procedure by encoding audio and
video jointly using a single bimodal transformer
block, thereby eliminating additional cross modal
attention blocks.

Adaptive Normalization: Adaptive normaliza-
tion is widely used in image processing and com-
puter vision. Huang and Belongie (2017) proposes
adaptive instance normalization, which learns the
affine parameters from the style vector to perform a
style transfer in the image encoder’s feature space.
Karras et al. (2018) applies the AdIN in the gener-
ative adversarial network (GAN) to generate fake
multi-styled human faces. Park et al. (2019) pro-
poses a spatially-adaptive normalization for image
semantic synthesis. Wang et al. (2018a) applies
a spatial feature transformation for image super-
resolution. This paper introduces the SAdLaN
framework in which a bimodal style vector is trans-
ferred as a function of the DNN’s depth.

Adapter Method in Pre-trained Language Mod-
els: Due to the enormous size of pre-trained lan-
guage models (e.g. BERT, XLNet), the proce-
dure of fine-tuning the models on downstream
data may be inefficient. To address this “adapter”
based methods have been developed. In their
work (Houlsby et al., 2019) apply the task-specific
layer at each encoder layer of BERT. Each task-
specific layer contains two feed-forward projec-
tors: one down-projects (maps the input vector to a
low-dimensional space) and the other up-projects
(maps the prior layer’s output back to its original
dimension). During training, only the parameters
in these task-specific layers are updated. Stickland
and Murray (2019) proposes another method: the
task-specific layer is applied between the two layer-
normalization in the encoder. Wang et al. (2020)
applies parallel adapters which each learn different
information from the knowledge base in order to
enable the model to deal with the multi-task learn-
ing task.

Our proposed SAdLaN is motivated by the the
adapter designed in (Houlsby et al., 2019). In
their work, the authors find that lower layers of
the transformer have less impact on the fine tuning
objective of a given task, while higher layers are
more vital (this is an intuitive observation, because,
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lower layers are more likely to learn semantic mean-
ings while the higher layers are more related to the
specifics of the task). When using SAdLaN, lower
layers of the STT are changed as little as possible
to enable the model to learn basic semantic infor-
mation from the input text, while the top layers
allow a larger effect influenced by the style factors.

3 Style Transfer Transformer (STT)

We define the text, audio, and video features for a
given utterance as ft ∈ Rl×dt , fa ∈ Rl×da , fv ∈
Rl×dv , where l is the length of the modality se-
quence and dt, da, dv are embedding dimensions
of each modality (each modalities’ sequence length
is forced to be the same by applying alignment).
Figure 2 (left) shows an overview of our model
STT. It consists of the following four steps:

• Step 1: learn a style vector from the audio and
video features.

• Step 2: use the learned style vector during
adaptive layer normalization for a text input
transformer model.

• Step 3: take the style transferred text repre-
sentation and pass it through a GRU to get the
final multimodal embedding.

• Step 4: use this multimodal embedding for a
downstream task.

Step 1 Learn a style vector: In keeping with
the hypothesis that the text modality is the major
contributor to the learned multimodal embedding,
a style encoder is first applied to acoustic (fa) and
visual (fv) features to learn the non-verbal style
vector fs ∈ Rls . The STT first concatenates audio
and video sequences at each time step, i.e., fav ∈
Rl×(da+dv). The concatenated fav is then input into
the transformer model TRANSFORMERav, which
is a basic self-attention multi-head transformer en-
coder (with query = key = value; see (Vaswani et al.,
2017)). The final state of TRANSFORMERav is the
style vector fs.

Step 2 Adaptive style transfer onto text: The
original layer norm (Ba et al., 2016) is defined as:

fy =
fx − E[fx]√
Var[fx] + ε

× γ + β (1)

where fx is the input vector to the layer normal-
ization, ε is a value added to the denominator for
numerical stability, and γ, β are scalar and bias
factors computed from the data for normalization.

The style transfer techniques for image processing
applications use factors s, b learned from a style
vector to replace γ, β (Huang and Belongie, 2017;
Karras et al., 2018).

Inspired by these, we propose our Stepped Adap-
tive Layer Normalization technique (SAdLaN). It
also computes factors from our style vector fs for
the normalization, but with the key difference that
it takes into account the depths of the layers. Since
lower layers of the transformer have less impact
on the fine tuning objective for a given task while
higher layers are more vital to the task, the lower
layers of the STT should be changed as little as
possible to enable the model to learn basic seman-
tic information from the input text, while the top
layers should allow a larger effect influenced by
the style factors.

Figure 2 (right) shows how the SAdLaN is ap-
plied to a text transformer encoder. Formally, we
input the style vector fs to a MLP layer to compute
factors si, bi for the normalization of the ith layer,
and introduce a novel stepped ratio factor ri where
ri gradually increases as a function of the depth of
the layer. SAdLaN for the ith layer is then defined
as:

f iy = (
f ix − E[f ix]√
Var[f ix] + ε

× γ + β)

× (1 + si × ri) + (bi × ri).
(2)

Here γ and β are computed as in the original layer
norm (without using the style vector). The si, bi are
factors learned from the style vector: at each layer
i, the learned style vector fs is input to a specific
MLP to learn the factors si, bi. The ri are defined
as

ri = (i− 1)× ratio

#layers
(3)

where ratio is a constant value used to limit the
maximum ri value. Thus, small ri indicate the
style factors have little impact on the layer norm
and vice versa. Note that SAdLaN reduces to the
original layer norm (1) when ratio = 0.

Step 3 Style transferred multimodal embed-
ding: The output of the last adapted layer from
Step 2 is considered to be the style transferred text
sequence. This styled text sequence is then passed
through a GRU to learn the final multimodal em-
bedding.

Step 4 Downstream applications: Multimodal
embeddings learned in Step 3 can be passed to a
softmax layer or a MLP for any downstream task
of choice.
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Figure 2: left: An overview of the STT model. First, a style vector is learned from audio and video features.
Second, the style vector is used along with the text to learn a styled-text sequence by a transformer encoder with
the adaptive layer normalization. Finally, use a GRU to get the final multimodal embedding and use a MLP for the
downstream task. See the main text for the details. right: The STT Transformer encoder with the adaptive layer
normalization. Scalar and bias factors are learned from the style vector. Smaller ratios are applied to the bottom
layers so that accurate semantic features can be captured, while larger ratios are applied to top layers to encourage
the learning of the styled features.

4 Experimental Setup

This section provides a brief overview of the exper-
imental setup, datasets, and baseline methods used
for comparison.

4.1 Data sets
In order to test the performance of the STT, three
benchmark multi-modal datasets are selected: i)
CMU-MOSI, ii) CMU-MOSEI (Zadeh et al., 2016,
2018b), and iii) IEMOCAP (Busso et al., 2008).
The first two are standard datasets for sentiment
analysis while IEMOCAP is a standard emotion
recognition dataset.

• CMU-MOSI: This data set contains 2199
utterance-level video segments. Each video
segment is labeled with sentiment scores that
range from−3 (extremely negative sentiment)
to +3 (extremely positive sentiment).

• CMU-MOSEI: This data set contains 22856
utterance-level video segments. Annotation
of each segment is the same as in the CMU-
MOSI dataset.

• IEMOCAP: The original dataset contains
10000 examples with 9 different emotion an-
notations. In this paper, we follow (Tsai et al.,

2019) and choose four emotions (angry, sad,
happy, and neutral) with balanced distribu-
tions for the evaluation.

4.2 Baselines
We compare the proposed STT with several base-
lines: i) Early and Late Fusion LSTM (Zadeh
et al., 2016), ii) RAVEN (Wang et al., 2018b), iii)
MCTN (Tsai et al., 2018), iv) LMF (Liu et al.,
2018), and v) RMFN (Liang et al., 2018). The
state of the art Mult (Tsai et al., 2019), which ap-
plies 6 cross-modal transformers to learn cross re-
lationships between modalities, is also included in
our evaluations.

To keep comparisons fair, our experiments use
the same multimodal features as in (Liu et al., 2018;
Zadeh et al., 2016, 2018a; Liang et al., 2018; Tsai
et al., 2019). Here are some high level details with
regards to each modalities’ features:

• Textual features: Glove (Pennington et al.,
2014) word embeddings of 300 dimensions
are used as inputs to obtain textual features.

• Acoustic features: They are extracted by CO-
VAREP (Degottex et al., 2014) and have 74
dimensions. These features contain informa-
tion on frequency, volume, pitch, MFCC, etc.
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MOSI MOSEI IEMOCAP
batch size 48 128 48
learning rate 0.002 0.0001 0.003
transformer hidden dim 40 40 40
GRU hidden dim 60 40 60
# of encoder layers 8 8 4
# of heads 8 10 8
style ratio 0.3 0.2 0.25
dropout 0.2 0.5 0.3

Table 1: This table presents the best hyper-parameter
settings of the STT model for all data sets reported in
our experiments.

They are aligned at the word-level: for every
word, its corresponding acoustic feature is the
average of all audio frame’s features between
the start time and the end time of that specific
word.

• Visual features: They are extracted by Facet
(iMotions, 2017) and have 34 dimensions.
Features include facial landmarks, action
units, etc. They are also aligned at the word
level.

In consistency with prior work on these three
datasets, several performance metrics are used to
evaluate the models. On CMU-MOSI and CMU-
MOSEI, binary accuracy, weighted F1 score, mean
absolute error, 7-class accuracy, and correlation
with human labels are reported. For IEMOCAP,
binary accuracy and weighted f1 score are used.

Hyperparameters: We perform grid search on
the hyperparameter values. For STT, i) the learning
rates of Adam are from 0.0001 to 0.001; ii) dropout
ratios are from 0 to 0.5; iii) transformer encoder’s
hidden layers are of dimensions 40 and 60; iv)
hidden states of GRU are of dimensions 40 and
60; v) the numbers of transformer encoder layers
are from 4 to 8; vi) the numbers of heads in the
multi-head attention layer are 8 and 10; vii) style
ratios are from 0.1 to 0.5. The best hyper-parameter
settings in our experiments are presented in table 1.

5 Experimental Results

Tables 2 and 3 report results from the baselines
and STT on the three benchmark data sets. We
can see that STT performs on par with the base-
lines and SOTA considered in our experiments.
Since there exists a disparity between the results
reported in (Tsai et al., 2019) and the results ob-
tained from reproducing the source code released
by the authors, we report numbers from reproduced

Mult as Multrep and report numbers from the pa-
per as Multpaper. Note that STT beats the perfor-
mance of Multrep while matching the performance
of Multpaper. To keep comparisons fair, we com-
pare STT with the averages of scores attained by
Multpaper and Multrep and note that on all three
benchmark datasets on average we do better than
Mult. While one may argue that reproducing the
baseline is essential, we can offer as an explanation
that the lack of clarity in reproducibility should not
penalize our modeling efforts. To document our
experimental evaluations and hypothesis in a credi-
ble manner, we report numbers from the paper as
well as the reproduction. Furthermore, we note that
STT is more efficient than Mult: it achieves bet-
ter performance using less than a third number of
parameters. See Table 4. This is because it uses 2
transformer blocks as opposed to 6 blocks in Mult.

To verify if the performance of STT increases
with the number of parameters, we investigate in-
creasing: 1) the dimension of the transformer en-
coder’s hidden layer, 2) the number of encoder
layers and number of heads, and 3) the number
of layers in the GRU. However, we do not find
improvements in performance by increasing the
number of model parameters. We posit that this
performance limitation is due to the relatively crude
features extracted for audio and video analysis and
suggest exploration in this direction for improved
performance.

5.1 Ablation Studies

In this section we present results from ablation
studies performed by i) varying ratio and studying
the effect of different ratio values on the trans-
former’s performance, ii) providing as input to the
transformer unimodal features for downstream sen-
timent classification tasks, as well as iii) evaluating
the effects of non verbal features.

5.1.1 Study 1: Varying Stepped Ratio
Table 5 presents results from the ablation study that
shows the performance of different ratio values in
equation (2). When ratio = 0, the model contains
only a single transformer using text as the only
input and standard layer normalization. This setup
is meant to demonstrate the performance of STT
when using text alone. “No stepped ratio” means
the same style scalar and bias are used for all layers,
i.e., ri = 1 for all i in (2). Varying the ratio from
0.1 to 2 investigates the influence of its values.

Table 5 shows the effect of the stepped ratio on



1961

Data View CMU-MOSI CMU-MOSEI
Acc-2 F-score MAE Acc-7 Corr Acc-2 F-score MAE Acc-7 Corr

EF-LSTM 75.9 75.5 1.035 32.7 0.611 77.2 77.5 0.632 46.4 0.623
LF-LSTM 77.8 77.7 1.009 34.8 0.645 79.4 80.2 0.611 48.3 0.666
RAVEN 78.0 76.6 0.915 33.2 0.691 79.1 79.5 0.614 50.0 0.662
MCTN 79.3 79.1 0.909 35.6 0.676 79.8 80.6 0.609 49.6 0.670
RMFN 78.4 78.0 0.922 38.3 0.681 NA NA NA NA NA
Mult(paper) 83.0 82.8 0.871 40.0 0.698 82.5 82.3 0.580 51.8 0.703
Mult(rep) 81.7 81.8 0.874 38.1 0.708 82.0 81.9 0.585 50.8 0.690
STT 82.4 82.2 0.847 38.9 0.733 82.1 82.6 0.586 51.2 0.695

Table 2: Results on CMU-MOSI and CMU-MOSEI. Best numbers are in bold. Note that for MAE, lower is better,
while for the other metrics, higher is better.

Data View IEMOCAP
Emotions Happy Angry Sad Neutral

Acc-2 F-score Acc-2 F-score Acc-2 F-score Acc-2 F-score
EF-LSTM 85.5 84.8 85.7 83.1 81.2 80.3 66.3 65.3
LF-LSTM 85.4 85.7 83.6 82.9 79.9 80.1 67.1 67.2
RAVEN 87.3 85.8 85.1 84.6 83.8 82.9 69.5 69.1
MCTN 84.9 83.1 79.7 80.4 80.5 79.6 62.3 57.0
RMFN 87.5 85.8 85.1 84.6 83.8 82.9 69.5 69.1
Mult(paper) 90.7 88.6 87.4 87.0 86.7 86.0 72.4 70.7
Mult(rep) 88.7 86.9 87.0 87.2 86.6 86.3 70.6 69.4
STT 88.3 87.8 87.3 87.0 87.5 87.4 70.1 68.5

Table 3: Results on IEMOCAP. Best numbers are in
bold.

the performance. Using ratio = 0, i.e., using only
text features, worsens the performance. This is
intuitive since additional modalities capture infor-
mation not present in text. On the other hand, a
large ratio like 1 or 2 degrades the performance
of STT. This is also consistent with our intuition,
since large ratios correspond to an almost complete
dependency on the audio and video features (which
are not as deeply studied as the representation of
text). Thus an intermediate value for ratio should
work best, and our experiments suggest a value of
about 0.3. This supports our hypothesis that one
should utilize the text embedding to capture the
major semantics and utilize the audio and video
embeddings to capture additional crucial stylistic
information injected into text in a more gentle man-
ner.

Finally, we see that using the stepped ratio is
better than setting the same stepped ratio at each
layer. This is consistent with our intuition that
lower layers of the transformer model corresponds
to basic semantics that should remain unaffected
by external information.

5.1.2 Study 2: Unimodal Input Features
To study the effects of audio or video only input
to the transformer model, we set up experiments
in which the STT takes as input each of audio or
video modes alone. For each modality, we vary

Model CMU-MOSI CMU-MOSEI IEMOCAP
Mult 1.54M 1.55M 1.53M
STT 0.44M 0.44M 0.38M

Table 4: The number of parameters in each model for
the different tasks. Hyper-parameters with best perfor-
mance are selected. “M” means one million.

Acc-2 F-score MAE Acc-7 Corr
ratio = 0 81.1 81.0 0.871 37.4 0.718
ratio = 0.1 81.3 81.6 0.889 38.6 0.707
ratio = 0.2 82.1 82.2 0.853 39.2 0.713
ratio = 0.3 82.4 82.2 0.847 38.9 0.733
ratio = 0.5 81.9 81.9 0.864 37.0 0.722
ratio = 1.0 81.3 81.2 0.869 39.5 0.714
ratio = 2.0 81.4 81.4 0.871 38.0 0.718
no stepped ratio 79.9 79.8 0.912 37.4 0.697

Table 5: Ablation study and effect of different ratios
on CMU-MOSI. Ratio values vary in different levels as
defined in (2). “ratio = 0” means the original layer nor-
malization is applied. “no stepped ratio” means that the
scale and bias terms are applied equally to all layers.

the stepped ratio from 0.1 to -0.5 and report the
best numbers. Table 6 presents results from STT
using unimodal text or audio input when evaluated
against the CMU-MOSI data set. From Table 6,
while it is hard to determine if individually audio
or video makes for a better input on the sentiment
classification task, it is evident that the combined
bimodal (audio+video) input does better than each
unimodal input.

5.1.3 Study 3: Effect of Non-verbal Features
The results in Table 6 quantitatively show the effec-
tiveness of non-verbal features, however, it’s also
vital to demonstrate that the non-verbal features can
help to successfully classify specific examples’ sen-
timents. Figures 3 and 4 present two case-studies
that show how the STT model is able to capture
non-verbal information effectively by comparing
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Figure 3: Case Study Example 1. The text in this utterance doesn’t have a clear sentiment, however, the woman’s
frown and eye movements reveal her disappointment in the characters’ motivations.

Figure 4: Case Study Example 2. The text “blown away” alone may be ambiguous. However, combined with the
woman’s happy facial expressions, the overall support is towards a strong positive sentiment.

Acc-2 F-score MAE Acc-7 Corr
STT without audio/video 81.1 81.0 0.871 37.4 0.718
STT with audio 81.1 81.4 0.887 38.0 0.711
STT with video 81.7 81.5 0.888 37.9 0.720
STT with audio and video 82.4 82.2 0.847 38.9 0.733

Table 6: This table presents the effect of unimodal au-
dio/video inputs to STT when evaluated on the CMU-
MOSI data set.

the prediction of our STT model with that of a text-
only model (stepped ratio = 0). We select two
typical examples where our STT model is able to
predict the correct sentiment score while the text
only model is not. Figure 3 shows an example in
which the text is neutral but the facial expression
clearly demonstrates a negative sentiment. The
STT model is able to predict the negative sentiment
by using the facial features. Figure 4 shows another
example with ambiguous text “blown away.” Again,
the text-only model does not predict correctly, but
our STT is able to exploit the information in the
visual features to predict the true sentiment.

5.2 Applications in Pre-trained Language
Models

Our proposed method replaces the vanilla layer
normalization in the transformer’s layers with a
stepped style adaptive layer normalization (SAd-

LaN). The same technique can also be applied to
expand the capabilities of a pre-trained text-only
transformer model. To validate this, we consider a
pre-trained language model BERT and apply SAd-
LaN to every layer in BERT. This allows applying
it on multimodal data sets, by fine-tuning the SAd-
LaN parameters or fine-tuning both the SAdLaN
and BERT parameters. To clarify, differences in
results reported in the previous sections and here
lie in the transformer architecture. Since the BERT
language model is pre-trained in prior work, the
number of transformer layers differ in BERT and
STT. The BERT language model in addition to
using the transformer architecture also follows a
cloze task in the language model. Unlike BERT,
STT does not perform random masking on word
tokens in the input.

It is also possible to combine styled layer nor-
malization with the adapter method (Houlsby et al.,
2019). The adapter method injects some trainable
modules called adapters between the feed-forward
layer and the layer-normalization in each trans-
former encoder layer of BERT. Each adapter con-
tains two feed-forward projection layers, connected
by a non-linear activation. The first feed-forward
layer projects its input (of dimension d) to a smaller
dimension, then the second layer maps the output
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Figure 5: This figure illustrates injecting the adapter
and the adaptive layer-normalization into BERT’s trans-
former encoders. At each encoder layer of the BERT
model, the adapter network is injected between the
feed-forward layer and the adaptive layer normaliza-
tion. During fine tuning, any part of the model can be
frozen for ablation studies.

of the first layer back to dimension d. Houlsby
et al. (2019) showed that injecting adapters and fine-
tuning only the parameters of the adapters achieve
competitive results against fine-tuning the whole
BERT. We can combine SAdLaN with adapters to
achieve similar results that again use fewer train-
able parameters. Figure 5 illustrates the combina-
tion.

We now present experiments on these applica-
tions of SAdLaN (combined with BERT, or with
BERT+adapters). The BERT model used in our
experiments is the “bert-base-uncased” version
in (Devlin et al., 2018). Evaluation uses the CMU-
MOSI and CMU-MOSEI datasets. Raw text is used
as the input textual feature instead of the pretrained
Glove embeddings used in the other experiments,
while acoustic and visual features remain the same.

Results: Tables 7 and 8 present the performance
of different methods fine-tuning BERT on multi-
modal data.

• The BERT model performs roughly the same
with or without SAdLaN (see the first two
rows in both tables). This is likely due to
the large model parameters in BERT (110M)
as opposed to the much fewer parameters in
SAdLaN (≤ 1M).

• Updating only the parameters of SAdLaN and
the final logistic regression layer demonstrates
an obvious improvement compared to using
the final regression layer only (see the third to
fifth rows). This confirms that our method is

Acc-2 F-score MAE Corr Size
BERT 86.6 86.0 0.683 0.80 110M
BERT + SAdLaN 85.1 85.0 0.689 0.80 111M
SAdLaN 83.0 83.3 0.794 0.76 1.5M
(BERT output) 80.5 81.1 0.89 0.69 0.06M
(a + v + BERT output) 81.0 81.0 0.885 0.69 0.06M
Adapter 84.1 84.3 0.72 0.77 3.1M
Adapter + SAdLaN 85.1 85.2 0.696 0.79 3.5M

Table 7: Results of fine-tuning BERT, adapter, and our
method SAdLaN on CMU-MOSI. Logistic regression
is used as the final classifier. The training only updates
the parameters in the first column (and those in the lo-
gistic regression). (Bert output) means a simple aver-
age of all the layers hidden vector, (a + v + Bert output)
means a direct concatenation of acoustic, visual, and
BERT hidden vectors. Best results in each block are in
bold.

Acc-2 F-score MAE Corr Size
BERT 85.9 85.9 0.533 0.76 110M
BERT + SAdLaN 85.5 85.7 0.527 0.77 112M
SAdLaN 84.8 84.9 0.565 0.73 1.7M
(BERT output) 82.8 83.0 0.582 0.68 0.07M
(a + v + BERT output) 82.7 82.8 0.583 0.67 0.07M
Adapter 85.2 85.1 0.543 0.751 3.0M
Adapter + SAdLaN 85.2 85.3 0.533 0.77 3.6M

Table 8: Results from fine tuning BERT, adapter, and
our method SAdLaN on CMU-MOSEI. Annotations
are the same as in Table 7.

able to inject acoustic and visual information
into the transformer model.

• Combining SAdLaN with the adapter method
performs better than using the adapter method
alone (see the last two rows). In this case,
the performance is similar to fine-tuning the
whole BERT (in the first row), while updating
far fewer parameters (about only 1.5%). Thus
our method improves the adapter method and
enables efficient training on multimodal tasks.

6 Conclusion and Future Work

Inspired by the success of style transfer algorithms
in image processing, this paper proposed the novel
Style Transfer Transformer (STT) in which layer-
normalization in the transformer model is replaced
with a style Stepped Adaptive Layer Normalization
(SAdLaN). The model is used to learn compre-
hensive multimodal representations for sentiment
analysis and emotion recognition. Experiments on
benchmark data sets established the effectiveness
of the proposed method. Furthermore, ablation
studies provided supports for our hypothesis of
injecting audio and video to highly efficient text
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embeddings enhances the performance of the text
embedding in multimodal tasks without the need
for larger models or training data.

While our work is a first step towards learning
multimodal embeddings via style transfer of non
textual features onto text, as part of future work we
will consider learning to inject non-verbal informa-
tion into the text model in a recursive manner in
order to achieve a higher model performance. The
acoustic and visual features can be processed sepa-
rately; besides of analyzing examples that benefit
from the STT, it’s also worthwhile to study exam-
ples that are negatively impacted by the method.
While transformer models promise improved re-
sults, reproducibility in these models is a cause for
concern since transformer models are particularly
sensitive to initial conditions. As part of future
work we will perform experiments to establish sig-
nificance in observed results and report averaged
hyper-parameters.
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