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Abstract

Existing approaches for table annotation with
entities and types either capture the structure
of table using graphical models, or learn em-
beddings of table entries without accounting
for the complete syntactic structure. We pro-
pose TabGCN, which uses Graph Convolu-
tional Networks to capture the complete struc-
ture of tables, knowledge graph and the train-
ing annotations, and jointly learns embeddings
for table elements as well as the entities and
types. To account for knowledge incomplete-
ness, TabGCN’s embeddings can be used to
discover new entities and types. Using ex-
periments on 5 benchmark datasets, we show
that TabGCN significantly outperforms multi-
ple state-of-the-art baselines for table annota-
tion, while showing promising performance on
downstream table-related applications.

1 Introduction

Table data abounds in webpages and organizational
documents. Annotation of table entries, such as
columns, cells and rows, using available back-
ground knowledge (e.g. Yago, DBPedia, Freebase,
etc.), such as knowledge of entities and their types,
helps in better understanding and semantic interpre-
tation of such tabular data. The challenge, however,
is that such web tables do not adhere to any stan-
dard format, schema or convention (Limaye et al.,
2010). Additionally, knowledge graphs are typ-
ically incomplete - entities and types mentioned
in tables may not always exist in the knowledge
graph. Therefore, it becomes necessary to expand
the knowledge graph with new entities (Zhang
et al., 2020) and types for annotating tables.

Initial research on table annotation (Limaye
et al., 2010; Takeoka et al., 2019; Bhagavatula
et al., 2015) used probabilistic graphical models
to capture the complete row-column structure of
tables and also the knowledge graph for collective

annotation. More recent approaches using embed-
dings (Gentile et al., 2017; Zhang and Balog, 2018;
Zhang et al., 2019; Chen et al., 2019; Yin et al.,
2020) only partly capture the syntactic structure of
tables, and also ignore the structure of the knowl-
edge graph. The problem of incompleteness of the
knowledge representation (Zhang et al., 2020) is
mostly not addressed.

In this work, we propose the TabGCN model
that uses a Graph Convolutional Network (GCN)
(Kipf and Welling, 2017) to unify the complete
syntactic structure of tables (rows, columns and
cells) and that of the knowledge graph (entities and
types) via available annotations. The embeddings
of the table elements as well as knowledge graph
entities and types are trained jointly and end-to-end.
While GCNs have been used for learning embed-
dings for many NLP tasks using the syntactic and
semantic structure of natural language sentences
(Marcheggiani and Titov, 2017; Vashishth et al.,
2019), encoding tabular structure using GCNs has
not been addressed before. The model and embed-
dings thus trained are used to annotate new tables
with known entities and types, while discovering
hitherto unseen entities and types. Additionally, we
use the trained embeddings for tables and rows for
downstream table-related tasks - identifying similar
tables, and identifying the appropriate table for any
row.

We demonstrate these capabilities of TabGCN
using experiments on 5 benchmark web table
datasets comparing against 5 existing models. We
show that WebGCN significantly improves perfor-
mance for entity and type annotation. For the other
tasks, we show that the same embeddings show
impressive performance. No existing model can
perform all of these tasks.

Our contributions are as follows: (a) We propose
a model called TabGCN based on the GCN architec-
ture that captures the complete syntactic structure
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of tables as well as the knowledge representation,
and learns embeddings of tables, rows, columns
and cells, as well as entities and types jointly and
in an end-to-end fashion. (b) TabGCN addresses
incompleteness in the knowledge representation by
discovering new entities and types. (c) TabGCN
significantly outperforms 5 existing approaches in
5 different benchmark datasets for the task of table
annotation. (d) The trained embeddings show im-
pressive performance in downstream tasks such as
identifying similar tables and assignment of rows
to appropriate tables.

2 Related Work

Existing literature on table annotation considers
two different types of tables. In general, web tables
(Limaye et al., 2010; Takeoka et al., 2019; Bha-
gavatula et al., 2015) contain mentions of entities
under every column, which need to be annotated.
In contrast, relational tables (Gentile et al., 2017;
Zhang and Balog, 2018; Zhang et al., 2019, 2020)
refer to a single entity in each row, with a sin-
gle core or anchor column and multiple attribute
columns. Here, the entire row is annotated with a
single entity. While both tasks are important, our
focus is on the first category.

In terms of approaches, one category of work
considers graphical models to capture table struc-
ture and performs joint inference for entity and
type classification (Limaye et al., 2010; Takeoka
et al., 2019; Bhagavatula et al., 2015). Limaye et al.
(2010) uses a Markov Random Field that captures
the structure of tables, and creates dependencies
between entity and type annotations to jointly clas-
sify entities for cells and types for columns. The
Markov Random Field (MRF) potentials capture
domain knowledge about similarities between cells,
between cells and entity lemmas and between en-
tities using the type hierarchy. It cannot handle
entities and types not used as labels during training.
MeiMei (Takeoka et al., 2019) extends this MRF
framework to handle numeric columns and focuses
on multi-label classifiers for entities with multiple
types. Additionally, it constructs embeddings of
entities and types using knowledge graph structure
to avoid expensive graph traversal for computing
potential function features. However, it still re-
quires manual construction of these features based
on domain knowledge. Our GCN architecture is
motivated by the structure of the graphical model in
these papers. Both these models also jointly label

pairs of columns with known relationships, which
we do not address in our work.

The second category focuses on embeddings for
tables (Gentile et al., 2017; Zhang and Balog, 2018;
Zhang et al., 2019). All of these models transform
table data to word sequences and then make use of
neural language models. Zhang and Balog (2018)
make use of RDF2vec for embedding tables, which
internally uses neural language models after trans-
forming graphs to sequences. ColNet (Chen et al.,
2019) considers columns as cell sequences and
uses a CNN to learn the representations of indi-
vidual cells, which are used to predict entity types
for columns. TaBERT (Yin et al., 2020) focuses
on retrieving table rows for natural language ut-
terances and learns a joint representation for utter-
ances and cell sequences in table rows using BERT.
In summary, these fail to capture the complete row-
column structure of tables in the embeddings. In
contrast, our GCN architecture captures the struc-
ture of all tables, the entities, the types and the
training annotations.

For the problem of extending the knowledge
graph from tables, Zhang et al. (2020) consider
discovery of new entities, but only in the context of
relational tables, with a single core column. Their
approach make use of pre-trained neural embed-
dings (word2vec) and cosine similarity in addition
to lexical similarity. Our focus is on web tables,
where we need to discover new entities and types
for all columns in a table. Our approach makes use
of GCN embeddings trained using entity and type
labels to detect new entities and types.

3 Problem: Table Annotation

In this section, we first define tables, the back-
ground knowledge of entities and types, annotation
of tables with entities and types, and, finally, the
problem of semi-supervised table annotation with
incomplete knowledge.

Tables: We are given a set of tables S. Fig.1
shows an example at the top. The kth table Sk ∈ S ,
consists of mk rows and nk columns of individual
cells. The individual cell in the ith row and jth

column of the kth table is denoted as xkij . We
consider textual tables only, so that each xkij takes
a string as value. Also, we denote the ith row as
Rk

i and the jth column as Ck
j .

Entities and Types: We assume background
knowledge of entities and entity types (or simply,
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Figure 1: (a) Example table with 2 columns and 2
rows. The column annotations with types and the cell
annotations with entities are shown within brackets. (b)
GCN graph for example table with table nodes as boxes
and entities and types nodes as ovals. Table edges are
shown using fine solid lines, entity-type edges with
thick solid lines and annotation edges using dashed
lines. Lexical similarity edges are typically between
cells in different tables and are not shown.

types). Let T denote the set of types, and E the set
of entities. Each entity E is associated with a type
T (E). For each entity E, there is also an entity de-
scription or lemma L(E). In Fig.1, the oval nodes
shows example entities and types. Entity E123 has
associated type T12:Person and lemma Tamara K..

Table Annotations: We assume that tables con-
tain information about entities E and types T .
Specifically, each column of each table corresponds
to a single type, each cell corresponds to a specific
entity of that type. In our example table, cell x11 is
annotated with entity E123, and column C1 is an-
notated with type T12:Person. Let T (Ck

j ) denote
the type associated with column Ck

j , and E(xkij)
the entity associated with the cell xkij . Let Ae be
the set of all entity annotations of cells, and At that
of all type annotations of columns.

Semi-supervised Table Annotation with Incom-
plete Knowledge: In the semi-supervised table
annotation task, we are given the entire set of ta-
bles S but only a subset Ao

e ⊂ Ae of the entity
annotations, and a subset Ao

t ⊂ At of the type an-
notations are observed. The task is to annotate the
unannotated cells and columns of the tables, using
the observed annotations as training data.

Let T o denote the set of unique types seen inAo
t ,

and Eo the set of unique entities seen in Ao
e. In the

Figure 2: Model architecture showing GCN compo-
nent with gray nodes, entity classification component
with blue nodes and type classification components
with red nodes.

incomplete knowledge setting, T o ⊂ T , indicating
that all the types are not seen in the training anno-
tations. Similarly, all the entities are also not seen
in training: Eo ⊂ E . Now, the task for the unanno-
tated cells and columns is three-fold. The first is to
decide whether these correspond to observed enti-
ties Ao

e and observed types Ao
t . We call this novelty

classification. Next, the non-novel table columns
need to be annotated with observed types T o, and
the non-novel table cells with observed entities Eo.
We call these type detection and entity detection
respectively. Finally, the columns corresponding
to novel types need to be grouped according to
distinct novel types, and the cells corresponding
to novel entities need to be grouped according to
distinct novel entities. We call these type discovery
and entity discovery respectively.

4 Joint Table and Knowledge Embedding

We first present at a high level the network archi-
tecture of our model, which we call TabGCN. The
core components TabGCN are (I) a Graph Convolu-
tional Network (GCN), which captures the various
syntactic relationships between table and knowl-
edge elements, and then jointly learns embeddings
for these via the convolution operation. The GCN
embeddings of table elements contain information
about both types and entities. These are fed into
two parallel components: (II) the Type Classifica-
tion component, and (III) the Entity Classification
component. The Type Classification component
first projects the GCN embedding of table columns
to a type space using a type-projection matrix, and
then uses a soft-max layer to classify this type em-
bedding according to observed types. Similarly, the
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Entity Classification component first projects the
GCN embeddings of table cells to an entity space
using an entity-projection matrix, and then uses a
soft-max layer to classify this entity embedding ac-
cording to observed entities. Fig.2 shows the high
level architecture of our model for a subgraph of
our example table graph in Fig.1. The parameters
of all three components are trained jointly in an end-
to-end fashion using training entity annotations for
cells and type annotations for columns via back-
propagation. We next describe these components
in greater detail.

Graph Convolutional Network: Graph Convo-
lutional Networks (GCN) (Kipf and Welling, 2017;
Gilmer et al., 2017) extend the notion of convo-
lution to graphs. Let G = (V, R) be a directed
graph where V is the set of n nodes andR the set of
directed edges. An edge between nodes u, v ∈ V
with label Luv is denoted as (u, v, Luv) ∈ R. The
edge set includes an inverse edge for each edge and
a self-loop for each node. An input feature matrix
X ∈ Rm×n contains the input feature representa-
tion xu ∈ Rm of each node ∀u ∈ V in its columns.
Output embedding of a node v at kth layer of GCN
is given by

h(k+1)
v = f

 ∑
u∈N (v)

W
(k)
Luv

h(k)u + b
(k)
Luv

 ,∀v ∈ V

(1)
Here, W (k)

Luv
and b(k)Luv

are label specific model pa-

rameters at kth layer and h(1)u = xu. For classifi-
cation, a linear classification layer is added on top
of final GCN layer. Function f() is a non-linear
activation for which we used ReLU.

GCN for Table and Knowledge Elements: Our
GCN graph connects table parts, entities and types.
We show the GCN graph for our example table
in Fig.1. Its node set V consists of table nodes
(boxes) and knowledge nodes (ovals). For each
table Sk ∈ S , the table nodes include one node for
each cell xkij , one node for each column Ck

j , one
node for each row Rk

i , and one node for the table
Sk itself. The knowledge nodes include one node
for each observed type T o ∈ T o and one node for
each observed entity Eo ∈ Eo.

Recall that edges in a GCN serve to bring the
embeddings of their end nodes closer, the extent be-
ing determined by their weight. With this intuition
we create the edges R of different types reflecting

the underlying semantics of tables and the annota-
tions. These are table edges Rt, knowledge edges
Rk, annotation edges Ra, and lexical similarity
edges Rl.

Table edges capture the semantics of web tables,
which do not have special anchor columns. These
are of four categories: a cell-column edge between
a cell node xkij and its corresponding column node
Ck
j ; a cell-row edge between a cell node xkij and its

corresponding row node Rk
i ; a column-table edge

between a column node Ck
j and its corresponding

table node Sk; and a row-table edge between a row
node Rk

i and its corresponding table node Sk.
Knowledge edges connect each entity node Eo

with its corresponding type node T (Eo).
Annotation edges are of two categories: an entity

annotation edge for each entity annotation in Ao
e

between a cell node xkij and its labeled entity node
E(xkij); and a type annotation edge for each type
annotation in Ao

t between a column node Ck
j and

its labeled type node T (Ck
j ).

Lexical similarity edges are added between pairs
of cells in the same or different tables whose lexical
similarity, computed using character-based Jaccard
(Limaye et al., 2010), is above a threshold.

All edges are bi-directional. Each of the 8
edge categories above has its own parameters
(W

(k)
l , b

(k)
l ) for each layer in our GCN. Self loops

are added for nodes associated with textual input,
specifically, cells and entities with lemmas. For
the input representation of such nodes, we use the
pre-trained word embeddings for each of their con-
stituent tokens, and take their mean. For this paper
we used GloVe (Pennington et al., 2014).

Type Classification: The final (Kth) GCN layer
generates an embedding h(K)

v for each node v. This
contains information about both types and entities.
For type classification of a column node c, we first
get its type embedding ht(c) by projecting h(K)

c

to a type space using a type projection matrix Pt:
ht(c) = Pth

(K)
c . Then we get the probability distri-

bution gt(c) over known types T o for the type em-
bedding ht(c) using a soft-max layer with weight
matrix θt: gt(c) = σ(ht(c); θt). The type projec-
tion matrix Pt and the sigmoid weight matrix θt
form the parameters for this component.

Entity Classification: We follow a similar ap-
proach for entity classification of a cell node x. We
first project its GCN embedding h(K)

x to an entity
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space using an entity projection matrix Pe. The en-
tity embedding he(x) is passed through a soft-max
layer with weight matrix θe to get the probability
distribution ge(x) over known entities Eo. The en-
tity projection matrix Pe and the sigmoid weight
matrix θe form the parameters for this component.

Joint Training: The parameters for all three
components are trained end-to-end using available
entity annotations for cells and type annotations for
columns. Specifically, we consider the type predic-
tions gt(c) for columns and minimize classification
loss with the observed entity labels T (c). We sim-
ilarly minimize classification loss between entity
predictions ge(x) and observed entity labels E(x)
for cells. We consider a weighted combination of
the entity prediction loss and the type prediction
loss. We have used cross-entropy as the classifi-
cation loss function, and Adam (Kingma and Ba,
2015) for optimization.

5 Annotating Tables using Embeddings

Training the network in Sec.4 generates estimates
of the model parameters as well as embeddings for
all table and knowledge elements. In this section,
we describe the use of these parameters and em-
beddings for the tasks defined in Sec.3. We use
h(v) for the GCN embedding of a node v instead
of h(K)

v for brevity.

Novelty Classification: To decide whether an
unannotated column c corresponds to any of the
known types in T o (novel type classification),
we make use of their type embeddings. Col-
umn c corresponds to a new type if its type-
space embedding ht(c) = Pth(c) is ‘far away’
from the type space embedding ht(T ) = Pth(T )
for all T ∈ T o. More specifically, we use
δ(maxT∈T o cos(Pth(c), Pth(T )) ≤ εt), where εt
is the novel type threshold, and δ() is the Kronecker
delta function. A similar approach is followed for
deciding if an unannotated cell x corresponds to
any of the known entities in Eo (novel entity classi-
fication) by using the entity embeddings. Specifi-
cally, we use δ(maxE∈Eo cos(Peh(x), Peh(E)) ≤
εe), where εe is the novel entity threshold.

Type and Entity Detection: Columns and cells
determined to be non-novel need to be classified
according to known types and entities respectively.
This can be done using forward propagation in
the trained network on the embeddings of the cor-
responding nodes. The type prediction gt(c) of

a column c is obtained as gt(c) = σ(Pth(c); θt).
Similarly, the entity prediction ge(x) of a cell x is
obtained as gt(x) = σ(Peh(x); θe).

Type and Entity Discovery: On the other hand,
columns and cells determined to be novel need to
be grouped according to distinct new types and en-
tities respectively. This is done by clustering their
projections in the appropriate space. Specifically,
for type discovery, we take the type embeddings
ht(c) of all novel columns c and cluster these. Sim-
ilarly, for entity discovery, we cluster the entity
embeddings he(x) of all novel cells x. The clus-
tering algorithm needs to automatically determine
the number of clusters in both cases. In this paper,
we have used Silhouette clustering (Rousseeuw,
1987) as a representative non-parametric clustering
algorithm. Other algorithms approaches such as
Bayesian non-parametric techniques (Teh, 2010)
may be used here.

Down-stream Inference for Rows and Tables:
Training annotations are only provided for cells
and columns. But embeddings are available for the
rows and tables as well after training, and these can
be used for different down-stream application tasks.
Since these do not involve type or entity spaces, we
directly use their GCN embeddings for these tasks.
As examples, we define two such tasks here. Table
clustering is the task of grouping together seman-
tically related tables. For this, we cluster the table
embeddings h(S) of all tables S ∈ S. For consis-
tency, we again use Silhouette clustering. Row to
Table assignment is the task of assigning a row to
its most appropriate table. For this, we assign a row
R with embedding h(R) to the table Sk with the
‘closest’ embedding h(Sk), or, more specifically,
to S∗ = argmaxSk

cos(h(R), h(Sk)). If R is a
row from a table provided during training, then its
embedding is readily available. If it is a new row,
then its embedding is created by convolving over
the input embeddings of its constituent cells using
the trained parameters Wl for cell-row edge.

6 Experiments

In this section, we first present experimental re-
sults for table annotation, and then for down-stream
table-related tasks. We compare our proposed
model TabGCN with appropriate state-of-the-art
baselines. We have uploaded our source code as
supplementary material for reproducibility.
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Model Wiki M Web M T2Dv2 Limaye Wikipedia
Type Entity Type Entity Type Entity Type Entity Type Entity

PGM 0.55 0.70 0.57 0.75 - - 0.60 0.75 - -
MeiMei 0.40 - 0.62 - - - 0.58 - - -
Tab2Vec - 0.20 - 0.50 - - - 0.50 - -
ColNet 0.20 - 0.47 - 0.59 - 0.47 - 0.60 -
TaBERT 0.20 - 0.49 - 0.59 - 0.47 - 0.59 -
TabGCN 0.33 0.24 0.84 0.83 0.82 - 0.84 0.79 0.85 -

Table 1: Entity and Type detection performance using micro averaged F1 for TabGCN and 5 baselines models on
5 benchmark datasets. Note that T2Dv2 and Wikipedia do not have entity annotations. Also, not all baselines can
perform both entity and type detection.

Model Wiki M Web M T2Dv2 Limaye Wikipedia
Type Entity Type Entity Type Entity Type Entity Type Entity

ColNet 0.76 - 0.64 - 0.77 - 0.63 - 0.60 -
TaBERT 0.76 - 0.62 - 0.76 - 0.61 - 0.60 -
TabGCN 0.88 0.86 0.84 0.84 0.90 - 0.84 0.83 0.82 -

Table 2: Type and Entity Discovery performance using normalized mutual information (NMI) for TabGCN, Col-
Net and TaBERT. Other baselines cannot address this task. T2DV2 and Wikipedia do not have entity annotations.

Data: We used 5 benchmark web table datasets.
Their statistics are shown in Table.4. Wiki Man-
ual (Limaye et al., 2010) is a small dataset of
simple non-infobox tables from Wikipedia articles.
Web Manual (Limaye et al., 2010) contains tables
fetched by web-crawling using Wiki Manual tables
as queries. These two tables are manually anno-
tated with entities and types from YAGO. The ta-
bles and annotations are noisier than Wiki Manual.
Limaye (Chen et al., 2019; Efthymiou et al., 2017)
corrects many incorrect annotation in Wiki Man-
ual using entities and types from DBPedia 2015.
T2Dv2 (Chen et al., 2019) contains tables from
Common Web Crawl. Wikipedia is a publicly
available subset of the data used by Efthymiou et al.
(2017). This has HTML tables from Wikipedia
2013 with class attribute “wikitable”. The last three
datasets are annotated using DBPedia. But T2Dv2
and Wikipedia contain only type annotations, and
entity annotations are not available. For all datasets,
we first set aside 30% of the unique entities and
types, and effectively all their annotations as un-
seen during training. Of the remaining annotations,
again 30% was removed during training.

Baselines: We compare TabGCN against three
existing table annotation approaches. PGM (Li-
maye et al., 2010) uses a probabilistic graphical
model and hand-crafted features. Since our entity-
type set T is flat instead of being a hierarchical
graph, we use logistic regression instead of struc-
tural SVM to estimate model parameters. MeiMei
(Takeoka et al., 2019) also uses a Markov Ran-
dom field but embeds the entities and types for fast

computation of clique potentials. For both models,
we ignore the relation labels for column-pairs and
associated potential functions, since we do not ad-
dress relation detection. Table2Vec (Zhang et al.,
2019) learns various word2vec-based embeddings
for tables for entity annotation. It does not address
type annotation. It focuses on relational tables and
associates a single entity with a row for its core
column. We adapted this model for web tables
which associate an entity for each cell. We use
their Table2VecE version, which models a row as
a sequences of all entities that appear within cells
of that row. After training the word2vec model,
instead of considering the embedding for the en-
tire row as in Table2VecE, we create cell-specific
embeddings from only the tokens for that cell. Col-
Net (Chen et al., 2019) models each column as a
sequence of words from the cells under the column
and uses a CNN to predict the column type. We
also use an adaptation of TaBERT (Yin et al., 2020)
which trains a joint language model for retrieval
from tables given utterances. We adapt their ap-
proach to independently linearize each row and col-
umn of a table as a sequence of cells under that row
and column, and get column and row embeddings
using the mean of corresponding cell embeddings.
For cells, we use pre-trained BERT embeddings.

Hyper-parameters: We used one-hot encodings
as inputs for cells and entities with lemmas. We
used ReLU as the nonlinear GCN activation, 2
GCN layers with 512 and 256 dimensions. As a
result, the 8 GCN weight matrices were Vx512
in the first layer, where V is the vocabulary size,

https://bit.ly/3l0gy8Y
https://bit.ly/3l0gy8Y
https://bit.ly/3l0gy8Y
https://bit.ly/3n9fWQc
https://bit.ly/3n9fWQc
https://bit.ly/3n9fWQc
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Model Wiki M Web M T2Dv2 Limaye Wikipedia
Hits@1 MRR Hits@1 MRR Hits@1 MRR Hits@1 MRR Hits@1 MRR

Tab2Vec 0.11 0.16 0.13 0.21 0.32 0.39 0.09 0.18 0.29 0.35
TaBERT 0.13 0.18 0.51 0.58 0.32 0.40 0.46 0.57 0.38 0.46
TabGCN 0.18 0.21 0.71 0.77 0.67 0.70 0.71 0.77 0.71 0.74

Table 3: Row assignment performance using Hits@1 and MRR for TabGCN, Tab2Vec and TaBERT on all datasets.

Dataset T R C E T E∗ T ∗

Wiki Man. 39 36.3 4.2 1026 49 308 15
Web Man. 403 34.4 3.7 883 48 265 14
Limaye 294 27.7 3 504 21 151 6
T2Dv2 345 44.8 4.8 - 27 - 8
Wikipedia 572 24.4 5 - 29 - 9

Table 4: Dataset Statistics: For each dataset, T indic-
tates the number of tables, R the average number of
rows per table, C the average number of columns per ta-
ble, E the number of unique entities and T the number
of unique types used for annotation, E∗ the number of
new unique entities and T ∗ the number of new unique
types not seen in training annotations.

and 512x256 in the second layer. The entity and
type space embeddings had dimension 256, so that
the entity and type projection matrices were both
256x256. For training, we used learning rate 0.001,
dropout 0.5, 1000 epochs. The weights for com-
bining the type and entity losses was 1 : 2 for
both datasets, optimized manually. All experiments
were performed on a Dual-core intel Core i5 Pro-
cessor with 8GB RAM. The average training time
per epoch ranges from 1.3 secs for Wiki Manual to
35.4 secs for T2Dv2.

Detection Results: We first present results for
entity and type detection, addressed by most of the
baselines. For this task, all models predict entity
labels for all cells and type labels for all columns
that are unannotated. However, evaluation is only
for those cells and columns whose true entity and
type labels are contained in the observed entities
Eo and observed types T o respectively.

For evaluation, as in earlier table annotation pa-
pers (Limaye et al., 2010; Chen et al., 2019), we
use micro-averaged F1, which takes the weighted
average of the F1 scores over the entities or types.
This takes class imbalance into account and is there-
fore more appropriate than accuracy. We note that
MeiMei addresses the multi-label setting with mul-
tiple possible type labels, and therefore uses rank-
ing evaluation measures (e.g. NDCG). This is not
meaningful in our single-labeled setting.

Tab. 1 shows detailed results for all models
across datasets. We can see that TabGCN signifi-

Figure 3: Novelty classification Performance on
(a) types and (b) entities for TabGCN, its ablation
TabGCN(-K) and PGM for Web Manual, showing F1
on the y-axis and decision threshold on x-axis. PGM
does not use a decision threshold. Results on other
datasets are very similar. Other baselines cannot ad-
dress this task.

cantly outperforms all baselines on all datasets for
both detection tasks. The only exception is for Wiki
Manual. The graphical model based approaches
with handcrafted potential functions outperform
the representation learning approaches, possibly on
account of the smallness of the dataset. Among the
embedding based approaches, TabGCN performs
the best.

Novelty Classification Results: In our second
experiment, we consider novelty classification.
This is an unsupervised task, where a model makes
a binary decision for each unannotated column
(novel type classification) and for each unanno-
tated cell (novel entity classification). Since the
decision depends on the thresholds for type (εt)
and entity (εe), we plot F1 score on the y-axis
against the corresponding threshold on the x-axis.
Of the baselines, only PGM can address this task,
but outputting a NONE label for the type or en-
tity. Fig.3 shows novelty classification performance
for Web Manual. Results for Wiki Manual and
Limaye are very similar. TabGCN reaches F1
around 0.8 for both tasks for appropriate thresh-
olds. Across thresholds, TabGCN significantly out-
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Models Wiki M Web M Limaye
Type Ent. Type Ent. Type Ent.

-K 0.29 0.23 0.84 0.82 0.83 0.78
-E 0.22 - 0.82 - 0.81 -
-T - 0.22 - 0.63 - 0.63
-L 0.33 0.23 0.80 0.75 0.81 0.74
TabGCN 0.33 0.24 0.84 0.83 0.84 0.79

Table 5: Ablation study for entity and type detection
showing micro. F1. -K removes knowledge (entity and
type) nodes, -E removes entity nodes, -T removes type
nodes and -L removes lexical similarity edges.

performs PGM.

Type and Entity Discovery Results: The final
annotation tasks are type discovery, where all unan-
notated columns that do not correspond to known
types in T o need to be clustered into distinct new
types, and entity discovery, where all unannotated
cells that do not correspond to known entities in
E0 need to be clustered into distinct new entities.
We used Normalized Mutual Information (NMI)
NMI = 2I(C,Y )

H(C)+H(Y ) between the assigned cluster
labels (Y) and the true entity or type labels (C),
where I(, ) denotes mutual information and H()
denotes entropy. In Tab. 2, we see that TabGCN
performs consistently above 80% for entity and
type discovery across datasets, significantly outper-
forming ColNet and TaBERT.

Ablation Study: Next, we analyze the perfor-
mance of TabGCN, using multiple ablations of the
full model. -K leaves out the knowledge nodes and
their incident edges from the GCN graph during
training. -E focuses only on types by removing all
entity nodes and entity-related edges (type-entity
and cell-entity annotation) from the GCN graph.
It is trained only using type loss. Note that it can-
not perform tasks associated with entities, specif-
ically entity detection, novel entity classification
and novel entity discovery. Similarly, -T focuses
only on entities by removing all type nodes and
type-related edges (type-entity and column-type
annotation) from the GCN graph. It is trained only
using entity loss, and cannot perform tasks asso-
ciated with types. Finally, -L removes the lexical
similarity edges from the GCN graph. The results
are recorded in Table. 5. We can see that all the
components of the architecture contribute to perfor-
mance improvements. The improvement is statis-
tically significant (using the Wilson Interval with
α = 0.05) for all ablations other than -K. While -K
performs comparably here, its performance drops

Model T2Dv2 Limaye
Tab2Vec 0.66 0.49
TaBERT 0.76 0.51
TabGCN 0.89 0.81

Table 6: Table clustering performance using NMI
for TabGCN, Tab2Vec and TaBERT on T2Dv2 and Li-
maye. Other baselines cannot address this task. T2Dv2
has 40 table categories and Limaye 15. Other datasets
do not have table categories for evaluation.

significantly for novelty classification, as can be
seen in Fig.3.

Downstream Table Related Tasks: Finally, we
include some results for the table and row related in-
ference tasks defined at the end of Sec.5. This is to
demonstrate how the learnt embeddings can benefit
potential down-stream tasks. Note that TabGCN di-
rectly outputs table embeddings. Of the baselines,
Tab2Vec and TaBERT output row embeddings. For
these models, we create table embeddings by aver-
aging the corresponding row embeddings.

In Tab. 6, we record performance for table clus-
tering. TabGCN again significantly outperforms
both baselines for both datasets.

We finally consider row-to-table assignment. In
this task, one randomly selected row is removed
from every table during training. These rows then
need to be classified according to their parent table.
Since the models output a ranking of tables for
each row, we evaluate using two ranking related
measures. Hits@1 measures the fraction of rows
with the correct table at rank 1. Mean Reciprocal
rank (MRR) is the mean of the reciprocal rank
of the correct table over all rows, and its perfect
value is 1.0. In Tab. 3, we again see that TabGCN
performs the best across datasets.

In summary, we have demonstrated the useful-
ness of learning embeddings of table elements and
knowledge elements jointly using both entity and
type losses in an end-to-end fashion for type and
entity annotation on 5 benchmark datasets. In addi-
tion, we have demonstrated how the learned embed-
dings can be useful for downstream table-related
tasks. In all cases, TabGCN has significantly out-
performed multiple state-of-the-art baselines using
probabilistic graphical models as well as other neu-
ral approaches.

7 Conclusion

We have proposed a model for that jointly learns
representations of tables, rows, columns and cell,
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as well as entities and types by capturing the com-
plete syntactic structure of all tables, the relevant
entities and types and the available annotations
using the Graph Convolutional Network. As a re-
sult, TabGCN unifies the benefits of probabilistic
graphical model based approaches and embedding
based approaches for table annotation. Using these
embeddings, TabGCN significantly outperforms
existing approaches for table annotation, as well as
entity and type discovery.
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